
Differential Bees Flux Balance Analysis with OptKnock
for In Silico Microbial Strains Optimization

Yee Wen Choon1, Mohd Saberi Mohamad1*, Safaai Deris1, Rosli Md. Illias2, Chuii Khim Chong1, Lian

En Chai1, Sigeru Omatu3, Juan Manuel Corchado4

1Artificial Intelligence and Bioinformatics Group, Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia, 2Department of Bioprocess Engineering, Faculty of

Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, 3Department of Electronics, Information and Communication Engineering, Osaka Institute of

Technology, Osaka, Japan, 4 Biomedical Research Institute of Salamanca/BISITE Research Group, University of Salamanca, Salamanca, Spain

Abstract

Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The
strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic
engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable
phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic
modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often
lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale
metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this
paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout
strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed
method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by
hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is
integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments
conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a
better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes
compared to the methods used in previous works.
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Introduction

In the recent years, more accurate genome annotation and

more complete pathway information, promising achievements

have been made on in silico metabolic network reconstruction [1].

In addition, one of the most comprehensive stoichiometric models

built upon the genome of E. coli had been available [2]. Currently,

the new emerging study is aiming to computationally optimize the

microbial strains for the overproduction of particular chemical and

biochemical compounds, diversely ranging from industrial inter-

ests to environmental usages [3]. Computational models are of the

central importance for the investigation of general biological

functions and applications in the area of biomedicine and

biotechnology, this accelerates the process of developing compu-

tational models to simulate the actual processes inside the cells [4].

Retrofitting of the cellular metabolism is essential, as naturally, due

to the cellular metabolism responses in the history of selective

pressures, microorganisms evolve by optimizing their growth

rather than having overproduction of specific chemical com-

pounds. Classical strain improvement such as random mutagenesis

and screening are among traditional methods to retrofit the

microbial metabolism. However, the effects of genetic modifica-

tion on the desirable phenotypes are difficult to predict due to the

complexities of the metabolic networks that lead to data

ambiguity. Furthermore, the combinatorial problem that is caused

by a large number of reactions in cellular metabolism makes the

process to obtain optimal gene deletion strategies challenging.

Basically, a genome-scale metabolic model is usually large in size.

Another problem in the current metabolic engineering field is as

the size of the problem increases, the computation time increases

exponentially. In later years, metabolic engineering is introduced

to retrofit microbial metabolism. In metabolic engineering, the

main objective is to increase the production of particular chemical

and biochemical compounds through genetic engineering. Gene

knockout is one of the most common genetic engineering

techniques for the overproduction of particular chemical and

biochemical compounds, in which one of the organism’s genes is

made inoperative. Currently, this technology has been successfully

applied in many organisms, from unicellular eukaryotes to

mammals, including human cells.

In the recent years, the study on computational algorithms to

identify optimal gene knockout strategies for obtaining improved
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phenotypes is growing rapidly. The first rational modeling

framework (known as OptKnock) is introduced by Burgard et

al., for predicting gene knockout strategies aiming to the

overproduction of a desired metabolite. Without affecting the

operation of the internal flux distribution, OptKnock identifies a

set of gene (reaction) deletions to maximize the flux of a desired

metabolite so that the growth or another objective function is

optimized [5].

OptKnock uses mixed integer linear programming (MILP) to

formulate a bi-level linear optimization that is promising to find

the global optimal solution. OptGene is extended from OptKnock

which formulates the in silico design problem by using Genetic

Algorithm (GA) [6]. Meta-heuristic methods are usually known to

be able to produce near-optimal solutions with reasonable

computation time, which is favourable, and the objective function

that can be optimized is flexible. OptGene is available in two

representation schemes which are binary and integer. The binary

representation is more complex and leads to a solution with a large

number of knockouts even though it is closer to the natural

evolution of microbial genomes. The integer representation gives a

more compact genome but the problem is that a priori number of

gene knockouts need to be defined [7]. To overcome the problems,

Rocha et al. [7] proposed two optimization algorithms: Simulated

Annealing (SA) and Set-based Evolutionary Algorithms (SEAs) to

allow the automatic finding of the best number of gene deletions to

achieve a given productivity goal. The performance to identify

optimal gene knockout strategies still needs improvement.

A hybrid of BA and FBA (BAFBA) was proposed by Choon et

al. [8], which showed a better performance in predicting optimal

gene knockout strategies in terms of growth rate and production

yield. Bees Algorithm (BA) was first introduced by Pham et al. [9],

which is a typical meta-heuristic optimization approach that has

been applied to several problems, such as controller formation

[10], image analysis [11], and job multi-objective optimization

[12]. BA mimicks the intelligent behaviors of honeybees. It locates

the most promising solutions, and selectively explores its neigh-

borhoods for the global maximum of the objective function.

According to a series of recent publications, BA is efficient in

solving optimization problems [9–12]. Nevertheless, BA is

relatively weak in local search activities due to its dependency

on random search [13]. In this paper, DBFBA, a hybrid of DE

algorithm into the neighborhood searching strategy of BAFBA has

been proposed to improve the performance of BAFBA. DE

algorithm is a heuristic approach mainly having three advantages;

finding the true global minimum regardless of the initial parameter

values, fast convergence, and using few control parameters. In

addition, to improve the reliability of the work, the OptKnock was

integrated into DBFBA to validate the results rather than

validating the results only through literature. OptKnock is a

well-recognized modelling framework, which is widely used in

assisting biologists for gene knockout experiments in laboratory. It

is proven that predicted strains from OptKnock can lead to

successful production strains and that adaptive evolution of the

engineered strains can lead to improved production capabilities

[14]. Besides, the previous work, OptGene, integrated with

OptKnock to validate the results too, hence OptKnock is used

to validate the results in this paper [7]. This paper shows that

DBFBA is capable of solving large size problems in short

computational time as well as improves the performance in

predicting optimal gene knockout strategies. The results obtained

Figure 1. BAFBA Flowchart. Note: Red-dotted box is Flux Balance Analysis which is hybridized into standard BA as an objective function in order
to predict the effect of gene knockout.
doi:10.1371/journal.pone.0102744.g001
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by DBFBA in four case studies are also presented where E.coli

(Escherichia Coli) iJR904 model, B.subtilis (Bacillus subtilis)

model, and C. thermocellum (Clostridium thermocellum) model

are the target microorganisms [2,15–16]. In addition, a compu-

tational benchmarking analysis was also conducted to test the

performance of the hybrid of Bee algorithm and DE algorithm.

This paper is organized as follows: Firstly, problem formulation

is introduced, and the details of the BAFBA and the proposed

DBFBA are described. The validation analyses by using

OptKnock are also explained. Then, the datasets and experimen-

tal setup are described. Next, experimental results are presented.

Then, the discussion on the obtained results is addressed, which

deliberates the contributions of this work. Lastly, this paper is

summarized by providing main conclusion and future develop-

ments.

Materials and Methods

Problem Formulation
The problem to identify optimal gene knockout strategies from

the biological models can be formulated as follows: Suppose a

model which contains the stoichiometric matrix S provides the

linear relationship of the model between the flux rates of the

reactions (v) and the derivatives of the reactant concentrations (x).

The matrix is a constant, while the flux vector is a variable.

Assume that there are m reactants and n reactions between them.

Flux vector:

v~(v1, v2, � � � , vn)T ð1Þ

Concentration vector:

x~(x1, x2, � � � , xm)T ð2Þ

Dynamic mass balance equation:

dX

dt
~Sv ð3Þ

where T represents the time.

The chemical elements, ionic charge, and biochemical moieties

must be balanced in the stoichiometric matrix. The objective is to

find the optimal gene knockout strategy which can improve the

product yields of industrially important chemicals, while sustaining

the growth rate of the microorganism. This is commonly

Figure 2. Overall framework of DBFBA with OptKnock. Note: Red-dotted box is DE algorithm that is hybridized into BAFBA in order to improve
the local search performance of BAFBA. Green-dotted box is OptKnock validation that has been integrated into DBFBA in this paper.
doi:10.1371/journal.pone.0102744.g002
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performed by using the linear programming, defined as follows:

maximize cTx

subject to Sv~0

and lowerboundƒxƒupperbound ð4Þ

Figure 3. Pseudo code of DBFBA.
doi:10.1371/journal.pone.0102744.g003
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where v represents the vector of fluxes, S is the stoichiometric

matrix. The expression (cTx) to be maximized or minimized is

known as the objective function, where c is a vector of weights,

indicating contributions of each reaction to the objective function.

The inequalities of lower bound and upper bound define the

maximal rates of flux for every reaction corresponding to the

columns of the stoichiometric matrix.

A hybrid of BA and FBA (BAFBA)
Figure 1 shows the flow of BAFBA. BAFBA is initialized by

mimicking a population of bees. In identifying gene knockout

strategies, a bee is represented by a binary variable to indicate the

absence or the presence of genes in the reaction. In this study, the

BAFBA is started with the bees being placed randomly in the

search space. The fitness of the sites visited by the bees is evaluated

using FBA. Bees with the highest fitness would be denoted as

‘selected bees’ and the sites visited by them would be chosen for

neighbourhood search. Small amount of ‘selected bees’ was

expected to encourage local exploitation. After performing many

tests, it was found that appropriate maximum ‘selected bees’ was

(1/4)6n. The amount of selected bees was limited within the range

[1,(1/4)6n] to prevent unnecessary selection of sites for neigh-

borhood search. Each bee was required to go through this

repetitive local search neighborhood procedure until the best

possible answer obtained. Meanwhile, the remaining bees were

assigned randomly to search for new potential solutions.

Before attempting to propose DBFBA, it is crucial to find the

limitations of BAFBA [9]. BA dependence on random search

makes it relatively weak in local search activities and it suffers of

slow convergence due to the repetitive iteration of the algorithm.

Figure 4. Bee representation of metabolic genotype [6].
doi:10.1371/journal.pone.0102744.g004

Figure 5. The flow of fitness calculation.
doi:10.1371/journal.pone.0102744.g005
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Repetition of unnecessary similar process in neighborhood search

causes an additional computational time in generating solution.

Differential Bees Flux Balance Analysis (DBFBA) with
OptKnock
In this paper, DBFBA with OptKnock for identifying optimal

gene knockout strategy was proposed to overcome the limitations

of BAFBA and previous works [5–7,9]. DBFBA in this work differs

from the BAFBA in the neighborhood search activities. The

proposed DBFBA improved the operation by hybridizing DE

algorithm into BAFBA. In addition, OptKnock was integrated into

DBFBA to improve the reliability of the results. Figure 2 shows the

overall framework of DBFBA and Figure 3 is the pseudo code of

DBFBA. The important steps are explained in the following

subsections.

Bee Representation of Metabolic Genotype. One or more

genes can be discovered in each reaction in a metabolic model. In

this paper, each of those genes is represented by a binary variable,

where 0 represents the absence of the gene and 1 represents the

presence of the gene in the reaction. These variables form a ‘bee’

representing a specific mutant that lacks some metabolic reactions

when compared with the wild type (Figure 4).

Figure 6. The flow of OptKnock validation.
doi:10.1371/journal.pone.0102744.g006

Table 1. Mathematical representation of De Jong Martin & Gaddy, Schwefel, and Griewangk functions.

Name Mathematical representation

De Jong maxF~ 3905:93ð Þ{100 x1
2
{x2

� �2
{ 1{x1ð Þ2

Martin & Gaddy
minF~ x1{x2ð Þ2z x1zx2{10

3

� �2

Branin minF~a(x2{bx21zcx1{d)2ze 1{fð Þ cos x1ð Þze

a~1,b~
5:1

4

7

22

� �2

,c~
5

22
|7,d~6,e~10, f~

1

8
|

7

22

Griewangk
minF~

1

0:1z
Pn

i~1

x2i
4000

� �

{P
n

i~1 cos
xi
ffiffi

i
p z1

� �� �

doi:10.1371/journal.pone.0102744.t001
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Initialization of the Population. The algorithm starts with

an initial population of n scout bees. Each bee is initialized as by

assuming a reaction with n genes. Bees in the population are

initialized by setting present or absent status to each gene

randomly. Initialization of the population is done randomly so

that all bees in the population have an equal chance to be selected.

Specific rules like co-regulated genes tending to be clustered did

not affect the result of selecting the genes. The result might not

truly reflect the population if it is done with bias setting.

Flux Balance Analysis. Each site is given a fitness score that

determines whether to recruit more bees or should be abandoned.

In this work, FBA has been used to calculate the fitness score for

each site (refer to Equation (4)). In the study made by Garcı́a

Sánchez et al. [17], the best predictions were obtained using

‘‘maximization of growth’’, and with some combinations that

included this objective. Hence, in this paper, maximization of

growth is applied. After maximizing the cellular growth, mutant

with a growth rate of more than 0.1 continues the process by

maximizing the desired product flux at fixed optimal cellular

growth value. After conducting a small number of trial, the

optimal cellular growth value was fixed at 90% from the value

obtained from FBA, since the production yield of the desired

metabolite is always 0 when the growth is at maximum.

Production yield is the maximum amount of product that can

be generated per unit of substrate. The following shows the

calculation for production yield:

Production yield~
production rateproduction

consumption ratesubstrate

mmol

mmol

� �

gm

gm

� �

ð5Þ

where mmol =millimole and gm is gram.

We used Biomass-product coupled yield (BPCY) as the fitness

score in this work. According to Soons et al. (2013), metabolic

networks can function in living cells under various biological

objectives, depending on the relevant organism and its genetic and

environmental context. However, biological objectives have been

clarified as only applicable for analyzing a number of organisms in

terms of the microbial metabolic engineering. It is desirable to

couple the formation of the desired product to growth [18]. The

calculation for BPCY is as follows:

BPCY~production yield|growth rate
mmol

mmol|hr

� �

gm

gm|hr

� �

ð6Þ

Where mmol is millimole, hr is hour and gm is gram.

The flow of the fitness calculation is showed in Figure 5.

Neighborhood Search (Differential Evolution

Algorithm). This algorithm carries out neighbourhood searches

in the favored sites (m) by using DE algorithm. DE algorithm

operates by maintaining a population of candidate solutions and

creating new candidate solutions through the mutation and

crossover operation of DE, and keeps the fitness candidate

solution. In this paper, the candidate solutions are the m favored

sites from the population initialized by using BA. The algorithm

starts with the solution, then goes through the mutation and

Table 2. Obtained fitness value of all benchmark functions.

Function Mean STD

BA DB BA DB

De Jong 3.91e+03 3.91E+03 0.000504 2.13793E-05

Martin & Gaddy 11.1083 11.1111 0.002797 0

Branin 26.5619 26.5537 0.02917 0.02771

Griewangk –0.5263 –0.5263 5.76765E-09 0

Note: The bold numbers represent the best result.
doi:10.1371/journal.pone.0102744.t002

Table 3. Comparison between different methods for growth rate and BPCY Succinic acid by E.coli.

Method

Growth

Rate (1/hr) BPCY List of knockout genes

DBFBA 0.74529 13.58 ENO, PFL, PYK**

BAFBA [9] 0.58512 3.84893 FUM**, PTAr**, RPE

SA + FBA [7] N/A 0.35785 MALS, ORNDC, FUM**, GLYCL, GHMT2, ADPT, DCYTD, DUTPDP, URIDK2r, NTD8, PUNPI, THD2, GND, PFL,
SUCFUMt

OptKnock [5] 0.31 N/A PYK, ACKr, PTAr**, Phosphotransferase system

Note: The bold numbers represent the best result. N/A – Not Applicable.
*Common genes for all methods.
**Common genes in either 2 methods. BPCY is in gram (gram-glucose.hour)21.
doi:10.1371/journal.pone.0102744.t003
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crossover operation to create new candidate solutions. Since the

candidate solutions are initialized by BA randomly, hence the

specific rules on the distribution of gene on chromosome did not

affect the result for neighbourhood gene selection too. The

mutation factor F is a constant from [0,2] and elements of the

candidate solutions enter the new candidate solutions with

probability CR. In this paper, m is equal to 15, F is equal to 1,

and CR is equal to 0.5. The values are obtained by conducting a

small number of trials with the range of 10 to 25, 0 to 2, and 0.1–

0.9, respectively. This step is important as there might be better

solutions than the original solution in the neighborhood area.

Random Assignment and Termination. The remaining

bees in the population are sent randomly around the search space

to scout for new feasible solutions. This step is done randomly to

avoid overlooking the potential results that are not in the range.

These steps are repeated until either the maximum loop value is

met or the fitness function has converged. In the end, the colony

generates two parts to its new population – representatives from

each selected patch and other scout bees assigned to perform

random searches. There is no necessities to shrink the final result

from DBFBA, there will be no additional genes to the solutions,

because the fitness calculation is based on the bees that consist of a

set of genes and it is not calculate the effect of each gene, which

may contribute to the production of desired phenotypes.

OptKnock Validation. In this paper, OptKnock [5] has

been used to evaluate the result obtained through the list of gene

knockout from DBFBA. If the difference between the BPCY

obtained from DBFBA and the maximum production rate

obtained by OptKnock are less than 0.001, the list would be

considered as a valid solution. Figure 6 shows the flow of the

validation.

Datasets and Experimental Setup

There are three models used to test the operation of DBFBA in

this work, which are E. coli, B. subtilis, and C. thermocellum

models, respectively. The three models are well-established

models, the models are developed and used to study the

bacterium’s metabolism and phenotypic behaviour. Therefore

the distribution of the genes (clustered/location) has no impact in

our works since our works are not dealing with the expression

patterns of the genes. All the models are pre-processed through

several steps based on biology assumptions and computational

approaches before it was applied to DBFBA. Lethal reactions such

as genes that are found to be lethal in vivo, but not in silico,

should be removed to improve the quality of the results. The

results are invalid if a lethal reaction is deleted. In addition, dead-

end reactions that cannot be activated within a feasible flux

distribution when considering the entire universal reactions set are

removed. The first model is E. coli model that contains 904 genes,

931 unique biochemical reactions, and 761 metabolites [2]

(http://bigg.ucsd.edu/). E. coli iJR904 has been used in this work

to test the reliability of DBFBA as this model was also used in

previous works [5,7]. After the pre-processing step, the size of the

model is reduced to 667 reactions. The second model is B. subtilis

iBsu1103 model [15] (http://genomebiology.com/content/

supplementary/gb-2009-10-6-r69-s4.xml) that includes 1437 re-

actions associated with 1103 genes. This model has been

preprocessed and the size is reduced to 763 reactions. The last

model is C.thermocellum (ATCC 27405) iSR432 model [16]

(http://www.biomedcentral.com/content/supplementary/1752-

0509-4-31-s3.xml) that contains 577 reactions representing the

function of 432 genes. This model underwent the pre-processing

step and the size has reduced to 351 reactions. This work has

generated three results, which are the list of knockout genes,

growth rate, and BPCY (Biomass Product Coupled Yield). Unit for

growth rate is hour21 while unit for BPCY is in milli-gram (gram-

glucose.hour)21. The experiments were conducted using a

2.3 GHz Intel Core i7 processor with 8 GB RAM workstation.

The results were compared with the previous works as reported

in the literature studies [5,7,9]. The experiment carries out 100

individual runs to test on DBFBA with OptKnock, in which the

result shown is the best result among the runs.
Figure 7. Comparison between different methods for growth
rate and BPCY of Succinic acid by E.coli. Note: BPCY is in gram
(gram-glucose.hour)21. Unit for growth rate is hr21.
doi:10.1371/journal.pone.0102744.g007

Table 4. Comparison between different methods for growth rate and BPCY of Lactic acid by E.coli.

Method Growth Rate (1/hr) BPCY List of knockout genes

DBFBA 0.86719 16.1905 ACALD*, MDH, TALA

BAFBA [9] 0.58586 3.5656 GAPD, L_LACD2, PTAr**

SA + FBA [7] N/A 0.39850 ACLD19**, DRPA, GLYCDx, F6PA, TPI, LDH_D2, EDA, TKT2, LDH_D-

OptKnock [5] 0.28 N/A ACKr, PTAr**, ACALD**

Note: The bold numbers represent the best result. N/A – Not Applicable.
*Common genes for all methods.
**Common genes in either 2 methods. BPCY is in gram (gram-glucose.hour)21.
doi:10.1371/journal.pone.0102744.t004
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Results and Discussion

Benchmark Functions
In this paper, an improved method, DBFBA, was proposed to

test the performance of DBFBA. For evaluation, a benchmarking

analysis was conducted. However, benchmark functions could

only be tested on DB and BA, as FBA is an objective function.

Hence, the benchmark functions on DB and BA in this study were

tested. As BA is used to attain the maximum, the functions are

inverted before the algorithm is applied. The De Jong, Martin &

Gaddy, Branin, and Griewangk functions have been used in this

Figure 8. Flux map of the production of succinic acid.
doi:10.1371/journal.pone.0102744.g008
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study. A total of 100 individual runs have been carried out to test

on DB and BA.

Table 1 shows the mathematical representation of the functions.

Table 2 shows the mean and standard deviation (STD) of all the

functions, De Jong, Martin & Gaddy, Branin, and Griewangk,

tested on both original BA and DB. The results showed that DB

performs better than BA. All functions obtained low STD,

indicating that the result from each run is very close to the mean.

As a conclusion, the stability of the proposed method is high as the

difference between the result for each individual run is small. In

addition, the means for both algorithms are similar, indicating that

DB is indeed reliable, as the results obtained from DB are

consistent with the results from previous works.

Production of Succinic Acid and Lactic Acid by E.coli

Tables 3 and 4 summarize the results obtained from DBFBA for

succinic acid and lactic acid production in E.coli. As shown from

the results, this method produces better results than the previous

works in terms of growth rate and BPCY, and can also identify

potential genes that can be removed [5,7,9].

Table 3 shows DBFBA for the removal of three reactions from

the network results in succinic acid growth rate reaching 0.85512

and BPCY reaching 14.2907, which is better than previous works.

The removal of enolase (ENO) affects the phosphotransferase

system, which causes the network to rely exclusively on

glucokinase for the uptake of glucose. In addition, the removal

of pyruvate kinase (PYK), makes PEP carboxykinase as the only

central metabolic reaction capable of draining a significant

amount of PEP supplied by glycolysis [5]. Figure 7 presents the

comparison between different methods for growth rate and BPCY

of succinic acid. Figure 8 shows the flux map for the production of

succinic acid. The flux map shows that there is an increase in the

flux to succinic acid.

DBFBA is then applied to identify the knockout strategy for

producing lactic acid. Table 4 shows the growth rate of this

method, which is 0.86719 and 16.1905 for BPCY. Figure 9 shows

the comparison between different methods for growth rate and

BPCY of lactic acid. The deletion of transaldolase (TALA)

decreased the efficiency of gluconeogenesis which resulted in the

increased concentration of phosphoenolpyruvate. Phosphoenol-

pyruvate is then converted into pyruvate and continues to convert

into lactic acid. Knocking out acetaldehyde dehydrogenase

(ACALD) which catalyzes the conversion of acetaldehyde into

Figure 9. Comparison between different methods for growth
rate and BPCY of Lactic acid by E.coli. Note: BPCY is in gram (gram-
glucose.hour)21. Unit for growth rate is hr21.
doi:10.1371/journal.pone.0102744.g009

Figure 10. Flux map of the production of lactic acid.
doi:10.1371/journal.pone.0102744.g010
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acetic acid eliminated the competing product, acetic acid. In

addition, the removal of malate dehydrogenase (MDH) affects the

oxaloacetate concentration which resulted in the increased

concentration of pyruvate. As a consequence, the yield of lactic

acid is improved. Figure 10 shows the flux map for the production

of lactic acid. The flux map shows the flux increases to lactic acid.

Production of Ethanol by B. subtilis

Table 5 shows the results of DBFBA and previous works to

enhance the production of ethanol in B. subtilis. Ethanol is a

volatile, flammable, colorless liquid, and it is a promising biofuel.

Ethanol is currently used as an alternative fuel for gasoline

worldwide. Therefore, ethanol was found to be the most suitable

case study for this research.

DBFBA obtained a better growth rate and BPCY which are

122.9657 and 1.1573e+05 respectively. Glycerol kinase (GK) and

sn-Glycero-3-phosphoethanolamine glycerophosphohydrolase

participate in glycerophospholipid metabolism, which involves

the formation of glycerol. As stated by Pagliardini et al. (2013),

glycerol is one of the main by-products in ethanol fermentation

hence a substantial reduction of glycerol yield may lead to a

significant increase in ethanol yield. In Pagliardini et al. (2013)

experiment, a drastic reduction of the glycerol yield improved the

yield of ethanol [19]. In addition, Figure 11 shows the comparison

between different methods for growth rate and BPCY of ethanol,

DBFBA obtains better results in both growth rate and BPCY

compared to previous methods.

Production of Ethanol by C.thermocellum

Table 6 shows the results of DBFBA and previous works to

enhance the production of ethanol in C.thermocellum. DBFBA

shows a better result for C.thermocellum model with the growth

rate of 11.4826 and the BPCY 1.07e+004. Figure 12 shows the

comparison between different methods for the growth rate and

BPCY of ethanol. DBFBA shows that it could reach a higher value

in both growth rate and BPCY than previous methods in the

figure. The list of knockout genes shows the deletion of glycerate

kinase (GLYCK), L-lactatedehydrogenase (LDH_L), and 2-

Oxobutanoateformatelyase (OBTFL). Glycerate kinase partici-

pates in glycerolipid metabolism, which involves the formation of

glycerol. In the experiment of Pagliardini et al. (2013), a drastic

reduction of the glycerol yield improved the yield of ethanol due to

which glycerol becomes one of the main by-products in ethanol

fermentation [19]. As stated in Kim et al. (2012), lactate

dehydrogenase (LDH_L) plays a key role in the fermentative

metabolism in the metabolic engineering for ethanol production.

The deletion of LDH_L inhibited the conversion from pyruvate to

lactate, therefore more pyruvate was decarboxylated to acetalde-

hyde and further converted to ethanol [20]. 2-Oxobutanoatefor-

matelyase is a key reaction for propionate metabolism. However,

there is no specific report on the effect of 2-Oxobutanoateforma-

telyase for ethanol production currently. Figure 13 and Figure 14

show the convergence speed of DBFBA on ethanol production for

B.subtilis and C.thermocellum.

Discussion

In addition, Table 7 shows the computational time comparison

between DBFBA and BAFBA for 1000 iterations. The average

computational time of DBFBA improved by 80%, 81%, and 87%

compared to BAFBA result for 1000 iterations, respectively.

The results showed that both DBFBA and DB performed better

than other algorithms. It can be concluded that the capability of

DE algorithm in finding local optimum improved the performance

of the original BA. The original BA had the problem of repetitive

iterations of the algorithm in local search, where each bee keeps

searching until the best possible answer was obtained. The

proposed DBFBA solved the problem by implementing DE

algorithm into the local search part. DE algorithm operates by

Figure 11. Comparison between different methods for growth
rate and BPCY of Ethanol by B.subtilis. Note: BPCY is in gram
(gram-glucose.hour)21. Unit for growth rate is hr21.
doi:10.1371/journal.pone.0102744.g011

Table 5. Comparison between different methods for growth rate and BPCY of ethanol by B.subtilis.

Method Growth Rate (1/hr) BPCY List of knockout genes

DBFBA 122.9657 1.1573e+05 ALAD_L*, GK, sn-Glycero-3-phosphoethanolamine glycerophosphohydrolase

BAFBA[9] 122.8861 1.1154e+05 ALAD_L*, LDH_L, XYLI1, inosose 2,3-dehydratase

Note: The bold numbers represent the best result.
*Common genes for all methods. BPCY is in gram (gram-glucose.hour)21.
doi:10.1371/journal.pone.0102744.t005

Table 6. Comparison between different methods for growth
rate and BPCY of ethanol by C.thermocellum.

Method Growth Rate (1/hr) BPCY List of knockout genes

DBFBA 11.4826 1.07e+04 GLYCK, LDH_L, OBTFL

BAFBA [9] 9.9313 8.329e+003 MDH, G3PD1, PTAr

Note: The bold numbers represent the best result.
doi:10.1371/journal.pone.0102744.t006
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maintaining a population of candidate solutions and creating new

candidate solutions through the mutation and crossover operation

of DE, and keeping the fitness candidate solution. Furthermore,

DE algorithm is a heuristic approach mainly having three

advantages; finding the true global minimum regardless of the

initial parameter values, fast convergence, and using few control

parameters. In addition, the OptKnock validation, which is

integrated into BAFBA in this work, improves the reliability of

BAFBA as the identified lists of potential genes have proven crucial

in improving the desired phenotypes through literature [5,19–20].

Conclusion and Future Works

The development of accurate and efficient modeling methods as

well as optimization methods in the field of metabolic engineering

is crucial, as they will contribute significantly to the field of

biotechnology. Consequently, it will lead to substantial economic

gains in the production of pharmaceuticals, fuels and food

ingredients. In this work, DBFBA has been proposed to be able

to predict optimal sets of gene knockout strategies to maximize the

production of desired phenotype and in the meantime, sustains the

cellular growth. DBFBA improves the performance of BAFBA by

implementing DE algorithm, which is indeed a promising

algorithm in finding local optimum. Experimental results on E.

coli model, B. subtilis model, and C.thermocellum model showed a

hybrid approach, where DBFBA works as an effective tool in

generating optimal solutions for the gene knockout identification,

and therefore could be a useful tool in the field of metabolic

engineering. The ability of DBFBA in predicting a set of genes that

might affect the production of desired phenotypes is helpful to the

biologists. Instead of testing single gene knockout effect on the

production, the biologists can test on the effect of multiple genes

knockout. Lastly, since user-friendly and publicly accessible web-

servers represent the future direction for developing practically

more useful models, simulated methods, or predictors [21], we

shall make efforts in our future work to provide a web-server for

the method presented in this paper.

Figure 13. Convergence graph of different methods for
ethanol production in B.subtilis.
doi:10.1371/journal.pone.0102744.g013

Figure 14. Convergence graph of different methods for
ethanol production in C.thermocellum.
doi:10.1371/journal.pone.0102744.g014

Table 7. Comparison between average computational time
of DBFBA and BAFBA for 1000 iterations.

Model Method Computation Time (seconds)

E.coli DBFBA 2076

BAFBA [11] 10253

OptKnock [5] N/A

SA + FBA [7] N/A

B.subtilis DBFBA 4173

BAFBA [11] 22515

OptKnock [5] N/A

SA + FBA [7] N/A

C. thermocellum DBFBA 1350

BAFBA [11] 10282

OptKnock [5] N/A

SA + FBA [7] N/A

Note: The bold numbers represent the best result. N/A represents that the
results are not reported in literature.
doi:10.1371/journal.pone.0102744.t007

Figure 12. Comparison between different methods for pro-
duction of Ethanol by C. thermocellum. Note: BPCY is in gram
(gram-glucose.hour)21. Unit for growth rate is hr21.
doi:10.1371/journal.pone.0102744.g012
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