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ABSTRACT  During last two decades, Differential Evolution (DE) proved to be one of the most popular 

and successful evolutionary algorithms for solving global optimization problems over continuous space. 

Proposing new mutation strategies to improve the optimization performance of (DE) is considered a 

significant research study. In DE, mutation operation plays a vital role in the performance of the algorithm. 

Therefore, in this paper, comprehensive analysis of the contributions on basic and novel mutation strategies 

that were proposed between 1995 and 2020 is presented. A new taxonomy based on the structure of the novel 

mutations is proposed. Numerical experiments on a set of 30 test problems from the CEC2017 benchmark 

for 10, 30, 50 and 100 dimensions, including a comparison with classical DE schemes and recent mutations 

schemes are executed. Furthermore, theoretical, and empirical convergence behavior analysis of all mutations 

is discussed. The paper also presents many recommendations, guidelines, insights, and suggestions for 

experienced practitioners and interested researchers in designing and developing effective and efficient DE 

algorithms to address various optimization problems in different fields. 

INDEX TERMS  Evolutionary Computation, Global Optimization, Differential Evolution, Mutation 

Strategy, Taxonomy, Correct and False Convergence 

I. INTRODUCTION 

Differential Evolution (DE) proposed by Storn and Price [1], 

[2], is a stochastic population-based search method. It 

exhibits excellent capability in solving a wide range of 

optimization problems with different characteristics from 

several fields and many real-world application problems. 

Similar to all other Evolutionary algorithms (EAs), the 

evolutionary process of DE uses mutations, crossover, and 

selection operators at each generation to reach the global 

optimum. Besides, it is one of the most efficient evolutionary 

algorithms (EAs) currently in use. In DE, each individual in 

the population is called target vector. Mutation is used to 

generate a mutant vector, which perturbs a target vector 

using the difference vector of other individuals in the 

population. After that, crossover operation generates the trial 

vector by combining the parameters of the mutation vector 

with the parameters of a parent vector selected from the 

population. Finally, according to the fitness value and 

selection operation determines which of the vectors should 

be chosen for the next generation by implementing a one-to-

one completion between the generated trail vectors and the 

corresponding parent vectors  [3], [4]. The performance of 

DE basically depends on the mutation strategy, the crossover 

operator. Besides, the intrinsic control parameters 

(population size NP, scaling factor F, the crossover rate CR) 

play a vital role in balancing the diversity of population and 

convergence speed of the algorithm [5]–[8]. The advantages 

are the simplicity of implementation, reliability, speed, and 

robustness [9], [10]. Thus, it has been widely applied in 

solving many real-world applications of science and 

engineering, such as {0-1} Knapsack Problem [11], [12], 

financial markets dynamic modeling [13], feature selection 

[14], admission capacity planning higher education [15], 

[16], and solar energy [17], for more applications, interested 

readers can refer to [18]. However, DE has many 

weaknesses, as all other evolutionary search techniques do 

w.r.t the "no free lunch" (NFL) theorem. Generally, DE has 

a good global exploration ability that can reach the region of 

global optimum, but it is slow at the exploitation of the 

solution [19]. Additionally, the parameters of DE are 

problem dependent and it is difficult to adjust them for 

different problems. Moreover, DE performance decreases as 

search space dimensionality increases [20]–[22]. Finally, the 
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performance of DE deteriorates significantly when the 

problems of premature convergence and/or stagnation occur 

[20]. Consequently, researchers have suggested many 

techniques to improve the basic DE. From the literature [18], 

[23]–[28], these proposed modifications, improvements, and 

developments on DE focus on adjusting control parameters 

in an adaptive or self-adaptive manner while there are a few 

attempts in developing new mutations rule. In fact, the main 

objective of this study is to discuss the advantages and 

disadvantages of these mutations and provide future 

recommendations, guidelines, insights, and suggestions for 

experienced practitioners and interested researchers in 

designing and developing effective and efficient DE 

algorithms.  

Therefore, to accomplish this objective, the main originality 

our work in this paper goes in four directions. The first 

direction is to provide a comprehensive review to the 

contributions on basic and novel mutation strategies that 

were proposed between 1995 and 2020 to investigate the 

similarities and differences in their mathematical and/or 

probabilistic structure and design.  

Thus, for this purpose, which is the second direction of our 

work, two novel taxonomies are proposed in this research 

study. Based on the structure of the mutations, the first 

taxonomy (section III, Figure.2) is proposed to eliminate any 

ambiguity related to classifying any DE mutation and as a 

helper tool for all researchers to fully understand and 

differentiate between mutation strategies. The new 

theoretical classification comprises two research area 

regarding the contribution type to the mutation strategies of 

Differential Evolution algorithm (Novel Mutation and Novel 

concept). In the first area, an innovative mutation scheme is 

added to basic DE mutation. However, unlike novelty of 

mutation, regarding the second area, a new technique is 

proposed to enhance the selection process of the individuals 

to form the mutation scheme. Based on the structure of the 

novel mutations, it can be further classified into three groups: 

(a) random, (b) directed, and (c) probabilistic. Then, based 

on the design of mutation scheme, the directed mutation can 

be classified into two main categories: (1) partially directed 

and (2) fully directed.  

On the other hand, based on experimental results, analysis 

and comparisons of the performance of all mutations on 

CEC2017 benchmark test problems [29] with 10, 30, 50 and 

100 dimensions, the second taxonomy (section IV-Figure 4) 

is a new taxonomy proposed to classify the Mutation 

strategies of DE algorithms into four categories (algorithms 

show excellent performance and continuous improvement, 

algorithms show unstable performance and slight 

diminishes, algorithms show descent performance with 

complete and/or significant deterioration, algorithms show 
stable moderate or poor performance with insignificant 

improvement). 

The third direction of this work is to statistically compare 

and analyze the performance of mutations. Besides, the 

convergence behavior of top ten algorithms and the superior 

performance of all algorithms that provided minimum mean 

function error on the CEC 2017 functions with all 

dimensions are presented. Finally, detailed theoretical 

background, definitions, explanation, and new 

classifications for correct and false convergence scenarios 

are given. Besides, based on the results provided by all 

mutations, numerical experiments, and complete analysis of 

the convergence behavior for all mutations are presented. 

To the best of our knowledge, this is the first study that 

reviews all these different types of mutations, proposes 

theoretical classifications for all mutations and carry out 

empirical evaluation and comparison. 

The rest of the paper is organized as follows. Section II gives 

a brief introduction to canonical DE algorithm, including its 

typical mutation operators, crossover, and selection 

operators. Section III provides the first taxonomy that 

classifies and reviews the published work on mutations of 

DE algorithms. Next, in Section IV, the proposed second 

taxonomy based on experimental results and comparison of 

all DE mutations. Besides, statistical analysis, convergence 

analysis and superior analysis for all algorithms are 

introduced. Section V discusses the theoretical and empirical 

convergence behavior for all mutations.  In section VI, future 

recommendations, guidelines, insights, and suggestions for 

experienced practitioners and interested researchers in 

designing and developing effective and efficient DE 

algorithms are presented. Finally, Section VII concludes the 

paper and summarizes the objectives addressed. 

 
II. BASIC DIFFERENTIAL EVOLUTION 

This section provides a brief summary of the basic Differential 

Evolution algorithm. In a simple DE, generally known as 

DE/rand/1/bin [2], [30], an initial random population, denoted 

by P, consists of NP individual. Each individual is represented 

by the vector 𝑥𝑖 = (𝑥1,𝑖 , 𝑥2,𝑖 , … 𝑥𝐷,𝑖), where D is the number 

of dimensions in solution space. Since the population will be 

varied with the running of evolutionary process, the generation 

times in DE are expressed by 𝐺 = 0,1 … , 𝐺𝑚𝑎𝑥, where Gmax 

is the maximal times of generations. For the ith individual of 

P at the G generation, it is denoted by 𝑥𝑖𝐺 = (𝑥1,𝑖𝐺 , 𝑥2,𝑖𝐺 … , 𝑥𝐷,𝑖𝐺 ). 

The lower and upper bounds in each dimension of search 

space are respectively recorded by 𝑋𝐿 = (𝑥1,𝐿 , 𝑥2,𝐿 … , 𝑥𝐷,𝐿) 

and 𝑋𝑈 = (𝑥1,𝑈, 𝑥2,𝑈 … , 𝑥𝐷,𝑈). The initial population P0 is 

randomly generated according to a uniform distribution within 

the lower and upper boundaries (𝑋𝐿 , 𝑋𝑈). After initialization, 

these individuals are evolved by DE operators (mutation and 

crossover) to generate a trial vector. A comparison between 

the parent and its trial vector is then done to select the vector 

which should survive to the next generation [23], [31]. DE 

steps are discussed below: 

A. INITIALIZATION 

In order to establish a starting point for the optimization 

process, an initial population P0 must be created. Typically, 

each jth component (𝑗 = 1,2 … , 𝐷) of the ith individuals (𝑖 =1,2 … , 𝑁𝑃) in the P0 is obtained as follow: 𝑥𝑗,𝑖0 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿) (1) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3077242, IEEE Access

 

VOLUME XX, 2017 9 

where 𝑟𝑎𝑛𝑑 (0,1) returns a uniformly distributed random 

number in [0, 1]. 

B. MUTATION 

At generation G, for each target vector 𝑥𝑖𝐺, a mutant vector 𝑣𝑖𝐺 is generated according to the following: 𝑣𝑖𝐺 = 𝑥𝑟1𝐺 + 𝐹. (𝑥𝑟2𝐺 − 𝑥𝑟3𝐺 ), 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 (2) 

where 𝑟1, 𝑟2, 𝑟3  ∈ {1,2, … , 𝑁𝑃} are three randomly chosen 

indices. F is a real number to control the amplification of the 

difference vector(𝑥𝑟2𝐺 − 𝑥𝑟3𝐺 ). According to Storn and Price 

[2], the range of F is in [0, 2]. In this work, if a component of 

a mutant vector violates search space, then the new value of 

this component is generated a new by (1). 

C. CROSSOVER 

There are two main crossover types, binomial, and 

exponential. We here elaborate the binomial crossover. In the 

binomial crossover, the target vector is mixed with the 

mutated vector, using the following scheme, to yield the trial 

vector 𝑢𝑗,𝑖𝐺 . 𝑢𝑗,𝑖𝐺 = {𝑣𝑗,𝑖𝐺 , 𝑖𝑓 (𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑𝑥𝑗,𝑖𝐺 ,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} (3) 

Where 𝑟𝑎𝑛𝑑𝑗,𝑖(𝑖 ∈ [1, 𝑁𝑃]𝑎𝑛𝑑 𝑗 ∈ [1, 𝐷]) is a uniformly 

distributed random number in [0,1],𝐶𝑅 ∈ [0,1]called the 

crossover rate that controls how many components are 

inherited from the mutant vector, 𝑗𝑟𝑎𝑛𝑑 is a uniformly 

distributed random integer in [1, D] that makes sure at least 

one component of trial vector is inherited from the mutant 

vector. 

D. SELECTION 

DE adapts a greedy selection strategy. If and only if the trial 

vector 𝑈𝑖𝐺  yields as good as or a better fitness function value 

than 𝑋𝑖𝐺, then 𝑈𝑖𝐺  is set to 𝑋𝑖𝐺+1. Otherwise, the old vector 𝑋𝑖𝐺 

is retained. The selection scheme is as follows (for a 

minimization problem):  𝑥𝑖𝐺+1 = {𝑢𝑖𝐺 , 𝑓(𝑢𝑖𝐺) ≤ 𝑓(𝑥𝑖𝐺)𝑥𝑖𝐺 ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} (4) 

A detailed description of standard DE algorithm is given in 

Figure 1. 
1 Generate the initial population 

2 Evaluate the fitness of each individual 

3 While the termination criteria is not satisfied do 

4         For i= 1 to NP do 

5               Select uniform randomly 𝑟1 ≠ 𝑟2 ≠ 𝑟3 = 𝑖 
6 𝑗𝑟𝑎𝑛𝑑 = 𝑟𝑛𝑑𝑖𝑛𝑡(1, 𝐷) 

7               For j=1 to D do 

8                     If 𝑟𝑛𝑑𝑟𝑒𝑎𝑙𝑗(0,1) < 𝐶𝑅or j is equal to 𝑗𝑟𝑎𝑛𝑑then 

9 𝑢𝑖,𝑗 =  𝑥𝑟1,𝑗 + 𝐹. (𝑥𝑟2,𝑗 − 𝑥𝑟3,𝑗) 

10                     else 

11 𝑢𝑖,𝑗 =  𝑥𝑖,𝑗 

12                      Endif 

13                 End for 

14          End for 

15          For i = 1 to NP do 

16               Evaluate the offspring ui 

17               If f(ui) is better than or equal to f(xi) then 

18                      Replace xi with ui 

19               Endif 

20          End for 

21 End While 
FIGURE 1. Description of standard DE algorithm. rand [0,1) is a function 
that returns a real number between 0 and 1. randint (min, max) is a 
function that returns an integer number between min and max. 
rndreal(0,1) returns a real random number between 0 and 1 NP, Gmax, CR 
and F are user-defined parameters. D is the dimensionality of the problem 

III. MUTATIONS IN DIFFERENTIAL EVOLUTION 

DE/rand/1 is the fundamental mutation strategy developed by 

Storn and Price [1][2] and is reported to be the most successful 

and widely used scheme in the literature [23]. Obviously, in 

this strategy, the three vectors are chosen from the population 

at random for mutation and the base vector is then selected at 

random among the three. The other two vectors form the 

difference vector that is added to the base vector. 

Consequently, it is able to maintain population diversity and 

global search capability with no bias to any specific search 

direction, but it slows down the convergence speed of DE 

algorithms [32]. Thus, proposing new mutation strategies to 

improve the optimization performance of differential 

evolution (DE) are considered an important research study. 

Virtually, during the past 15 years, many researchers have 

been working on the improvement of the mutation strategies 

of DE. 

In fact, the contribution to the mutation strategies of 

Differential Evolution algorithm is divided into two main 

areas, depending on the contribution proposed. The two areas 

are (1) novel mutation and (2) novel concept. 

In the first area, an innovative mutation scheme is added to 

basic DE mutation. However, unlike novelty of mutation, 

regarding the second area, a new technique or method is 

proposed to enhance the selection process of the individuals to 

form the mutation scheme. Thus, these methods have been 

applied using the existing mutation schemes without any 

modifications or improvement to the existing mutation 

schemes. 

Based on the structure of the novel mutation, it can be further 

classified into three groups: (a) Random, (b) directed, and (c) 

probabilistic. Then, the directed mutation can be classified into 

two main categories: (1) partially directed and (2) fully 

directed. 

Concerning the first group, random mutations, the mutant 

vector is generated or created using randomly selected 

individuals in the current population i.e., random mutation 

does not include the incorporation of the objective function 

value of the selected individuals in the mutation scheme itself. 

However, in contrast to random mutations, directed mutations 

includes the incorporation of the objective function value of 

the selected individuals in the mutation scheme itself. 

Therefore, the partially directed mutations, the mutant vector 

is generated or created using some randomly selected 

individuals in addition to the neighbor best or worst vector(s) 

and/or global best or worst vector(s) found so far in the current 
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population, it must be noted that any difference vector in 

mutation scheme includes best or worst information, not both 

or the base vector is either best vector or worst vector. Besides, 

regarding full directed mutations category, the mutant vector 

is generated or created using some randomly selected 

individuals in addition to the neighbor best and worst vector(s) 

and/or global best and worst vector(s) found so far in the 

current population, thus, some difference vectors is directed 

from worst vector(s) to best vector(s) i.e., both vectors will be 

used to form the mutation scheme. Alternatively, it is based on 

randomly selected individuals that are sorted in ascending 

order, from best to worst, according to their objective function 

values. On the contrary, regarding probabilistic mutations 

group, the mutant vector is generated or created using a 

probabilistic distribution such as uniform, Gaussian, Cauchy, 

and other well-known distributions. Taken into consideration 

that the required parameters of the selected distribution are 

determined based on the available statistical information about 

the entire population such as neighbor/global best vector(s), 

mean, median, worst, and standard deviation vector(s). It must 

be noted that the effectiveness of all novel concept techniques 

has been previously proved as excellent alternative methods 

for improving the performance of basic and novel mutations. 

Virtually, the main objective of this study is to evaluate the 

individual effect of each mutation in solving CEC 2017 test 

functions under the same experimental conditions. Thus, in 

order to exclude joint effect i.e. (novel or basic mutation 

combined with the novel concept), it is not considered for 

further evaluation and comparison. Actually, based on the 

structure of the mutations, it is noteworthy to mention that this 

is the first research paper that proposes a new taxonomy to 

classify the contributions of DE mutations. As listed in Figure 

2 and Table I, there are 30 novel mutations and 6 novel 

concepts that have been reviewed and classified according to 

the new taxonomy. They will be discussed in the next 

subsections. 

A. NOVEL MUTATIONS 

In this subsection, we will briefly discuss the innovative 

mutation schemes that are added to basic DE mutation. 

1. Random Mutations: 

• DE/rand/1 

Price and Storn [1] presented a new heuristic approach for 

solving non-continuous and non-differentiable continuous 

space functions called Differential Evolution. The authors 

tested many variants in order to represent the most promising 

variant DE/rand/1.In which, the mutant vector is generated for 

each individual in the population by randomly selecting 3 

mutually exclusive vectors that are different from the base 

vector using the following equation:  𝑣𝑖,𝑔 =  𝑥𝑟1,𝑔 + 𝐹 ∗ (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔)  (5) 𝑟1, 𝑟2, 𝑟3 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
 

 

TABLE I.  THE CLASSIFICATION OF MUTATIONS SCHEMES 

Classification Type Mutation Year Ref. 

Novel 

Mutation 

Random 

DE/rand/1 1995 [1] 

DE/rand/2 2005 [33] 

DE/current-

to-rand/1 2006 [34] 

NSDE 2007 [35] 

DE/rand/3 2009 [37] 

DE/rand-to-

current/2 2011 [36] 

DEGD 2011 [38] 

GPBX-α 2011 [39] 

IMMSADE 2017 [40] 

Directed 

Partially 

directed 

DE/current-

to-best/1 1995 [1] 

DE/best/1 2005 [33] 

DE/best/2 2005 [33] 

DE/rand-to-

best and 

current/2 2006 [41] 

DE/rand-to-

best/1 2009 [42] 

DEGL 2009 [20] 

JADE 2009 [43] 

JADE without 

archive 2009 [43] 

DE/2-opt/1 2010 [44] 

DE/2-opt/2 2010 [44] 

DE/best/3 2011 [36] 

MDE-pBX 2012 [45] 

IMDE 2013 [46] 

MMS 2015 [47] 

MPADE 2016 [48] 

Fully 

directed 

Trigonometric 2003 [30] 

ADE 2011 [49] 

Triangular 2015 [50] 

IDM 2015 [51] 

AGDE 2017 [52] 

Probabilistic GBDE 2013 [53] 

Novel 

Concept 

ProDE 2011 [54] 

Rank-DE 2013 [55] 

NDI-DE 2013 [65] 

Adaptive Greedy 2014 [57] 

UDE 2016 [58] 

FPS 2016 [59] 

 

  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3077242, IEEE Access

 

VOLUME XX, 2017 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• DE/rand/2 

Price, Storn and Lampinen [33] proposed this scheme in order 

to obtain the mutant vector by choosing 5 mutually exclusive 

vectors from the population to form 2 differences following 

the equation: 𝑣𝑖,𝑔 =  𝑥𝑟1,𝑔 + 𝐹 ∗ (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔) + 𝐹 ∗ (𝑥𝑟4,𝑔 − 𝑥𝑟5,𝑔)   (6) 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑟5 ≠ 𝑖 
• DE/current-to-rand/1  

Mezura-Montes, Reyes, and Coello [34] presented a variant to 

generate the mutant vector using 3 mutually exclusive vectors 

that are different from the base vector. The 3 vectors with the 

base vector form 2 difference vectors that are added to the 

current base vector using the equation: 𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑖,𝑔) + 𝐹 ∗ (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔)   (7) 𝑟1, 𝑟2, 𝑟3 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
• NSDE (Neighborhood Search differential evolution) 

Yang, Yao, and He [35] proposed a neighborhood search 

differential evolution based on the generalization of 

Neighborhood strategy (NS). Cauchy and Gaussian random 

numbers are used for long and small jumps, respectively. The 

mutant vector is generated using the equation:  

 𝑣𝑖,𝑔 = 𝑥𝑟1,𝑔 + {𝑑𝑖,𝑔 ∗ 𝑁(0.5,0.5)𝑟𝑎𝑛𝑑𝑖(0,1) < 0.5𝑑𝑖,𝑔 ∗ 𝛿                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} (8) 𝑑𝑖,𝑔 =  𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔 

Where N (0.5,0.5) is a Gaussian random number with mean 

0.5 and standard deviation 0.5, 𝛿 is a Cauchy random number 

variable with scale parameter t=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• DE/rand/3 

Elsayed, Sarker, and Essam [36] presented a framework that 

uses a pool of 4 mutations. The population is divided into for 

equal subpopulations, each subpopulation has its own 

individuals, and the value of scale parameter is self-adaptive. 

The mutant vector is obtained as follows: 𝑣𝑖 = 𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3 + 𝑥𝑟4 − 𝑥𝑟5 + 𝑥𝑟6 − 𝑥𝑟7) (9) 

To calculate F, a Gaussian number N (0.5,0.15) is generated 

for each individual in the population. 𝐹 = 𝐹𝑟1,𝐺 + 𝑁(0,0.5) ∗ (𝐹𝑟2,𝐺 − 𝐹𝑟3,𝐺) + 𝑁(0,0.5) ∗ (𝐹𝑟4,𝐺 −𝐹𝑟5,𝐺) + 𝑁(0,0.5) ∗ (𝐹𝑟6,𝐺 − 𝐹𝑟7,𝐺) (10) 

It must be mentioned that DE/rand/3 is proposed by Ting and 

Huang [37] without self-adaptive scaling factor. 

• DE/rand-to-current/2 

This scheme is presented by Elsayed, Sarker, and Essam [36]. 

The mutant vector is obtained as follows: 𝑣𝑖 = 𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑖 + 𝑥𝑟3 − 𝑥𝑟4)    (11) 

To calculate F, a Gaussian number N (0.5,0.15) is generated 

for each individual in the population. 𝐹 = 𝐹𝑟1,𝐺 + 𝑁(0,0.5) ∗ (𝐹𝑟2,𝐺 − 𝐹𝑟3,𝐺) + 𝑁(0,0.5) ∗ (𝐹𝑟4,𝐺 − 𝐹𝑟5,𝐺)  (12) 

• DEGD (Differential evolution with generalized 

differentials) 

Ali [38] proposed a new mutation strategy called DEGD, in 

which a mutant vector is generated only for worse solutions 

instead of generating trial vectors for all the population. 

DEGD generates more than one trial point per target vector (q 

points) until a successful trial point is found or the q number 

 FIGURE 2. New classification illustrating the position of every mutation scheme according to the suggested taxonomy 
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of trial points are reached. The first q-1 points are created 

using various values for 𝐹1𝑎𝑛𝑑𝐹2 using the equation: 𝑣 =  𝑥𝑟1 + 𝐹1 ∗ 𝑥𝑟2 − 𝐹2 ∗ 𝑥𝑟3 (13) 

while the qth point is found by vector projection as follows: 𝑣 =  (𝑥𝑟1𝑇 ∗𝑥𝑟2𝑥𝑟2𝑇 ∗𝑥𝑟2) ∗ 𝑥𝑟2 (14) 

Where 𝐹1 = 𝐹2 = 0.5 , 𝑞 = 3 

• GPBX-α 

Dorronsoro and Bouvry [39] proposed a new operator for 

generating the mutant vector called Gaussian PBX-α (GPBX-

α). The mutant vector is generated as follows: 𝑣𝑖,𝑗 = 𝑥𝑟0,𝑗 + 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.0,1.0) ∗ 𝐹 ∗ (𝑈𝑃𝑖,𝑗 − 𝐿𝑂𝑊𝑖,𝑗) (15) 𝑈𝑃𝑖,𝑗 = min (𝑚𝑎𝑥𝑗 , 𝑥𝑟0,𝑗 − 𝐼𝑗 . 𝛼) 𝐿𝑂𝑊𝑖,𝑗 = max (𝑚𝑖𝑛𝑗 , 𝑥𝑟0,𝑗 + 𝐼𝑗 . 𝛼) 𝐼𝑗 = 𝑥𝑟1,𝑗 − 𝑥𝑟2,𝑗 

Where Gaussian (0.0,1.0) is a random number from a 

Gaussian distribution centered at 0.0 with deviation 1.0, 𝑚𝑎𝑥𝑗  𝑎𝑛𝑑 𝑚𝑖𝑛𝑗 are the upper and lower allowed bounds for 

variable j. α = {0.2 + 0.6 ∗ rand1     if rand2 ≤ 0.1α                                         otherwise} (16) 𝐹 ∈ [0.1,1.0] 
• IMMSADE 

Wang, Li and Yang [40] proposed an improved version of the 

DE/rand/1 mode called IMMSADE, in which a new control 

parameter 𝜔𝑖that is associated with the base vector is 

introduced. And each individual in the population has its own 𝜔𝑖 and 𝐹𝑖. The mutant vector is generated according to 

equation:  𝑣 𝑖𝑡+1 = 𝜔𝑖 ∗ 𝑥𝑟1𝑡 + 𝐹𝑖 ∗ (𝑥𝑟2𝑡 − 𝑥𝑟3𝑡 ), 𝑤ℎ𝑒𝑟𝑒𝜔𝑖 ∈ [0.7,1.0], 𝐹𝑖 ∈[0.1,0.8] (17) 

 

2. Partially Directed Mutations 

• DE/current-to-best/1 

The scheme is presented by Price and Storn [1]. This version 

works typically like the DE/rand/1 except that there are 2 

difference vectors in this version and also it incorporates the 

best vector found so far in order to enhance the greediness of 

the scheme. the mutant vector is generated according to the 

equation: 𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔) + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)  (18) 𝑟1, 𝑟2 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑖 
• DE/best/1  

Proposed by Price, Storn, and Lampinen [33], in which two 

random vectors are used to generate the difference vectors. 

The base vector is chosen as the best individual. 𝑣𝑖,𝑔 =  𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (19) 𝑟1, 𝑟2 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑖 
• DE/best/2  

Price, Storn, and Lampinen [33] presented this scheme, like 

the DE/best/1 but with one additional difference vector. 𝑣𝑖,𝑔 =  𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) + 𝐹 ∗ (𝑥𝑟3,𝑔 − 𝑥𝑟4,𝑔) (20) 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑖 
• DE/rand-to-best and current/2   

Presented by Elsayed, Sarker, and Essam [36], the mutant 

vector is generated as follows: 

𝑣𝑖 = 𝑥𝑟1 + 𝐹 ∗ (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑟2 + 𝑥𝑟3 − 𝑥𝑖) (21) 

To calculate F, a Gaussian number N (0.5,0.15) is generated 

for each individual in the population. 𝐹 = 𝐹𝑟1,𝐺 + 𝑁(0,0.5) ∗ (𝐹𝑟2,𝐺 − 𝐹𝑟3,𝐺) + 𝑁(0,0.5) ∗ (𝐹𝑟4,𝐺 − 𝐹𝑟5,𝐺)   (22) 

It must be mentioned that DE/rand-to-best-and-current/2is 

proposed by Montes, Jesus and Coello [41], but without self-

adaptive scaling factor. 

• DE/rand-to-best/1 

Referring to the DE literature. Qin, Huang and Suganthan [42] 

developed this strategy that combines the strategies relying on 

the best solutions found so far and two-difference-vectors-

based strategies in order to gain the benefits of those two 

strategies.  The mutant vector is generated according to the 

equation:  𝑣𝑖,𝑔 =  𝑥𝑟1,𝑔 + 𝐹 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑟1,𝑔) + 𝐹 ∗ (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔)  (23) 𝑟1, 𝑟2, 𝑟3 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
• JADE 

Zhang and Sanderson [43] proposed a new DE algorithm, 

JADE, by implementing a new mutation strategy DE/current-

to-pbest/1 with the optional archive in order to improve the 

optimization process.  

• DE/current-to-pbest/1 (without archive) 

 The mutant vector is generated using the equation: 𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹𝑖 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑔𝑝 − 𝑥𝑖,𝑔) + 𝐹𝑖 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (24) 

Where 𝑥𝑏𝑒𝑠𝑡,𝑔𝑝
 is randomly chosen as one of the top 100p% 

individuals in the population, 𝑝 ∈ [0,1], 𝑝 = 5%. 𝐹𝑖 : 

mutation factor associated with each 𝑥𝑖 , generated each 

generation using Cauchy distribution. 𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑐(0.5,0.1) 

• DE/current-to-pbest/1 (with archive) 

A set of archived inferior solutions “A” that contains the 
Recently explored inferior solutions, when compared to the 

current population “P”, is used in order to provide additional 
information about the promising progress dimension. The 

mutant vector is generated as follows:  𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹𝑖 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑔𝑝 − 𝑥𝑖,𝑔) + 𝐹𝑖 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔′ )  (25) 𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑐(0.5,0.1),    𝑐𝑎𝑢𝑐ℎ𝑦𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Where 𝑥𝑖,𝑔, 𝑥𝑟1,𝑔, 𝑥𝑏𝑒𝑠𝑡,𝑔𝑝
 are selected from P while 𝑥𝑟2,𝑔′  is 

randomly chosen from the union 𝑃 ∪ 𝐴 of the current 

population and archive.The archive starts  empty, and then 

filled with the parent who failed in selection in each 

generation. If the archive exceeds the size, some elements are 

deleted from it in order to keep the max size of the archive. 𝐶𝑅 = 𝑟𝑎𝑛𝑑𝑛(0.5,0.1), 𝑛𝑜𝑟𝑚𝑎𝑙𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

• DEGL: DE using a neighborhood-based mutation 

operator 

Das et.al. [20] proposed a new variant that is based on utilizing 

the concept of the neighborhood of each individual in the 

population. The idea based on that there is a DE 

population𝑃𝐺 = [𝑥1,𝐺 , 𝑥2,𝐺 , … , 𝑥𝑁𝑃,𝐺] at generation G. The 

vector indices are sorted randomly for every 𝑥𝑖,𝐺. They define 

a neighborhood of radius 𝑘, {𝑘 > 0, 𝑘 ∈ [0, (𝑁𝑃 − 1)/2]} 

consisting of vectors 𝑥𝑖−𝑘,𝐺 , … , 𝑥𝑖,𝐺 , … , 𝑥𝑖+𝑘,𝐺. The vectors are 

organized on a ring topology with respect to their indices, such 

that vectors 𝑥𝑁𝑃,𝐺𝑎𝑛𝑑𝑥2,𝐺 are the two immediate neighbors of 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3077242, IEEE Access

 

VOLUME XX, 2017 9 

the vector 𝑥1,𝐺 . Then, for every member in the population, 

calculate 

Local donor 𝑳𝒊,𝑮 = 𝒙𝒊.𝑮 + 𝜶 ∗ (𝒙𝒏−𝒃𝒆𝒔𝒕 − 𝒙𝒊,𝑮) +𝜷 ∗ (𝒙𝒑,𝑮 − 𝒙𝒒,𝑮) 𝒙𝒏−𝒃𝒆𝒔𝒕: the best vector in the neighborhood. 𝒑, 𝒒 ∈ [𝒊 − 𝒌, 𝒊 + 𝒌]𝒑 ≠ 𝒒 ≠ 𝒊 

Global donor 𝑔𝑖,𝐺 = 𝑥𝑖.𝐺 + 𝛼 ∗ (𝑥𝑔−𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝐺) +𝛽 ∗ (𝑥𝑟1,𝐺 − 𝑥𝑟2,𝐺) 𝑥𝑔−𝑏𝑒𝑠𝑡: the best vector in the entire population at 

generation G. 𝑟1, 𝑟2 ∈ [1, 𝑁𝑃]𝑟1 ≠ 𝑟2 ≠ 𝑖 𝜶, 𝜷 : scaling factors 

The mutant vector is generated using the equation 𝑣𝑖,𝐺 = 𝑤𝑖,𝐺 ∗ 𝑔𝑖,𝐺 + (1 − 𝑤𝑖,𝐺) ∗ 𝐿𝑖,𝐺 ,     𝑤𝑖,𝐺 ≈ 𝑟𝑎𝑛𝑑[0,1]     (26) 

With 𝑘 = 10% ∗ 𝑁𝑃 and 𝛼 = 𝛽 = 0.8 . 
• A 2-Opt based differential evolution for global 

optimization 

Chiang, Lee, and Heh [44] proposed DE/2-opt/1 and DE/2-

opt/2 in order to overcome the problem of long computational 

time of DE.  

• DE/2-opt/1 𝑣𝑖 = {𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3) 𝑖𝑓 𝑓(𝑥𝑟1) < 𝑓(𝑥𝑟2)𝑥𝑟2 + 𝐹 ∗ (𝑥𝑟1 − 𝑥𝑟3)                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}      (27) 

• DE/2-opt/2 𝑣𝑖 = {𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3) + 𝐹 ∗ (𝑥𝑟4 − 𝑥𝑟5)𝑖𝑓𝑓(𝑥𝑟1) < 𝑓(𝑥𝑟2)𝑥𝑟2 + 𝐹 ∗ (𝑥𝑟1 − 𝑥𝑟3) + 𝐹 ∗ (𝑥𝑟4 − 𝑥𝑟5)              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}   (28) 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 are mutually exclusive and picked randomly 

from the population and are different from i. 

Where 𝐹 = 0.5 

• DE/best/3 

Presented by Elsayed, Sarker , and Essam [36] 𝑣𝑖 = 𝑥𝑏𝑒𝑠𝑡 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3 + 𝑥𝑟4 − 𝑥𝑟5 + 𝑥𝑟6 − 𝑥𝑟7)   (29) 

To calculate F, a Gaussian number N (0.5,0.15) is generated 

for each individual in the population. 𝐹 = 𝐹𝑟1,𝐺 + 𝑁(0,0.5) ∗ (𝐹𝑟2,𝐺 − 𝐹𝑟3,𝐺) + 𝑁(0,0.5) ∗ (𝐹𝑟4,𝐺 −𝐹𝑟5,𝐺) + 𝑁(0,0.5) ∗ (𝐹𝑟6,𝐺 − 𝐹𝑟7,𝐺)     (30) 

• MDE-pBX 

Islam et al. [45] proposed MDE-pBX algorithm with a new 

mutation operator, DE/current-to-gr_best/1, that uses an 

individual from the best q% individuals in the current 

population to generate the mutant vector according to the 

equation:  𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹𝑖 ∗ (𝑥𝑔𝑟−𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔 + 𝑥𝑟1𝑖,𝑔 − 𝑥𝑟2𝑖,𝑔)   (31) 

Where 𝑥𝑔𝑟−𝑏𝑒𝑠𝑡,𝑔 is the best of the q% vectors randomly 

chosen from the current population.𝑥𝑟1𝑖,𝑔𝑎𝑛𝑑𝑥𝑟2𝑖,𝑔 are two 

distinct vectors picked up randomly from the current 

population and none of them is equal to 𝑥𝑔𝑟−𝑏𝑒𝑠𝑡,𝑔 or the target 

vector.The authors used q=15% and   𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦(0.5,0.1). 

• IMDE 

Yinzhi, Li and Liang [46] proposed a novel mutation called 

intersect mutation differential evolution (IMDE), in which all 

individuals are ranked from worse to better according to their 

fitness value. Then the population is divided into 2 main parts 

(better part and worse part). 

• For the better part:  

The mutant vector is generated using one individual from the 

worst part and two individuals were chosen from the best part 

using the equation: 𝑣𝑖,𝑔+1 = 𝑥𝑤𝑟1,𝑔 + 𝐹 ∗ (𝑥𝑏𝑟1,𝑔 − 𝑥𝑏𝑟2,𝑔)       (32) 𝑏𝑟1 ≠ 𝑏𝑟2 ≠ 𝑤𝑟1 ≠ 𝑖 
Where 𝑥𝑤𝑟1,𝑔 is an individual from the worse part, 𝑥𝑏𝑟1,𝑔, 𝑥𝑏𝑟2,𝑔 are two individuals from the better part. 

• For the worse part: 

The mutant vector is generated using one individual from the 

best part and two individuals from the worse part using the 

equation: 𝑣𝑖,𝑔+1 = 𝑥𝑏𝑟1,𝑔 + 𝐹 ∗ (𝑥𝑤𝑟1,𝑔 − 𝑥𝑤𝑟2,𝑔)     (33) 𝑏𝑟1 ≠ 𝑤𝑟1 ≠ 𝑤𝑟2 ≠ 𝑖 
Where 𝐹 = 0.5 

• MMS 

Ali, Awad and Suganthan [47] presented a novel mutation 

strategy called (MMS) that uses the information from either 

the best or a randomly selected individual in order to increase 

the quality of solutions. In this method, the choice of base 

vector is different from DE. The mutant vector is generated 

according to the following equations:  

If ( 𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑏𝑒𝑠𝑡(𝑡 − 1)) < ϵ, where ϵ=1 ∗ 10𝑒−6 𝑣 = (𝑎1𝑥𝑏𝑒𝑠𝑡𝑗(𝑡) + 𝑎2𝑥𝑟1,𝑗(𝑡) + 𝑎3𝑥𝑟2,𝑗(𝑡)) + 𝐹 ∗ (𝑥𝑟1,𝑗(𝑡) −𝑥𝑟2,𝑗(𝑡))  (34) 

Else 𝑣 = (𝑎1𝑥𝑟1,𝑗(𝑡) + 𝑎2𝑥𝑟2,𝑗(𝑡) + 𝑎3𝑥𝑟3,𝑗(𝑡)) + 𝐹 ∗ (𝑥𝑟1,𝑗(𝑡) −𝑥𝑟2,𝑗(𝑡))  (35) 

Where 𝑎1, 𝑎2, 𝑎3 are chosen randomly from the interval [0,1], ∑ 𝑎∀𝑎 = 1, 𝐹 ∈ [0.5,0.9] 
• MPADE 

Cui et al. [48] presented a novel adaptive multiple sub-

population based DE algorithm named MPADE, that is 

inspired by the concept of work specialization. the algorithm 

divides the entire population into several sub-groups that are 

responsible for different tasks due to their capabilities.  

First, all individuals are sorted based on fitness. 

Second, the population is divided into 3 sub-populations 

o Inferior sub-pop of size: 𝑤1 ∗ 𝑁𝑃 

o Medium sub-pop of size: 𝑤2 ∗ 𝑁𝑃 

o Superior sub-pop of size: 𝑤3 ∗ 𝑁𝑃 

Where 𝑤𝑖 ∈ [0,1]𝑎𝑛𝑑 ∑ 𝑤𝑖 = 13𝑖=1  

 

Third, each individual selects ns closest individuals and rs 

farthest individuals based on the Euclidean distance 𝑛𝑠 = 𝑁𝑃10 + 𝑐𝑒𝑖𝑙 (2𝑁𝑃5 ∗ (1 − 𝑔−1𝐺𝑚𝑎𝑥))  (36) 𝑟𝑠 = 𝑁𝑃10 + 𝑐𝑒𝑖𝑙 (2𝑁𝑃5 ∗ ( 𝑔−𝐺𝑚𝑎𝑥))  (37) 

For the inferior subpopulation, the mutant vector is 

generated as follows:   𝑣𝑖 = 𝑥𝑖 + 𝐹𝑖 ∗ (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝐹𝑖 ∗ (𝑥𝑟1 − 𝑥𝑟2) + 𝐹𝑖 ∗ (𝑥𝑟3 − 𝑥𝑟4)
 (38) 

Where, 𝑥𝑏𝑒𝑠𝑡  is the best individual among the relatives of the 

target vector. 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3, 𝑥𝑟4 are randomly chosen from the 

current population. 
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For the superior subpopulation, the mutant vector is 

generated as follows: 𝑣𝑖 = 𝑥𝑖 + 𝐹𝑖 ∗ (𝑥𝑛𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝐹𝑖 ∗ (𝑥𝑟1 − 𝑥𝑟2) + 𝐹𝑖 ∗ (𝑥𝑟3 − 𝑥𝑟4)
 (39) 

Where, 𝑥𝑛𝑏𝑒𝑠𝑡  is the best individual among the relatives of the 

target vector. 

For the medium sub population, the mutant vector is 

generated as follows: 𝑣𝑖 = 𝑥𝑖 + 𝐹𝑖 ∗ (𝑥𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝐹𝑖 ∗ (𝑥𝑟1 − 𝑥𝑟2) + 𝐹𝑖 ∗(𝑥𝑟3 − 𝑥𝑟4) (40) 

 

Where, 𝑥𝑝𝑏𝑒𝑠𝑡  is the best individual of the ps vectors that are 

randomly selected from the current population. 𝐹𝑖 = 𝑐𝑎𝑢𝑐ℎ𝑦(0.5,0.1) 

3. Fully Directed Mutations 

• Trigonometric mutation (TDE) 

Developed by Fan and Lampinen [30] to increase the 

convergence velocity of the DE. In this methodology, a new 

local search operation is introduced in order to speed up the 

DE when optimizing expensive objective functions. The 

mutant vector is generated according to the equation: 𝑣𝑖,𝑔+1 ={ [𝑥𝑟1,𝑔+𝑥𝑟2,𝑔+𝑥𝑟3,𝑔]3 + (𝑝2 − 𝑝1) ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)+(𝑝3 − 𝑝2) ∗ (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔) + (𝑝1 − 𝑝3) ∗ (𝑥𝑟3,𝑔 − 𝑥𝑟1,𝑔)}(41) 

Where: 𝑝1 = |𝑓(𝑥𝑟1,𝑔)|𝑝′ , 𝑝2 = |𝑓(𝑥𝑟2,𝑔)|𝑝′ , 𝑝3 = |𝑓(𝑥𝑟3,𝑔)|𝑝′  𝑝′ = |𝑓(𝑥𝑟1,𝑔)| + |𝑓(𝑥𝑟2,𝑔)| + |𝑓(𝑥𝑟3,𝑔)| 𝑟1, 𝑟2, 𝑟3 ∈ [1, 𝑁𝑃],   𝑟1, ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
• ADE 

Mohamed, Sabry and Khorshid [49] presented an alternative 

differential evolution algorithm (ADE). The new directed 

mutation scheme is proposed based on the weighted difference 

between the best and worst individuals at a particular 

generation. The mutant vector is generated as follows: 𝑣𝑖𝑔+1 = 𝑥𝑟𝑔 + 𝐹 ∗ (𝑥𝑏𝑔 − 𝑥𝑤𝑔)  (42) 

Where 𝑥𝑟  is chosen randomly from the population at 

generation g, 𝑥𝑏 is the best individual at generation g and 𝑥𝑤 

is the worst individual at generation g. 𝐹 is a uniform random 

number between [0,1].  
• Triangular 

Mohamed [50] proposed a novel mutation called triangular 

mutation. In which, three vectors are randomly selected. The 

three vectors are sorted ascendingly due to their objective 

function values to get 𝑥𝑏𝑒𝑠𝑡,𝑗 , 𝑥𝑏𝑒𝑡𝑡𝑒𝑟,𝑗, 𝑥𝑤𝑜𝑟𝑠𝑡,𝑗. The mutant 

vector is generated according to the equation: 𝑣𝑖,𝑗𝑔+1 = 𝑥̅𝑐,𝑗𝑔 + 𝐹𝑖 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑗𝑔 − 𝑥𝑏𝑒𝑡𝑡𝑒𝑟,𝑗𝑔 ) + 𝐹𝑖 ∗ (𝑥𝑏𝑒𝑡𝑡𝑒𝑟,𝑗𝑔 −𝑥𝑤𝑜𝑟𝑠𝑡,𝑗𝑔 ) + 𝐹𝑖 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑗𝑔 − 𝑥𝑤𝑜𝑟𝑠𝑡,𝑗𝑔 )       (43) 

Where: 𝐹𝑖  𝑖𝑠 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛 [0.2,0.8] 𝑥̅𝑐,𝑗𝑔 = 𝑤1 ∗ 𝑥𝑏𝑒𝑠𝑡 + 𝑤2 ∗ 𝑥𝑏𝑒𝑡𝑡𝑒𝑟 + 𝑤3 ∗ 𝑥𝑤𝑜𝑟𝑠𝑡 𝑤𝑖 ≥ 0, ∑ 𝑤𝑖 = 13
𝑖=1  

𝑤𝑖 = 𝑃𝑖∑ 𝑃𝑖3𝑖=1 , 𝑖 = 1,2,3 𝑃1 = 1, 𝑃2 = 𝑟𝑎𝑛𝑑(0.75,1)𝑎𝑛𝑑𝑃3 = 𝑟𝑎𝑛𝑑(0.5, 𝑃2) 

• IDM: individual dependent mutation 

Tang, Dong, and Liu [51] proposed a novel variant of DE with 

an individual dependent mechanism. In the mechanism the 

population is divided into two non-overlapping sets: superior 

and inferior, the superior proportion is in the equation 𝑝𝑠, and 

the mutant vector is generated according to the equation:  𝑣𝑖,𝑔 = { 𝑥𝑖 + 𝐹 ∗ (𝑥𝑟1 − 𝑥𝑖) + 𝐹 ∗ (𝑥𝑟2 − 𝑑𝑟3)𝑖 ∈ 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝑥𝑖 + 𝐹 ∗ (𝑥𝑏𝑒𝑡𝑡𝑒𝑟 − 𝑥𝑖) + 𝐹 ∗ (𝑥𝑟2 − 𝑑𝑟3)𝑖 ∈ 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟}
 (44) 

Where F=0.5, 𝑥𝑏𝑒𝑡𝑡𝑒𝑟  is randomly selected from a set superior. 𝑑𝑟3,𝑔𝑗 = {𝐿𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑈𝑗 − 𝐿𝑗)𝑟𝑎𝑛𝑑(0,1) < 𝑝𝑑𝑥𝑟3𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } (45) 𝑝𝑑 = 0.1 ∗ 𝑝𝑠 𝑝𝑠 = 0.1 + 0.9 ∗ 105∗( 𝑔𝑔𝑚𝑎𝑥−1)
 

• AGDE 

Mohamed and Mohamed [52] presented a novel mutation 

scheme by utilizing the information on good and bad 

individuals in the population, the algorithm named AGDE. In 

each generation, the population is divided into three clusters 

(best, better, and worst) of sizes 100p%, NP-2*(100p%) and 

100p% respectively. Three vectors are selected randomly, one 

from each partition to generate the mutant vector based on the 

following equation: 𝑣𝑖𝑔+1 = 𝑥𝑟𝑔 + 𝐹 ∗ (𝑥𝑝−𝑏𝑒𝑠𝑡𝑔 − 𝑥𝑝−𝑤𝑜𝑟𝑠𝑡𝑔 ) (46) 

Where 𝑥𝑟𝑔 is chosen randomly from the middle NP-

2*(100p%), 𝑥𝑝−𝑏𝑒𝑠𝑡𝑔 , 𝑥𝑝−𝑤𝑜𝑟𝑠𝑡𝑔
 are chosen randomly from the 

top and bottom 100p%, where p=10%, F is a uniform random 

number between [0.1,1]. 

4. Probabilistic Mutations 

• GBDE 

Wang et.al. [53] proposed a new mutation operator called 

Gaussian Bare-Bones De (GBDE). The mutant vector is 

generated by a Gaussian distribution based on the current and 

the best individual at the current generation as follows: 𝑣𝑖,𝑔 = 𝑁(𝜇, 𝜎)  (47) 

Where 𝑁(𝜇, 𝜎) is a Gaussian random function with mean µ 

and standard deviation 𝜎 𝜇 = 𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔2  𝜎 = |𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔|. 
The algorithm is Explorative at the start, but as the generation 

increases the difference between the best and any individual 

will decrease, and the average will go toward the best. 

B. NOVEL CONCEPT 

• ProDE 

Epitropakis et al. [54] proposed a novel framework called 

proximity-based DE (ProDE), in which neighbors of a parent 

vector, rather than the random ones will be used to generate 

the donor vector. The framework consists of 3 steps to 

generate the mutant vector as follows:  

• Compute the pair-wise distance between all 

members of the population. 
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𝑅 = [𝑟𝑖𝑗]𝑁𝑃∗𝑁𝑃  (48) 

Where 𝑟𝑖𝑗  is the distance between the ith and the jth members 

of the population. 

• Probability matrix is calculated: 𝑅𝑝(𝑖. 𝑗) = 1 − 𝑟𝑖𝑗∑ 𝑟𝑖𝑘𝑁𝑃𝑘=1  (49) 

Where the minimum distant neighbor of a vector will have the 

highest probability to be selected as 𝑟𝑖 index. 

• Select three vectors with indices 𝑟1, 𝑟2𝑎𝑛𝑑𝑟3 based 

on the 𝑅𝑝(𝑖, : ) 𝑣𝑖 =  𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3) (50) 

Then update 𝑅𝑎𝑛𝑑𝑅𝑝 for the new offspring. 

• Rank-DE 

In nature, good species always contain valuable information. 

Gong and Cai [55] proposed a new idea, Rank-DE, inspired 

by the phenomenon. Where parents are proportionally selected 

according to their ranks in the current population. The 

algorithm based on 3 steps: 

• The population is Sorted based on the fitness of each 

individual. 

• A selection probability is calculated for each individual 𝑃𝑖 = 𝑅𝑖𝑁𝑃  ,    𝑖 = 1,2, … , 𝑁𝑃  

Where 𝑅𝑖 = 𝑁𝑃 − 𝑖 
• Two individuals 𝑥𝑟1, 𝑥𝑟2 are selected based on their 

selection probability, and the third one is selected 

randomly from the population 𝑥𝑟3 in order to 

generate the mutant vector. 𝑣𝑖,𝑔 = 𝑥𝑟1 + 𝐹 ∗ (𝑥𝑟2 − 𝑥𝑟3)  (51) 

• NDI-DE 

Cai and Wang proposed [56] a new idea based on the 

neighborhood and direction called neighborhood and direction 

information-based DE (NDI-DE). The mutant vector is 

generated as follows: 𝑣𝑖,𝑔 = 𝑥𝑏𝑎𝑠𝑒,𝑔 + 𝐹 ∗ 𝑥𝑑𝑖𝑓𝑓,𝑔 + 𝐷𝑇𝑖,𝑔 , , , , ,     𝐹 = 0.5     (52) 

• For calculating 𝑥𝑏𝑎𝑠𝑒  𝑎𝑛𝑑 𝑥𝑑𝑖𝑓𝑓  : 

Based on the neighborhood information, a probability to each 

vector of the population is generated based on the Euclidean 

distance from the target individual I for any vector j 𝑃𝑗 = 1 − ‖𝑥𝑖,𝑥𝑗‖∑ ‖𝑥𝑖,𝑥𝑗‖𝑁𝑃𝑗=1   (53) 

A roulette wheel selection is used for selecting 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3 

based on the probability values in the previous equation. 

After the selection of 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3, the winner of the 

tournament is 𝑥𝑏𝑎𝑠𝑒  and the other 2 vectors will form the 𝑥𝑑𝑖𝑓𝑓  

• For calculating DT (the direction): 

One of the next 3 cases is chosen (each is tested separately to 

check its effect): 

DA: directional attracted, derived from the best near neighbor 

individual. 𝐷𝐴𝑖 = 𝐼𝐷𝐴 ∗ (𝑥𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑖)  (54) 

Where 𝑥𝑖𝑏𝑒𝑠𝑡 is the best individual nearest neighbor 

DR: directional repulsion, derived from the worst near 

neighbor individual 𝐷𝑅𝑖 = −𝐼𝐷𝑅 ∗ (𝑥𝑖𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑖)  (55) 

Where 𝑥𝑖𝑤𝑜𝑟𝑠𝑡  is the worst individual nearest neighbor. 

DC: directional convergence, derived from the combination of 

the best and worst near neighbor individuals 𝐷𝐶𝑖 = 𝐼𝐷𝐶1 ∗ (𝑥𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑖) − 𝐼𝐷𝐶2 ∗ (𝑥𝑖𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑖)    (56) 

Where 𝐼𝐷𝐴, 𝐼𝐷𝑅 , 𝐼𝐷𝐶  are scaling factors. 

• Adaptive Greedy 

Yu, Li, Zhang and Wan [57] introduced new mutation 

strategies that utilize the information of top t individuals in the 

current population. The parent vector is randomly selected 

from the top t solutions in the current population. The new 

strategies are: 

• DE/atbest/1 𝑣𝑖,𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔𝑡 + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)  (57) 

• DE/atbest/2 𝑣𝑖,𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔𝑡 + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) + 𝐹 ∗ (𝑥𝑟3,𝑔 − 𝑥𝑟4,𝑔) (58) 

• DE/current-to-atbest/1 𝑣𝑖,𝑔 = 𝑥𝑖,𝑔 + 𝐹 ∗ (𝑥𝑏𝑒𝑠𝑡,𝑔𝑡 − 𝑥𝑖,𝑔) + 𝐹 ∗ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (59) 

Each individual in the population is associated with a value of 

t, that is selected randomly between [1, NP]. Where   𝐹 = 0.5. 

• UDE 

Sharifi, Rajabi, and Shojaee [58] presented a Union 

Differential Evolution (UDE) to intelligently select the 

mutation vectors considering the advantages of both design 

and fitness spaces criteria. The mutant vector is generated as 

follows:  𝑣𝑖 = 𝑥𝐹𝑆1 + 𝐹 ∗ (𝑥𝐹𝑆2 − 𝑥𝑟1) + 𝐹 ∗ (𝑥𝐷𝑆 − 𝑥𝑟2)  (60) 

Where 𝑥𝑟1, 𝑥𝑟2 are selected randomly from the population. 𝑥𝐹𝑆𝑖  is the parent vector chosen by fitness space criterion, to 

obtain the 𝑥𝐹𝑆𝑖:  
• Sort the population in increasing order (from 

best to worst) due to fitness value. 

• Calculate the selection probability for each 

individual 𝑃𝑖 = 𝑁𝑃−𝑖𝑁𝑃 , 𝑖 = 1,2, … , 𝑁𝑃  (61) 

• Select 2 members 𝑥𝐹𝑆1 , 𝑥𝐹𝑆2 using roulette 

wheel. 𝑥𝐷𝑆 is the vector selected by design space criterion, to obtain 𝑥𝐷𝑆: 

• Based on the Euclidean distance between all the 

individuals in the population, the distance 

matrix DM is: 𝐷𝑀 = ( ‖𝑥1 − 𝑥1‖ ⋯ ‖𝑥1 − 𝑥𝑁𝑃‖⋮ ⋱ ⋮‖𝑥𝑁𝑃 − 𝑥1‖ … ‖𝑥𝑁𝑃 − 𝑥𝑁𝑃‖)  (62) 

• Based on DM, calculate the probability matrix 

PM 𝑃𝑀(𝑖, 𝑗) = 1 − 𝐷𝑀(𝑖,𝑗)∑ 𝐷𝑀(𝑖,𝑘)∀𝑘   (63) 

• Roulette wheel selection without replacement is 

performed on every row of PM matrix (for each 

member of the population) in order to choose 𝑥𝐷𝑆. 

• FPS 

Cai, Chen, Wang, and Tian [59] presented a new selection 

method called, fitness and position-based selection (FPS). The 

new method utilizes the population information in order to 
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select individuals for mutation. The method has 3 steps and 

applied on 6 mutation strategies from the literature. 

Step 1: Calculate the influence value of each individual 𝐼𝑁𝐹𝑖(𝑥𝑗,𝑔) =  𝐹𝑃𝑅𝑖(𝑥𝑗,𝑔)∑ 𝐹𝑃𝑅𝑖(𝑥𝑘,𝑔)𝑁𝑃𝑘=1 𝑎𝑛𝑑 𝑘≠𝑖 + 𝜀, 𝜀 = 0.001 (64) 𝐹𝑃𝑅𝑖(𝑥𝑗,𝑔) = 𝑀𝑓(𝑥𝑗,𝑔)𝑀𝑑,𝑗(𝑥𝑗,𝑔) 𝑀𝑓(𝑥𝑗,𝑔) = |𝑓(𝑥𝑗,𝑔) − 𝑓(𝑥𝑤𝑜𝑟𝑠𝑡,𝑔)| 𝑀𝑑,𝑖(𝑥𝑗,𝑔) = ‖𝑥𝑖,𝑔, 𝑥𝑗,𝑔‖ 

Where, 𝑥𝑤𝑜𝑟𝑠𝑡,𝑔 is the worst individual in the current 

population, ‖𝑎, 𝑏‖ is the Euclidean distance between a and b. 

Step 2: Calculate the selection probability of each individual 𝑃𝑖,𝑗,𝑔 = 𝐼𝑁𝐹𝑖(𝑥𝑗,𝑔)∑ 𝐼𝑁𝐹𝑖(𝑥𝑘,𝑔)𝑁𝑃𝑘=1   (65) 

Step 3: Roulette wheel selection is made in order to select the 

parents based on the probability. 

Then, the mutant vector  𝑣𝑖,𝑔 is calculated using 6 mutation 

schemes from the literature:  

FPS-DE/rand/1   FPS-DE/rand/2 

FPS-DE/best/1  FPS-DE/best/2 

FPS-DE/current-to-best/1  FPS-DE/rand-to-best/1 

IV. NUMERICAL EXPERIMENTS AND COMPARISONS 

In fact, there is an important question that needs to precise and 

concise answer. How much improvement could be achieved 

by the proposed mutations? Thus, in order to answer this 

question and as a guideline for researchers, practitioners and 

interested scientists, the best mutations must be identified for 

further improvement as well as the worst mutations must be 

also identified for further investigation with the possible 

repair. Consequently, in this section, to evaluate the 

performance of all mutations, the computational results of all 

mutations along with appropriate statistical analysis are 

discussed.  

A. EXPERIMENTS SETUP 

The performance of the proposed DE-based algorithms using 

these mutations was tested on 30 benchmark functions 

proposed in the CEC 2017 special session on real-parameter 

optimization. A detailed description of these test functions can 

be found in [29]. These 30 test functions can be divided into 

four classes: 

• Unimodal functions 𝑓1 −  𝑓3; 

• Simple multimodal functions 𝑓4 − 𝑓10; 

• Hybrid functions 𝑓11 − 𝑓20; 

• Composition functions 𝑓21 − 𝑓30. 

Note that 𝑓2 has been excluded because it shows unstable 

behavior especially for higher dimensions.  

B. PARAMETER SETTINGS  

To evaluate the performance of these algorithms using the 

proposed mutations, experiments were conducted on the test 

suite. We adopt the solution error measure (𝑓(𝑥)  − 𝑓(𝑥 ∗)), 

where 𝑥 is the best solution obtained by algorithms in one run 

and 𝑥* is the well-known global optimum of each benchmark 

function. Error values and standard deviations smaller than 10-

8 are taken as zero. The dimensions (𝐷) of function are 10, 30 

,50 and 100, respectively. The maximum number of function 

evaluations (FEs), the terminal criteria, is set to 10000 × 𝐷, all 

experiments for each function and each algorithm run 51 times 

independently. Besides, for fair comparison and to test the 

individual effect of the mutation on the optimization process, 

adaptation and/or self-adaptation schemes for control 

parameters are not allowed and disabled. Thus, the population 

size NP is set to 100. The binomial crossover operator is 

utilized in all mutations strategies due to its popularity in many 

DE literatures [33], [42], as shown in (3). The crossover factor 

(CR) is set to 0.9. However, regarding scaling factor (F), it is 

considered as a part of the mutation itself. Thus, as 

aforementioned in section III, the constant value of 0.5 or 

random values using a specific probability distribution as 

mentioned in the original algorithm are allowed. the 

presentation of the experimental results is divided into two 

subsections. First, an empirical taxonomy based on an overall 

performance and comparison between all mutations over all 

dimensions is provided. Second, to compare and analyze the 

solution quality from a statistical angle of different algorithms 

and to check the behavior of the stochastic algorithms (García 

et. al.) [60], the results are compared using two non-parametric 

statistical hypothesis tests: (i) the Friedman test (to obtain the 

final rankings of different algorithms for all functions). (ii) 

multi-problem Wilcoxon signed-rank test (to check the 

differences between all algorithms for all functions); at a 0.05 

significance level, where R+ denotes the sum of ranks for the 

test problems in which the first algorithm performs better than 

the second algorithm (in the first column), and R– represents 

the sum of ranks for the test problems in which the first 

algorithm performs worse than the second algorithm (in the 

first column). Larger ranks indicate larger performance 

discrepancy. As a null hypothesis, it is assumed that there is 

no significance difference between the mean results of the two 

samples. Whereas the alternative hypothesis is that there is 

significance in the mean results of the two samples, the 

number of test problems N=29 for D=10, 30, 50 and 100 

dimensions and 5% significance level. Use the p-value and 

compare it with the significance level. Reject the null 

hypothesis if the p-value is less than or equal the significance 

level (5%). All the p values in this paper were computed using 

SPSS (the version is 20.00). Third, the convergence behavior 

of top ten algorithms is analyzed. Then, the performance of all 

algorithm that provided minimum mean function error on the 

CEC 2017 functions with all dimensions is presented. 

C EXPERIMENTAL RESULTS AND COMPARISON 

The statistical results of all algorithms on the benchmarks with 

10, 30, 50 and 100 dimensions are summarized in the 

supplemental file (Tables S1-S30). It includes the obtained 

mean and the standard deviations of error from the optimum 

solution of all algorithms over 51 runs for all 29 benchmark 

functions. 
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1. Empirical taxonomy and comparison 

In order to analyze and compare all results provided by all 

algorithms, ranking of the algorithms on the CEC 2017 

functions with 10, 30, 50 and 100 dimensions are given in 

Figure 3. Firstly, it can be observed from Figure 3 that most of 

the algorithms perform differently on different dimensions. 

Generally, according to the growth of the search-space 

dimensionality from 10D to 100D, the performance of all 

algorithms can be classified into four main categories as 

depicted in Figure 4. The first category includes algorithms 

with excellent performance that show outstanding continuous 

improvement as the dimension of the search-space increases 

i.e., it has a better rank in 100D than its rank in 10D with 

continuous improvement. The second category includes 

algorithms show unstable performance and slight diminishes 

as dimensions of the functions increases i.e., it has good rank 

in 10D with good performance, but its performance slightly 

fluctuates with slight deterioration with 30D, 50D, and 100D. 

The third category includes algorithms show descent 

performance with complete and/or significant deterioration 

with the growth of the search-space dimensionality i.e., it has 

a better rank in 10D than its rank in 100D with continuous 

diminishes. The fourth category includes algorithms show 

stable moderate or poor performance with insignificant 

improvement in all dimensions and/or they get the lower 

ranking in most cases. Actually, it can be obviously shown 

from Fig.3 that AGDE belongs to the first category as it gets 

the sixth, first, second and first ranking in 10D, 30D, 50D and 

100D, respectively. Therefore, AGDE shows perfect 

performance with continuous improvement as the dimension 

of the functions increases. it is still more stable, efficient and 
robust against the curse of dimensionality. Besides, JADE, 

GBPX, and MPADE also get 11th, 16th and 14th ranking in 

10D, 6th, 13th, 10th ranking in 30D, 6th, 8th, 11th ranking in 

50D and 2nd, 4th, 6th ranking in 100D followed by ADE, 

DE/best/3 and DEGL although they get lower ranking, they 

follow the same pattern. Furthermore, the performance of 

AGDE, JADE, GBPX and MPADE algorithms does not affect 

by switching off self-adaptive mechanism of crossover and 

scaling factor that has been used along with the proposed novel 

mutation. Thus, it is noteworthy to mention that these 

mutations represent role model mutations as they still have 

outstanding performance during the optimization process. Due 

to its performance with slight fluctuations and deteriorations, 

it can be obviously seen from Figure 3 that DE/rand-

to/current/2, DE/rand-to-best and current/2, DE/rand/3, 

Triangular, JADE without an archive, DE/current-to-rand/1, 

DE/best/2 and MMS belong to the second category. Besides, 

on the contrary of the first category, the third category includes 

all algorithm with complete deterioration as dimensions 

increases such NSDE, DE/2-opt/1, DEGD, IMDE, DE/rand/1 

and   MDE-pBX algorithms. For instance, it can be deduced 

from Figure 3 that NSDE, DE/2-opt/1, and DEGD get 1st, 3rd, 

and 2nd ranking in 10D, 8th, 9th and 7th ranking in 30D, 9th, 

10th and 7th ranking in 50D and 10th, 11th and 9th ranking in 

100D. Finally, regarding the fourth category, GPDE, 

Trigonometric, and DE/best/1 were the weaker in performance 

in addition to the remaining algorithms DE/rand/2, 

DE/current-to-best/1,  

DE/2-opt/2, DE/rand-to-best/1, IMMSADE and IDM get 

lower ranking with the most of dimensions.  

2. Statistical Analysis  

On the other hand, Table II lists the Average ranks for all 

algorithms across all problems and all dimensions according 

to Friedman test. The best ranks are shown in bold and the 

second ranks are underlined. Besides, the rank of all 

algorithms on the CEC 2017 functions is shown in Figure 5. 

The p-value computed through Friedman test is 0.00E+00. 

Thus, it can be concluded that there is a significant difference 

between the performances of the algorithms. It can be clearly 

seen from Table II that, regarding mean ranking, AGDE gets 

the first ranking followed by DE/rand-to/current/2, DE/rand-

to-best, and current/2 and JADE gets fourth ranking. Taking 

into consideration that regarding ranking DE/rand-

to/current/2, DE/rand-to-best and current/2 perform better 

than JADE in 30D and 50D while JADE outperforms 

DE/rand-to/current/2, DE/rand-to-best and current/2 in 100D.  

Due to its outstanding performance and being first ranking, the 

multi-problem Wilcoxon signed-rank test between AGDE and 

other algorithms in 10D, 30D, 50D and 100D are summarized 

in Tables III,IV,V and VI, respectively. From Table III, we can 

see that AGDE obtains higher R+ values than R– in most of 

the cases, while slightly lower R+ value than R-value in 

comparison with JADE, JADE with no archive, MDE-pBX, 

DE/rand-to-best and current/2 and MMS algorithms. 

However, in the cases of AGDE versus DE/2-opt/1, NSDE, 

IMDE, DEGD and DE/rand/1, they get higher R– than R+ 

values. The reason is that AGDE gains the performance far 

away of what these five algorithms do on some functions, 

resulting in higher ranking values. According to the 

Wilcoxon’s test at α = 0.05, the significant difference can be 
observed in 11 cases, which means that AGDE is significantly 

better than 9 algorithms out of 29 algorithms on 29 test 

functions while it is significantly outperformed by NSDE and 

DEGD algorithms. However, there is no significant difference 

in the remaining 18 cases. Regarding 30D, 50D and 100D 

problems, the results of multi-problem Wilcoxon’s test in 
Tables IV, V and VI shows that AGDE obtains higher R+ 

values than R– in all cases with exception of DE/rand-to-

current/2 algorithms in D=50, and JADE and MPADE 

algorithms in D=100. According to the Wilcoxon’s test at α = 
0.05, the significance difference can be observed in 23, 21 and 

16 cases in D=30, 50 and 100, respectively, while there is the 

insignificant difference in all remaining cases. Thus, the 

performance of AGDE is always better than or equal to other 

compared algorithms in D=30,50 and 100D.  Alternatively, to 

be more precise, it is obvious from Tables III-VI that AGDE 

is inferior to, equal to, superior to other algorithms in 227,109, 

505 out of the total 841 cases in 10D, 133, 41, 667 out of the 

total 841 cases in 30D, 167, 5, 669 out of the total 841 cases 
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in 50D, 177,4,660 out of the total 841 cases in 100D, 

respectively. In summary, AGDE is inferior to, equal to, 

superior to other algorithms in 704, 159, 2501 cases, 

respectively out of total 3364 cases. Note that a total number 

of cases is given such that (29 algorithms* 29 problems* 4 

dimensions = 3364). Thus, it can be concluded that the 

performance of AGDE is almost better than the performance 

of compared algorithms in 74.4 % of all cases, respectively, 

and it is just outperformed by other compared algorithms in 

20.9 % of all problems in all dimensions. Furthermore, it can 

be obviously deduced from Fig.6 that the superiority of the 

AGDE algorithm against the compared algorithms increases 

as the dimensions of the problems increases from 10 to 100 

dimensions. 

TABLE II. AVERAGE RANKS FOR ALL ALGORITHMS ACROSS ALL PROBLEMS 

AND ALL DIMENSIONS ACCORDING TO FRIEDMAN TEST 

Algorithm 10D 30D 50D 100D Mean Ranking Rank 

AGDE 10.83 6.29 6.84 7.34 7.83 1 

DE/rand-to-

current/2 

11.16 8.45 5.97 7.69 8.31 2 

DE/rand-to-best 

and current/2 

11.03 7.47 7.59 9.45 8.88 3 

JADE 11.33 9.40 9.69 7.43 9.46 4 

Triangular 12.33 6.71 9.05 10.16 9.56 5 

DEGD 8.28 9.52 10.03 10.59 9.60 6 

DE/rand/3 12.84 8.86 7.66 10.12 9.87 7 

NSDE 7.09 10.12 11.21 11.53 9.99 8 

DE/2-opt/1 8.53 10.22 11.52 11.66 10.48 9 

MPADE 14.33 11.47 11.62 9.91 11.83 10 

GBPX-α 14.98 12.55 11.02 8.88 11.86 11 

JADE with no 

archive 

11.22 11.62 13.02 12.16 12.00 12 

IMDE 9.38 12.91 12.88 13.14 12.08 13 

DE/rand/1 9.36 12.91 12.69 13.71 12.17 14 

MDE-pBX 11.16 12.48 14.29 13.26 12.80 15 

DEGL 15.40 12.78 12.48 12.29 13.24 16 

MMS 14.79 17.10 16.31 14.93 15.78 17 

DE/best/3 21.16 17.26 15.83 14.57 17.20 18 

DE/best/2 17.97 17.03 17.74 17.72 17.62 19 

DE/current-to-

rand/1 

15.22 18.95 19.62 19.05 18.21 20 

IDM 15.69 18.91 19.14 19.12 18.22 21 

DE/2-opt/2 15.91 20.81 20.55 21.55 19.71 22 

DE/rand-to-

best/1 

20.26 20.17 20.02 21.19 20.41 23 

IMMSADE 21.93 22.02 19.98 20.12 21.01 24 

ADE 22.69 21.55 20.69 19.83 21.19 25 

DE/current-to-

best/1 

20.21 21.29 21.40 22.45 21.34 26 

DE/rand/2 17.86 22.83 23.28 23.62 21.90 27 

DE/best/1 25.50 24.93 24.66 24.17 24.81 28 

Trigonometric 28.84 28.72 28.84 28.50 28.73 29 

GBDE 27.72 29.66 29.40 28.86 28.91 30 

 

 

 

 

TABLE III. RESULTS OF MULTIPLE-PROBLEM WILCOXON’S TEST BETWEEN 

AGDE AND OTHER ALGORITHMS FOR D = 10  

AGDE vs R+ R- p-

value 

+ ≈ - Dec. 

JADE 133.5 142.5 0.891 12 6 11 ≈ 

MPADE 177 99 0.235 16 6 7 ≈ 

Triangular 157.5 118.5 0.553 15 6 8 ≈ 

DE/rand-to-current/2 145 131 0.831 15 6 8 ≈ 

DEGL 218 131 0.280 18 3 8 ≈ 

JADE with no archive 149 151 0.977 13 5 11 ≈ 

MDE-pBX 132 144 0.855 11 6 12 ≈ 

DE/rand-to-best and 

current/2 

134.5 141.5 0.915 14 6 9 ≈ 

DE/2-opt/1 81 195 0.083 8 6 15 ≈ 

NSDE 61 192 0.033 10 7 12 ˗ 
MMS 183 195 0.885 17 2 10 ≈ 

IMMSADE 340.5 94.5 0.083 24 0 5 ≈ 

IMDE 100 200 0.153 9 5 15 ≈ 

IDM 255.5 150.5 0.232 20 1 8 ≈ 

GBDE 422 13 0.000 27 0 2 + 

GBPX-α 198 180 0.829 16 2 11 + 

DEGD 75 225 0.032 9 5 15 - 

DE/rand/3 192 133 0.427 18 4 7 ≈ 

DE/rand/2 240.5 110.5 0.099 20 3 6 ≈ 

DE/rand/1 98.5 201.5 0.141 8 5 16 ≈ 

DE/current-to-rand/1 236 142 0.259 20 2 7 ≈ 

DE/current-to-best/1 309 97 0.016 20 8 1 + 

DE/best/3 319 32 0.000 23 3 3 + 

DE/best/2 296 55 0.002 22 3 4 + 

DE/best/1 422 13 0.000 26 0 3 + 

DE/2-opt/2 196 80 0.078 18 6 5 ≈ 

Trigonometric 435 0 0.000 29 0 0 + 

DE/rand-to-best/1 318 117 0.030 21 0 8 + 

ADE 351 0 0.000 26 3 0 + 

 

TABLE IV. RESULTS OF MULTIPLE-PROBLEM WILCOXON’S TEST BETWEEN 

AGDE AND OTHER ALGORITHMS FOR D = 30  

AGDE vs R+ R- p-

value 

+ ≈ - Dec. 

JADE 273 133 0.111 19 1 9 ≈ 

MPADE 255 70 0.013 18 4 7 + 

Triangular 204 147 0.469 17 3 9 ≈ 

DE/rand-to-current/2 272 106 0.046 19 2 8 + 

DEGL 320.5 85.5 0.007 22 1 6 + 

JADE with no archive 291 115 0.045 20 1 8 + 

MDE-pBX 305 73 0.005 22 2 5 + 

DE/rand-to-best and 

current/2 

189.5 135.5 0.468 16 4 9 ≈ 

DE/2-opt/1 274.5 76.5 0.012 17 3 9 + 

NSDE 270 108 0.052 21 2 6 ≈ 

MMS 390 45 0.000 25 0 4 + 

IMMSADE 400 35 0.000 27 0 2 + 

IMDE 298 53 0.002 21 3 5 + 

IDM 433 2 0.000 28 0 1 + 

GBDE 435 0 0.000 29 0 0 + 

GBPX-α 315 63 0.002 22 2 5 + 

DEGD 276 102 0.037 20 2 7 + 

DE/rand/3 267 111 0.061 18 2 9 ≈ 

DE/rand/2 435 0 0.000 29 0 0 + 

DE/rand/1 302 49 0.001 20 3 6 + 

DE/current-to-rand/1 421 14 0.000 27 0 2 + 

DE/current-to-best/1 407 28 0.000 27 0 2 + 

DE/best/3 341 65 0.002 24 1 4 + 

DE/best/2 343 35 0.000 24 2 3 + 

DE/best/1 411 24 0.000 27 0 2 + 

DE/2-opt/2 377 1 0.000 26 2 1 ≈ 

Trigonometric 430 5 0.000 28 0 1 + 

DE/rand-to-best/1 406 29 0.000 27 0 2 + 

ADE 402 4 0.000 27 1 1 + 
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TABLE V. RESULTS OF MULTIPLE-PROBLEM WILCOXON’S TEST BETWEEN 

AGDE AND OTHER ALGORITHMS FOR D = 50  

AGDE vs R+ R- p-

value 

+ ≈ - Dec. 

JADE 268 187 0.275 20 0 9 ≈ 

MPADE 280 118 0.088 19 2 8 ≈ 

Triangular 316 90 0.010 22 1 6 + 

DE/rand-to-current/2 166 269 0.285 10 0 19 ≈ 

DEGL 305 130 0.058 23 0 6 ≈ 

JADE with no archive 307 128 0.053 23 0 6 ≈ 

MDE-pBX 316 119 0.033 24 0 5 + 

DE/rand-to-best and current/2 255 180 0.417 19 0 10 ≈ 

DE/2-opt/1 282 153 0.163 18 0 11 ≈ 

NSDE 311 95 0.014 24 1 4 + 

MMS 361 74 0.002 26 0 3 + 

IMMSADE 396 39 0.000 27 0 2 + 

IMDE 297 138 0.086 19 0 10 ≈ 

IDM 382 53 0.000 26 0 3 + 

GBDE 435 0 0.000 29 0 0 + 

GBPX-α 350.5 84.5 0.004 22 0 7 + 

DEGD 243.5 191.5 0.574 20 0 9 ≈ 

DE/rand/3 236.5 169.5 0.446 17 1 11 ≈ 

DE/rand/2 418 17 0.000 28 0 1 + 

DE/rand/1 293 142 0.103 19 0 10 ≈ 

DE/current-to-rand/1 385 50 0.000 26 0 3 + 

DE/current-to-best/1 371 64 0.001 26 0 3 + 

DE/best/3 323 112 0.023 22 0 7 + 

DE/best/2 379 56 0.000 26 0 3 + 

DE/best/1 377 58 0.001 26 0 3 + 

DE/2-opt/2 404 31 0.000 26 0 3 + 

Trigonometric 430 5 0.000 28 0 1 + 

DE/rand-to-best/1 372 63 0.001 26 0 3 + 

ADE 411 24 0.000 28 0 1 + 

 

TABLE VI. RESULTS OF MULTIPLE-PROBLEM WILCOXON’S TEST BETWEEN 

AGDE AND OTHER ALGORITHMS FOR D = 100  

AGDE vs R+ R- p-

value 

+ ≈ - Dec. 

JADE 194 241 0.611 16 0 13 ≈ 

MPADE 198 237 0.673 14 0 15 ≈ 

Triangular 344 91 0.006 24 0 5 + 

DE/rand-to-current/2 220 215 0.957 14 0 15 ≈ 

DEGL 255 180 0.417 21 0 8 ≈ 

JADE with no archive 272 163 0.239 27 0 2 ≈ 

MDE-pBX 279 156 0.184 22 0 7 ≈ 

DE/rand-to-best and current/2 282 124 0.072 20 1 8 ≈ 

DE/2-opt/1 276.5 129.5 0.094 19 1 9 ≈ 

NSDE 327 108 0.018 24 0 5 + 

MMS 297 138 0.086 23 0 6 ≈ 

IMMSADE 370 85 0.001 25 0 4 + 

IMDE 320 115 0.027 20 0 9 + 

IDM 391 44 0.000 26 0 3 + 

GBDE 435 0 0.000 29 0 0 + 

GBPX-α 271 164 0.247 15 0 14 ≈ 

DEGD 302 133 0.068 23 0 6 ≈ 

DE/rand/3 273 133 0.111 18 1 10 ≈ 

DE/rand/2 414 21 0.000 28 0 1 + 

DE/rand/1 330 105 0.015 21 0 8 + 

DE/current-to-rand/1 396 39 0.000 26 0 3 + 

DE/current-to-best/1 377 58 0.001 25 0 4 + 

DE/best/3 248 158 0.305 20 1 8 ≈ 

DE/best/2 380 55 0.000 27 0 2 + 

DE/best/1 361 74 0.002 24 0 5 + 

DE/2-opt/2 396 39 0.000 27 0 2 + 

Trigonometric 432 3 0.000 28 0 1 + 

DE/rand-to-best/1 370 85 0.001 25 0 4 + 

ADE 435 0 0.000 29 0 0 + 
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FIGURE 3. The rank of all algorithms on the CEC 2017 functions with D=10,30,50 and 100 according to function error 
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FIGURE 5. The mean rank of all algorithms on the CEC 2017 functions overall dimensions 
according to function error 

 

FIGURE 6. Statistical comparison results of AGDE against other recent and state-of-the-
art mutations with the growth of the dimensionality. 
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3. Convergence behavior analysis  

Furthermore, convergence behavior is another important 

factor that must be considered in comparison among all 

proposed algorithms. Therefore, for better presentation, the 

convergence behavior of top ten algorithms will be analyzed. 

Thus, the convergence characteristics in terms of the best 

fitness value of the median run of all algorithms for some 

functions with dimensions 10,30, 50 and 100 is illustrated in 

the supplemental file (Figure S1). Regarding Unimodal 

functions 𝑓1 −  𝑓3, From Figure S1, it can be observed that 

JADE covered to better solutions faster than all other 

algorithms. Moreover, it provides better solutions than other 

compared algorithms especially on D=50 and 100. 

Concerning the remaining functions, Simple multimodal 

functions 𝑓4 − 𝑓10, Hybrid functions 𝑓11 − 𝑓20; and 

Composition functions 𝑓21 − 𝑓30.it can be obviously seen 

that, on the same problem, most of the algorithms converge 

differently on different dimensions.  JADE provides better 

solutions than other compared algorithms in 𝑓12 on D=50, 

f18on D=50,100, and 𝑓19   on D=100. AGDE shows superior 

performance in solving problems 𝑓11 and 𝑓14 on D=10, 𝑓14 

on all dimensions, 𝑓17 on D=50 and 100, 𝑓20 on D=50, 𝑓21 

on D=50 and 100, 𝑓26 on D=30. Generally, it is clear that the 

convergence speed of the majority of these algorithms is fast 

in the early stage of the optimization process for all functions 

with different shapes, complexity, and dimensions. 

Furthermore, the convergence speed is dramatically 

decreased, and its improvement is found to be significant in 

the middle and later stages of the optimization process. 

Additionally, the convergent figure suggests that many 

algorithms can reach the global solution or better solution in 

most problems in a fewer number of generations less than the 

maximum predetermined number of generations. In general, 

the majority of the top ten algorithms are scalable enough and 

can balance greatly the exploration and exploitation abilities 

until the maximum FEs is reached.  

4. Superior performance analysis 

On the other hand, to have a closer look at an outstanding 

performance of all algorithms, it is better to highlight each 

algorithm that provides superior performance on any problem 

with any dimension. Therefore, the minimum mean function 

error over 51 runs provided by an algorithm on the CEC 2017 

functions with D=10,30,50 and 100 are summarized in Table 

7. It must be noted that the empty cell means more than one 

algorithm provides the same mean function error. Besides, the 

number of cases in which each Algorithm provided minimum 

mean function error on the CEC 2017 functions with 

D=10,30,50 and 100 is shown in Figure 7. It can be clearly 

seen from Table VII that 19 algorithms out of 30 algorithms 

can provide superior performance in solving at least one 

function with any dimension. Moreover, although no clear 

pattern can be observed, few algorithms provide outstanding 

performance in many cases relative to others.  Besides, it is 

clearly seen from Figure 7 that five, three and three algorithms 

provided minimum mean function error in one, two and three 

cases, respectively. Besides, AGDE, IMDE, and DE/ rand-to-

current/2 get the first, second and third ranking as it can 

provide minimum mean function error in 16, 14 and 12 cases, 

respectively. Taking into consideration that regarding the 

algorithms that provided the largest number of cases with 

minimum mean function error in each dimension, GPBX, 

DE/2-opt/1 and DE/rand/1 provide the minimum mean 

function error in 4 cases in D=10, AGDE provide superior 

performance in 7 and 6 cases in D=30 and 50, respectively. In 

100 dimensions, MPADE provides the minimum mean 

function error in 7 cases. Nonetheless, it can be obviously 

deduced that AGDE provides more consistent results and 

stable performance than MPADE in D=100 as AGDE gets the 

first ranking while MPADE gets sixth ranking according to 

Friedman test. 

TABLE VII. THE MINIMUM MEAN FUNCTION ERROR OVER 51 RUNS 

PROVIDED BY AN ALGORITHM ON THE CEC 2017 FUNCTIONS WITH 

D=10,30,50 AND 100, THE EMPTY CELL MEANS MORE THAN ONE 

ALGORITHM PROVIDES THE SAME MEAN FUNCTION ERROR. 

F D=10 D=30 D=50 D=100 

1     

3    JADE 

4  
DE/best/3 

JADE MPADE 

5 GPBX-α Triangular 
DE/rand-to-

current/2 

DE/rand-to-

current/2 

6   IMDE IMDE 

7 GPBX-α GPBX-α GPBX-α 
DE/rand-to-

current/2 

8 GPBX-α Triangular GPBX-α 
DE/rand-to-

current/2 

9   IMDE IMDE 

10 GPBX-α GPBX-α NSDE NSDE 

11 
DE/rand/1 

DE/rand-to-

current/2 

DE/rand-to-

current/2 
AGDE 

12 IMDE MPADE DEGL MPADE 

13 
DE/2-opt/1 

Triangular MPADE MPADE 

14 
DE/rand/1 

AGDE AGDE MPADE 

15 IMDE AGDE AGDE MPADE 

16 
DE/rand/1 

AGDE AGDE AGDE 

17 
DE/2-opt/1 

Triangular AGDE Triangular 

18 
DE/rand/1 

AGDE MPADE JADE 

19 
DE/2-opt/1 

AGDE AGDE MPADE 

20 IMDE 
DE/2-opt/1 

AGDE GPBX-α 

21 GBDE Triangular GPBX-α 
DE/rand-to-

current/2 

22 
DE/rand/3 DE/2-opt/1 

DEGD DEGD 

23 IDM AGDE 
DE/rand-to-

current/2 DE/2-opt/1 

24 IMMSADE IDM 
DE/rand-to-

current/2 

DE/rand-to-

current/2 

25 
DE/rand/2 

IMDE IMDE GPBX-α 

26 MMS IMMSADE DEGD 
DE/2-opt/1 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3077242, IEEE Access

 

VOLUME XX, 2017 9 

27 
DE/rand/2 

IMDE IMDE IMDE 

28  IMDE 
DE/rand/1 

MPADE 

29 
DE/2-opt/1 

AGDE 
DE/rand-to-

current/2 
AGDE 

30 
DE/rand-to-

current/2 
MPADE IMDE IMDE 

V. CORRECT CONVERGENCE VERSUS FALSE 
CONVERGENCE 

In this section, the theoretical background, and the taxonomy 

of the convergence behavior of population-based-algorithm 

(general case) and DE algorithm (special case) are discussed. 

Besides, based on the results provided by all mutations, 

numerical experiments, and complete analysis of the 

convergence behavior using two metrics, the diversity of 

population and success rate for all mutations are presented. 

Finally, the relationship between the quality of solution, 

diversity of population and success rate of mutation as is 

investigated. 

A. THEORETICAL BACKGROUND AND TAXONOMY OF 
THE CONVERGENCE BEHAVIOR 

In fact, Similar to all other Evolutionary algorithms (EAs), the 

evolutionary process of DE uses mutations, crossover, and 

selection operators at each generation to reach the global 

optimum. In simple DE, generally known as DE/rand/1/bin 

[2], an initial random population, denoted by PG=0, consists of 

NP individual. Each individual is represented by the vector 𝑋𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝐷𝑖), where D is the number of dimensions 

in solution space. Since the population will be varied with the 

running of the evolutionary process, the generation times in 

DE are expressed by 𝐺 = 0,1,2, … … 𝐺𝐸𝑁, where G is the 

current generation and GEN is the maximal times of 

generations. For the ith individual of P at the G generation, it is 

denoted by 𝑋𝑖𝐺 = (𝑥1𝑖𝐺 , 𝑥2𝑖𝐺 , … , 𝑥𝐷𝑖𝐺 ). The lower and upper 

bounds in each dimension of search space are respectively 

recorded by 𝑋𝐿 = (𝑥1𝐿 , 𝑥2𝐿 , … , 𝑥𝐷𝐿) and 𝑋𝑈 =(𝑥1𝑈 , 𝑥2𝑈 , … , 𝑥𝐷𝑈). The initial population PG=0 is randomly 

generated according to a uniform distribution within the lower 

and upper boundaries , )(x x
L U

. After initialization, these 

individuals are evolved by DE operators (mutation and 

crossover) to generate a trial vector. A comparison between 

the parent and its trial vector is then done to select the vector 

which should survive to the next generation [23]. After that, 

during many generations of optimization process, the 

convergence of the population at last generation 𝑝𝐺=𝐺𝑚𝑎𝑥 will 

be either correct or false. Correct convergence means that the 

DE algorithm has succeeded to reach the global optimal 

solution during the optimization process within a pre-

determined or specified maximum number of generations i.e., 

the population successfully converges to the global optimal 

solution. On the contrary, false convergence means that the  

algorithm has failed to reach the global optimal solution 

during the optimization process within a pre-determined or 

specified maximum number of generations i.e., the population 

did not truly converge to the global optimal solution. In fact, 

the success of the population-based search algorithms is based 

on balancing two contradictory aspects: global exploration 

ability and local exploitation tendency [49]. Actually, the 

effectiveness and efficiency of any population-based 

algorithm is measured by its capability of producing high 

quality solution with high convergence rate, respectively.  

Moreover, the mutation scheme plays a vital role in DE search 

ability to produce high quality solution with high convergence 

rate. Virtually, the main cause of correct convergence is the 

ability of the DE algorithm in balancing two contradictory 

aspects the global exploration capability and the local 

exploitation tendency. On the other hand, false convergence 

can be caused due to three different situations: (1) slow 

convergence (2) premature convergence and (3) stagnation. In 

these three situations, False convergence means that (1) the 

DE algorithm is unable to balance between both exploration 

capability and local tendency, (2) the DE algorithm favors 

considerably exploitation due to design of the mutations, (3) 

the DE algorithm favors considerably exploration due to 

design of the mutations, during the search process, 

respectively. Thus, it must be noted that the exploration and 

0
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Ranking of algorithms

D=10 D=30 D=50 D=100

FIGURE 7. Number of cases in which each algorithm provided minimum mean function error on the CEC 2017 

functions with D=10,30,50 and 100 
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exploitation abilities exist in the algorithmic design in case of 

slow convergence, but it is unable to balance both of them 

during the optimization process. However, the exploration 

capability may be very weak or does not exist in algorithmic 

design in case of premature convergence. Besides, regarding 

stagnation case, there is a lack of exploitation tendency or it 

may be does not exist in the algorithmic design of mutation. 

Table VIII describes these four convergence scenarios. 
 

TABLE VIII. THE ALGORITHMIC DESIGN STATUS IN FOUR CONVERGENCE 

SCENARIOS 
 Exploration 

capability 

Exploitation tendency Algorithmic design 

status 

Correct 

convergence 

Exist Exist (=) Balance both 

Slow 

convergence 

Exist Exist (≈) Imbalance both 

Premature 

convergence 

Does not 

exist 

Exist (≪) significant lack of 

exploration capability 

Stagnation Exist Does not exist (≫) significant lack of 

exploitation tendency 

(≪): means that the algorithmic design favors exploitation or the 

exploration capability is much less than the exploitation tendency. (≫): means that the algorithmic design favors exploration or the 

exploitation tendency is much less than the exploration capability. 

 

Actually, there are three possible reasons for false 

convergence such as (1) inappropriate configurations and/or 

improper adaptation schemes used to control the three main 

control parameters of DE (NP) population size, (F) Scaling 

factor and crossover rate (CR), (2)   the mutation strategy may 

be either unable to balance both exploration and exploitation 

tendency or it favors one of both (exploration or exploitation) 

over another one due to its algorithmic design, or (3) both of 

them. Thus, the main objective of this section is to give a clear 

definition and theoretical explanation to describe these four 

scenarios of convergence behavior. Therefore, in order to 

accomplish this target, very important two metrics must be 

defined. Population diversity metric and success rate of 

mutation metric [39]. Besides, the mathematical definitions 

for both correct and false convergence must be given. 𝐷𝑃𝐺 = 1𝑁𝑃 ∙ √∑ ‖𝑥𝑖𝐺 − 1𝑁𝑃 ∙ ∑ 𝑥𝑗𝐺𝑁𝑃𝑗=1 ‖𝑁𝑃𝑖=1 2
         (66) 𝑆𝑅𝐺 = 𝑁𝑆𝐺𝑁𝑃            (67) 

where 𝐷𝑃𝐺denotes the diversity of the population at the G 

generation.𝑆𝑅𝐺  is the success rate of the population, and 𝑁𝑆𝐺denotes the number of successful updates in generation 

G.  Thus, the diversity of the population for each generation 

can be measured by the standard deviations of the individuals. 

Success rate can be measured by the number of trial vectors 

among the entire population that can successfully enter the 

next generation as they are better than their parents i.e., the 

number of trial vectors that survive to the next generation. 

Besides, the correct convergence and false convergence can be 

expressed mathematically, respectively, as follows: 

Correct convergence is given by lim𝐺→𝐺𝐸𝑁 𝑓(𝑥) = 𝑓(𝑥∗)  (68) 

 False convergence is given by    lim𝐺→𝐺𝐸𝑁 𝑓(𝑥) ≠ 𝑓(𝑥∗)  (69) 

Where G is the generation number, GEN is the maximum 

number of generations,  𝑓(𝑥) denotes the objective function 

value of the best solution (𝑥)obtained by algorithm in G 

generation, and 𝑓(𝑥∗) is the objective function value of the 

well-known global optimum (𝑥∗) of each benchmark 

function. Thus, regarding correct convergence scenario, it is 

clearly seen from Eq.68 that as G gets close to the GEN, the 

value of the function 𝑓(𝑥) gets close to 𝑓(𝑥∗), which means 𝑓(𝑥) converges to the true optimal solution .On the contrary, 

concerning false convergence, it is clearly seen from Eq.69 

that as G gets close to the GEN, the value of the function 𝑓(𝑥) 

does not get close to 𝑓(𝑥∗), which means 𝑓(𝑥) does not 

converge to the true optimal solution. 

In order to fully understand and clearly differentiate between 

four scenarios, the diversity of the population 𝐷𝑃𝐺  and the 

success rate of the population 𝑆𝑅𝐺  must be analyzed for each 

scenario. Regarding correct convergence, it can be clearly 

deduced that from (68) that upon the best so far solution in G 

generation gets close to the global optimum solution, the 

remaining vectors will be attracted to the best solution and 

hence they will be clustered around it within few generations. 

Thus, the diversity of population DP will be gradually 

decreasing to 0, but SR is larger than 0 as there are many 

successful updates for trial vectors due to the attraction 

process.  On the other hand, slow convergence means that the 

maximum number of generations has been reached while the 

population has not converged to a fixed point. Thus, there is 

neither clustering around the best so far solution nor attraction 

effect as there is no best solution found which means there is 

still slow continuous improvement for all population. 

Accordingly, the values of both metrics DP and SR greater 

than 0. Similar to slow convergence, stagnation means that the 

maximum number of generations has been reached while the 

population has not converged to a fixed point, but the 

population is unable to generate better solutions than current. 

Hence, the value of DP is greater than 0 while SR is 0. 

Premature convergence means that the population has 

converged to an inaccurate fixed point while the maximum 

number of generations has not been reached, Therefore, the 

diversity is completely lost within very few generations which 

implies that the values of both metrics DP and SR are 0.  

Actually, all vectors are clustered around the local best 

solution with zero distance and hence they have been quickly 

attracted to it within few generations and no more available 

updates. Using both DP and SR metrics, Table IX presents the 

four scenarios and the classification of four convergence 

scenarios is further depicted in Figure 8. On other words, 

based on the values of DP and SR metrics, it can be deduced 

from Table IX and Figure 8 that if SR is greater than 0 then 
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the convergence behavior is based on the DP value.  If DP is 

approximately zero, then it is the correct convergence 

scenario. Otherwise, it is the slow convergence scenario i.e., 

DP is greater than zero. On the other hand, if SR is 

approximately zero then the convergence behavior is based on 

the DP value.  If DP is approximately zero, then it is the 

premature convergence scenario. Otherwise, it is the 

stagnation scenario i.e., DP is greater than zero. 
 

TABLE IX. THE FOUR CONVERGENCE SCENARIOS WITH CORRESPONDING 

METRICS VALUES 

 DP = 0 DP > 0 

SR = 0 Premature convergence Stagnation 

SR > 0 Correct convergence Slow convergence 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 8. The classification of four convergence scenarios using DP 
and SR metrics 

 

Furthermore, to investigate the four scenarios of convergence 

based on DP and SR, the convergence behavior, DP and SR 

graphs (median curves) of AGDE algorithm on 10, 30 and 

100-dimensional for some selected test functions are shown in 

Figure 9. Note that the median curves of AGDE algorithm on 

10,30,50 and 100 dimensions for all test functions are 

illustrated in the supplemental file (Figure S2). 

 

 

a. f6 with D=10, correct convergence 

 

 
b. f14 with D=10, Slow convergence 

 
c. f20 with D=30, stagnation 

 
d. f23 with D=100, Premature convergence 

FIGURE 9. Illustration of correct convergence, slow convergence 
stagnation, and premature convergence 
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It can be seen from Figure 9 (a) that DP gradually decreases to 

0, but SR is larger than 0. Thus, it is the correct convergence 

scenario. Second, it can be seen from Figure 9 (b) that DP and 

SR gradually decrease to a value that is larger than 0 steadily. 

This phenomenon is called slow convergence. Third, 

concerning stagnation scenario, it can be seen from Figure 9 

(c) that DP gradually decreases to a value that is larger than 0, 

and then it remains unchanged. Besides, SR also decreases to 

close to 0, and then it remains unchanged as well. Finally, it 

can be obviously seen from Figure 9 (d) that both DP and SR 

reduce to 0 simultaneously. This is the premature convergence 

case.  

B. CONVERGENCE ANALYSIS FOR ALL ALGORITHMS 

In section IV, based on the solution quality provided by all 

algorithms, the performance of all mutations has been 

evaluated. Furthermore, it has been noted in previous sub-

section V.A that the exploration capability of the mutation can 

be measured by evaluating the population diversity during the 

generations of the optimization process. Besides, the success 

rate SR measures the convergence ability of the mutation i.e., 

its ability of continuous improvement of trial vectors during 

the generations of the optimization process to reach a better 

solution. In this subsection, in order to analyze the superior 

and inferior performance of all algorithms, a complete analysis 

of the convergence behavior for all mutations are presented 

using aforementioned algorithmic design status and 

convergence scenarios classifications. 

Firstly, Table X lists the average and final ranks for all 

algorithms across all problems and all dimensions according 

to success rate (SR). The best ranks are shown in bold and the 

second ranks are underlined. Besides, the final rank of all 

algorithms on the CEC 2017 functions is shown in Figure 10. 

It can be clearly seen from Table X that, regarding final 

ranking, IDM gets the first ranking followed by DE/current-

to-rand/1 and DEGD while GBDE was the worst algorithm as 

it gets 30th ranking.  

In order to analyze and compare all success rates (SR) 

provided by all algorithms, the ranking of the algorithms on 

the CEC 2017 functions with 10, 30, 50 and 100 dimensions 

are given in Figure 11. Firstly, similar to Figure 4 in sub-

section IV.C, it can be observed in Figure 11 that most of the 

algorithms perform differently on different dimensions. 

Generally, according to the growth of the search-space 

dimensionality from 10D to 100D,  

 

 

 

 

 

 

 

 

 

 

the success rate (SR) of all algorithms can be classified into 

four main categories as depicted in Figure 12.  

The first category includes algorithms with excellent success 

rates (SR) that show outstanding continuous improvement in 

the value of their success rates (SR) as the dimension of the 

search-space increases i.e., it has a better rank in 100D than its 

rank in 10D with continuous improvement. The second 

category includes algorithms show instable success rates 

(SR)and slight diminishes in the value of their success rates 

(SR) as dimensions of the functions increases i.e., it has good 

rank in 10D with good performance, but its performance 

slightly fluctuates with slight deterioration with 30D, 50D, and 

100D. The third category includes algorithms show descent 

success rates (SR) with complete and/or significant 

deterioration in the value of their success rates (SR)with the 

growth of the search-space dimensionality i.e., it has a better 

rank in 10D than its rank in 100D with continuous diminishes. 

The fourth category includes algorithms show stable moderate 

or poor success rates (SR) with insignificant improvement 

success rates (SR) with all dimensions and/or they get the 

lower ranking in most cases. It can be obviously shown from 

Figure 12 that MDE-pBX, ADE, NSDE, MMS, JADE with no 

archive, JADE, DEGL, DE/best/3, DE/best/2 mutations 

belong to the first category. The second category includes 

Triangular, IMMSADE, DEGD mutations. the third category 

contains DE/rand-to-best/1, IMDE, IDM, GPBX, DE/rand-to-

current/2, DE/rand-to-best and current/2, DE/rand/3, 

DE/rand/2, DE/rand/1, DE/current-to-rand/1, DE/current-to-

best/1, DE/2-opt/2, DE/2-opt/1, AGDE mutations. Finally, 

TDE, MPADE, GBDE, DE/best/1 mutations belong to the 

fourth category. Actually, it must be noted that not all 

algorithms that belong to a specific category show the same 

amount of improvement or deterioration in the value of their 

success rates (SR)with the growth of the search-space 

dimensionality. However, they show the same pattern. For 

instance, although DE/Current-to-rand/1 and DE/Current-to-

best/1 belong to the third category, they show slight and 

considerable deteriorations respectively, in the value of their 

success rates (SR) such that DE/Current-to-rand/1 gets 3rd, 

3rd, 4thand 6th ranking while DE/Current-to-best/1 2nd, 1st, 

8th and 22nd ranking in 10D, 30D, 50D and 100D, 

respectively. 

  

FIGURE 10. The final rank of all 
algorithms on the CEC 2017 functions 
overall dimensions according to success 
rate (SR) 
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TABLE X. AVERAGE RANKS FOR ALL ALGORITHMS ACROSS ALL PROBLEMS 

AND ALL DIMENSIONS ACCORDING TO SUCCESS RATE SR 
Algorithm 10D 30D 50D 100D Mean 

Rank 

Final 

Rank 

IDM 1 2 2 9.5 3.625 1 

DE/current-to-rand/1 3 3 4 6 4 2 

DEGD 10 5.5 7 4 6.625 3 

MMS 26 4 1 1 8 4 

DE/current-to-best/1 2 1 8 22 8.25 5 

JADE with no archive 23 5.5 3 2 8.375 6 

MDE-pBX 15 11 5 3 8.5 7 

GPBX-α 5 8 10 12 8.75 8 

DE/rand/3 6 9 12 15 10.5 9 

DE/rand-to-best and 

current/2 

7 7 13 16 10.75 10 

DE/rand-to-current/2 8 10 11 18 11.75 11 

DEGL 24 15 6 5 12.5 12 

NSDE 21 12 9 9.5 12.875 13 

AGDE 4 13 18 17 13 14 

JADE 16 16 16 7 13.75 15 

Triangular 18 14 17 14 15.75 16 

DE/best/3 30 18 14 8 17.5 17 

DE/2-opt/1 13 19 20 19 17.75 18 

ADE 28 17 15 11 17.75 18 

DE/best/2 19 20 19 13 17.75 18 

DE/rand/1 9 21 22 21 18.25 21 

IMDE 11 22 24 24 20.25 22 

MPADE 22 23 23 20 22 23 

DE/2-opt/2 14 25 25 25 22.25 24 

DE/rand/2 12 26 26 26 22.5 25 

IMMSADE 25 24 21 23 23.25 26 

DE/rand-to-best/1 17 27 27 28 24.75 27 

TDE 20 30 30 30 27.5 28 

DE/best/1 27 29 28 27 27.75 29 

GBDE 29 28 29 29 28.75 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, regarding the diversity of the population 

(DP), Table XI lists the average and final ranks for all 

algorithms across all problems and all dimensions according 

to population diversity (DP). The best ranks are shown in bold 

and the second ranks are underlined. Besides, the final rank of 

all algorithms on the CEC 2017 functions is shown in Figure 

13. It can be clearly seen from Table XI that, regarding final 

rank, DE/rand/2 gets the first ranking followed by GBDE and 

DE/2-opt/2while DE/rand-to-best/1 was the worst algorithm 

as it gets 30th ranking.  

In order to analyze and compare all diversity of the population 

(DP) provided by all algorithms, the ranking of the algorithms 

on the CEC 2017 functions with 10, 30, 50 and 100 

dimensions are given in Figure 14. Firstly, similar to Figure 

11, it can be observed from Figure 14 that most of the 

algorithms perform differently on different dimensions. 

Generally, according to the growth of the search-space 

dimensionality from 10D to 100D, the diversity of the 

population (DP) of all algorithms can be classified into four 

main categories as depicted in Figure 15. The first category 

includes algorithms with an excellent diversity of the 

population (DP) that show outstanding continuous 

improvement in the value of their diversity of the population 

(DP) as the dimension of the search-space increases i.e., it has 

a better rank in 100D than its rank in 10D with continuous 

improvement. The second category includes algorithms show 

unstable diversity of the population (DP) and slight diminishes 

in the value of their diversity of the population (DP) as 

dimensions of the functions increases i.e., it has good rank in 

10D with good performance, but its performance slightly 

fluctuates with slight deterioration with 30D, 50D, and 100D. 

The third category includes algorithms show descent diversity 

of the population (DP) with complete and/or significant 

deterioration in the value of their diversity of the the 

population (DP) with the growth of the search-space 

dimensionality i.e., it has a a better rank in 10D than its rank 

in 100D with continuous diminishes. The fourth category 

includes algorithms show stable moderate or poor diversity of 

the population (DP) with insignificant improvement diversity 

of the population (DP) with all dimensions and/or they get the 

lower ranking in most cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11. The rank of all 
algorithms on the CEC 2017 
functions with D=10,30,50 
and 100 according to 
Success Rate (SR) 
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TABLE XI. AVERAGE RANKS FOR ALL ALGORITHMS ACROSS ALL 

PROBLEMS AND ALL DIMENSIONS ACCORDING TO THE DIVERSITY OF 

POPULATION DP  
10D 30D 50D 100D Mean 

Rank 

Final 

Rank 

DE/rand/2 2 1 1 1 1.25 1 

GBDE 1 2 3 3 2.25 2 

DE/2-opt/2 4 3 2 2 2.75 3 

IMMSADE 3 4 4 6 4.25 4 

IMDE 11 5 5 4 6.25 5 

MPADE 5 7 10 8 7.5 6 

DE/rand/1 13 6 6 5 7.5 6 

DE/rand/3 7 8 8.5 9 8.125 8 

ADE 6 9 8.5 10 8.375 9 

DE/rand-to-current/2 9 10 11 12 10.5 10 

DE/2-opt/1 17 11 7 7 10.5 10 

DE/rand-to-best and 

current/2 

12 12.5 14 15 13.375 12 

DE/best/2 18 12.5 12 11 13.375 12 

DE/current-to-rand/1 8 14 17 20 14.75 14 

AGDE 14 18 16 14 15.5 15 

DEGD 22 15 13 13 15.75 16 

MDE-Pbx 16 16 15 18 16.25 17 

IDM 10 17 21 21 17.25 18 

GPBX-α 19 19 18 16 18 19 

NSDE 26 20 19 17 20.5 20 

Triangular 25 21 20 19 21.25 21 

DE/current-to-best/1 15 22 24 26 21.75 22 

JADE with no archive 21 24.5 23 25 23.375 23 

MMS 27 23 22 22 23.5 24 

DEGL 24 24.5 25 24 24.375 25 

JADE 20 26 27 27 25 26 

DE/best/3 28 28 26 23 26.25 27 

TDE 23 27 28 28 26.5 28 

DE/best/1 30 29 29 29 29.25 29 

DE/rand-to-best/1 29 30 30 30 29.75 30 

 

It can be obviously shown from Figure 15 that triangular, 

NSDE, MMS, IMDE, GPBX, DEGD, DE/rand/1, DE/best/3, 

DE/best/2, DE/2-opt/2, DE/2-opt/1DE/rand/2 mutations 

belong to the first category. The second category includes 

MPADE, JADE with no archive, AGDE mutations. the third 

category contains JADE, IMMSADE, IDM, GBDE, DE/rand-

to-current/2, DE/ rand-to-best and current/2, DE/rand/3, 

DE/current-to-rand/1, DE/current-to-best/1mutations. Finally, 

MDE-pBX, TDE, ADE, DE/rand-to-best/1, DEGL, 

DE/best/1mutations belong to the fourth category. Actually, in 

the same context with success rate (SR), it must be noted that 

not all algorithms that belong to a specific category show the 

same amount of improvement or deterioration in the value of 

their success rates (SR)with the growth of the search-space 

dimensionality. However, they show the same pattern. For 

instance, although GBDE and IDM belong to the third 

category, they show slight and considerable deteriorations 

respectively, in the value of their success rates (SR) such that 

DE/Current-to-rand/1 gets 1st, 2nd, 3rdand 3rdranking while 

IDM 10th, 17th, 21st and 21st ranking in 10D, 30D, 50D and 

100D, respectively. 

In fact, it can be obviously seen from Figure 12 and Figure 15 

that most of the algorithms belong to different categories 

according to the classifications of SR and DP Which are 

considered as empirical verification and practical validation to 

the theoretical contradictory aspects between both population 

diversity and convergence rate. For instance, JADE belongs to 

the first category according to the classification of (SR) while 

it belongs to the third category according to the classification 

of (DP). Thus, it means that JADE shows excellent success 

rate with continuous improvement while it shows Descent 

population diversity with significant deterioration as the 

dimension of the space increases. On the contrary, IMDE 

shows excellent population diversity with continuous 

improvement while it shows Descent success rate with 

significant deterioration as the dimension of the space 

increases. 

Finally, in order to accomplish the target of this section, an 

empirical investigation of the four scenarios of the 

convergence behavior for all algorithms is applied. Therefore, 

using the error value, DP and SR values of the median run of 

all algorithms on10, 30, 50 and 100-dimensional for all test 

functions, the four scenarios of convergence behavior are 

presented in Table XII. Furthermore, the percentage of correct 

(C), slow (SL), premature convergence (P) and stagnation (S) 

scenarios provided by all algorithms on10, 30, 50 and 100-

dimensional for all test functions are shown in Figure 16. 
From Figure 16, it can be obviously seen that JADE, DE/rand-

to-best and current/2, trigonometric and GBDE get the first 

ranking with the highest percentage of correct convergence, 

slow convergence, premature convergence, and stagnation, 

respectively. Besides, the percentage of four convergence 

scenarios behavior provided by all algorithms on the CEC 

2017 functions overall dimensions is also presented. 

Besides, it can be observed from Table XII that all algorithms 

perform differently on different dimensions which means that 

the frequency of each scenario changes over the dimensions. 

Firstly, the percentage of the correct convergence of all 

algorithms is very low due to the difficulty of the benchmark 

test functions especially as the dimension of the problem 

increases. Secondly, for the remaining three scenarios, in order 

to identify the common scenario that is followed for each 

algorithm, the following rule based on the median values is 

applied. By excluding the percentage of the correct 

convergence scenario, if the percentage of one scenario is 

greater than the sum of the percentages for the other two 

scenarios or it represents at least 50% of total percentages of 

the three scenarios, this scenario is considered the most typical 

one for this algorithm i.e., it represents the trend of the search 
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mechanism of this algorithm. Otherwise, this algorithm shows 

mixed convergence scenarios during optimization process 

with no obvious trend for a specific scenario. Consequently, 

based on the percentages of all scenarios provided by all 

algorithms, it can be clearly observed from Table XII that the 

algorithms can be classified into four groups as depicted in 

Figure 17. The first group includes all algorithm that shows 

slow convergence behavior which are AGDE, Triangular, 

DE/rand-to-current/2, JADE with no archive, MDE-pBX, DE/ 

rand-to-best and current/2, DEGD, GPBX, IDM, MMS, 

NSDE, DE/current-to-rand/1 and DE/rand/3. The group of 

premature convergence behavior contains DE/rand-to-best/1, 

TDE, DE/best/1 and DE/best/3. Regarding the stagnation 

behavior group, it includes MPADE, GBDE, IMDE, 

IMMSADE, ADE, DE/2-opt/2, DE/rand/1 and 

DE/rand/2.Finally, JADE, DEGL, DE/2-opt/1, DE/best/2 and 

DE/current-to-best/1 belong to mixed convergence behavior 

group. In fact, regarding the first group, according to 

algorithmic design status in Table VIII and results in Table 

XII, all these mutations suffer from imbalance both global 

exploration ability and local exploitation tendency i.e., they 

are unable to reach the optimal solution within the maximum 

number of function evaluations(FEs). Nonetheless, the 

advantage of this group is the high success rate of improving 

the quality of solutions. Therefore, all these mutations are 

reliable and can be lonely used to design effective and efficient 

DE algorithm with satisfactory performance. However, 

further, improvement is a must to reach more accurate 

solutions to the global optimal solution. One possible 

suggestion is to adjust the parameters of mutation itself if exist. 

Another suggestion is to find manually or adaptively the 

optimal settings of the control parameters NP, CR and F to 

reach the basin of global optimal solution within the required 

maximum number of function evaluations (FEs). In the same 

context, the main drawback of the fourth group is that they 

show unstable pattern of convergence behavior although they 

still have a good tendency for slow convergence scenario. 

Therefore, the performance of these mutations can be easily 

further improved by following the same suggestions for the 

first group which is improving the mutation and/or control 

parameters to at least increase its tendency for slow 

convergence scenario which in turn decreases the cases of 

premature convergence and stagnation. For instance, JADE 

algorithm shows mixed convergence scenarios due to 

switching off its adaptive schemes of CR and F. Therefore, it 

can be deduced that the outstanding performance of JADE is 

mainly due to embedded adaptation mechanisms for CR and 

F parameters. 

On the other hand, concerning second and third group, 

according to Table IX, the success rate of these mutations in 

both situations is approximately zero. From Table VIII, the 

premature convergence group has excessive exploitation 

tendency with very bad diversity while the stagnation group 

has excellent exploration ability with complete inability of 

improving solutions. Therefore, all these mutation strategies 

are not qualified enough to be lonely used in constructing an 

effective and efficient DE algorithm because their search 

mechanism must be repaired. The main idea behind repairing 

is that exploration ability must be added to premature 

convergence group and exploitation tendency must be added 

to stagnation group i.e., the search mechanism of each group 

can be balanced by adding its complement search ability. In 

fact, there are many possible suggestions to accomplish this 

target. Firstly, the mathematical expression of the mutation 

must be analyzed. For instance, it can be obviously seen from 

Table XII and Figure 17 that the DE/best/1, DE/best/2 and 

DE/best/3 mutation strategies show fluctuate premature 

convergence behavior i.e., it is high, low and moderate, 

respectively. As a matter of fact, increasing difference vectors 

implies to higher diversity. Thus, it is expected that DE/best/2 

and DE/best/3 mutation strategies show moderate and low 

premature convergence behavior, respectively. However, the 

effect of the best vector on the performance of these mutations 

is higher than the effect of the difference vector(s). Thus, one 

possible suggestion to improve these mutations is to be 

mathematically formulated again as a linear combination 

between the best vector and the other difference terms and set 

the small value to the coefficient of the best vector and large 

value to the coefficient of difference vectors to reduce the 

excessive exploitative capability and increase the exploration 

ability. Furthermore, it can be clearly deduced from Table XII 

and Figure 17 that the performance of DE/rand/1, DE/rand/2, 

and DE/rand/3 is considerably enhanced as the number of 

difference vectors increases and the base vector is random. 

Therefore, the second suggestion for repairing is by combining 

different mutation strategies with different features together to 

complement each other. Finally, to overcome the shortcoming 

of these mutations, hybridization with other evolutionary 

algorithms, local search operators is one alternative possible 

solution. 
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FIGURE 12. The classification of all algorithms according to their Success rate (SR) as the dimension of the space increases  
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FIGURE 14. The rank of all algorithms on the CEC 2017 functions with D=10,30,50 and 100 according to the diversity of population (DP) 

 

FIGURE 15. The classification of all algorithms according to their diversity of the population (DP) as the dimension of the space increases) 
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Algorithm 
D=10 D=30 D=50 D=100 PERCENTAGE 

C SL P ST C SL P ST C SL P ST C SL P ST C SL P ST 

JADE 7 7 9 6 2 9 13 5 2 11 13 3 1 18 8 2 10.34% 38.79% 37.07% 13.79% 

AGDE 5 18 4 2 2 16 8 3 0 10 12 7 0 12 9 8 6.03% 48.28% 28.45% 17.24% 

MPADE 3 8 5 13 2 1 6 20 1 3 5 20 1 5 3 20 6.03% 14.66% 16.38% 62.93% 

Triangular 5 15 3 6 1 13 4 11 0 15 3 11 0 16 1 12 5.17% 50.86% 9.48% 34.48% 

DE/rand-to-current/2 4 24 0 1 1 25 1 2 0 27 1 1 0 22 4 3 4.31% 84.48% 5.17% 6.03% 

DEGL 5 6 13 5 2 11 10 6 1 15 9 4 0 19 7 3 6.90% 43.97% 33.62% 15.52% 

JADE without Archive 7 8 10 4 2 16 9 2 0 19 9 1 0 20 7 2 7.76% 54.31% 30.17% 7.76% 

MDE-pBX 7 11 7 4 2 13 8 6 0 19 4 6 0 20 4 5 7.76% 54.31% 19.83% 18.10% 

DE/rand-to-best and current/2 4 24 1 0 2 23 2 2 0 25 4 0 0 21 6 2 5.17% 80.17% 11.21% 3.45% 

DE/2-opt/1 4 9 9 7 2 6 6 15 0 8 5 16 0 8 6 15 5.17% 26.72% 22.41% 45.69% 

DE/rand-to-best/1 2 2 24 1 0 0 29 0 0 0 29 0 0 1 29 1 1.72% 2.59% 95.69% 1.72% 

DEGD 4 13 12 0 0 11 13 5 0 16 8 5 0 25 0 4 3.45% 56.03% 28.45% 12.07% 

GBDE 0 0 0 29 0 0 0 29 0 0 0 29 0 0 0 29 0.00% 0.00% 0.00% 100.00% 

GPBX-α 0 16 12 1 1 17 9 2 1 16 9 3 0 13 9 7 1.72% 53.45% 33.62% 11.21% 

IDM 0 24 1 4 0 20 0 9 0 22 0 7 0 16 9 4 0.00% 70.69% 8.62% 20.69% 

IMDE 6 11 4 8 2 8 1 18 1 5 3 20 0 6 2 21 7.76% 25.86% 8.62% 57.76% 

IMMSADE 0 4 0 25 0 1 0 28 0 0 0 29 0 0 0 29 0.00% 4.31% 0.00% 95.69% 

MMS 4 7 16 2 1 16 11 1 0 21 8 0 0 22 7 0 4.31% 56.90% 36.21% 2.59% 

NSDE 5 8 14 2 0 17 12 0 0 19 9 1 0 21 7 1 4.31% 56.03% 36.21% 3.45% 

Trigonometric 0 0 29 0 0 0 29 0 0 0 29 0 0 0 29 0 0.00% 0.00% 100% 0.00% 

ADE 5 0 3 21 1 5 3 20 0 11 1 17 0 11 3 15 5.17% 23.28% 8.62% 62.93% 

DE/2-opt/2 4 8 0 17 0 8 0 21 0 6 0 23 0 1 0 28 3.45% 19.83% 0.00% 76.72% 

DE/Best/1 0 3 26 0 0 1 28 0 1 1 27 0 0 2 27 0 0.86% 6.03% 93.10% 0.00% 

DE/Best/2 3 5 14 7 2 5 6 16 1 7 3 18 0 13 4 12 5.17% 25.86% 23.28% 45.69% 

DE/Best/3 3 3 21 2 2 8 14 5 1 12 15 1 0 19 8 2 5.17% 36.21% 50.00% 8.62% 

DE/Current-to-Best/1 1 15 4 9 0 14 11 4 0 6 14 9 0 4 19 6 0.86% 33.62% 41.38% 24.14% 

DE/Current-to-Rand/1 0 22 2 5 0 21 0 8 0 21 0 8 0 20 3 6 0.00% 72.41% 4.31% 23.28% 

DE/Rand/1 4 13 5 7 1 11 3 14 1 5 3 20 0 9 1 19 5.17% 32.76% 10.34% 51.72% 

DE/Rand/2 0 15 0 14 0 7 0 22 0 2 0 27 0 0 0 0 0.00% 20.69% 0.00% 54.31% 

DE/Rand/3 1 22 0 6 0 21 0 8 0 21 1 7 0 20 2 7 0.86% 72.41% 2.59% 24.14% 

  

TABLE XII. THE FREQUENCY AND OVERALL PERCENTAGE OF EACH CONVERGENCE SCENARIO PROVIDED BY ALL ALGORITHMS ON THE CEC 2017 FUNCTIONS OVERALL 

DIMENSIONS. 
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FIGURE 16. The percentage of four convergence scenarios behavior provided by all algorithms on the CEC 2017 functions overall dimensions 

FIGURE 17. The classification of all algorithms according to their most typical convergence behavior scenario  
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C. THE RELATIONSHIP BETWEEN THE THREE 
METRICES 

In fact, in order to investigate the relationship between the 

three metrics diversity of the population, success rate and the 

quality of solution, the ranking of all algorithms according to 

the three metrics is shown in Figure 18. From Figure 18, as 

mentioned previously, it is obviously deduced that there is 

contrary relationship between success rate and diversity of 

population such that they move in opposite directions for all 

algorithms with exception to DE/rand/3, DE/best/1, AGDE, 

DE/rand-to-current/2 and trigonometric mutations they get 

almost the same rank with both metrics. Besides, the 

performance of all DE-based algorithms is highly dependent 

on these two metrics. Thus, the quality of solution is 

significantly affected by population diversity and success rate. 

Accordingly, it would be greatly beneficial to derive the 

mathematical relationship between the quality of solution as 

the dependent variable and the diversity of population and 

success rate as independent variables.  

Therefore, in order to derive the mathematical relationship 

between the quality of solution (QS) as dependent variable and 

the diversity of population (DP) and success rate (SR) as 

independent variables, the sum of median function errors 

(FES), the sum of median diversity of population and sum of 

median success rates across all problems of all algorithms in 

D=10 according to these three metrics were considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three outlier values provided by the three algorithms 

IMMSADE, GBDE and trigonometric were removed. Curve 

fitting tool in MATLAB R2014a was used to fit a polynomial 

model of this relationship. Figures 19, 20, and 21 demonstrate 

the pattern of the scatter diagrams between the quality of 

solution (QS) as dependent variable and the diversity of 

population (DP) and success rate (SR) and between the 

diversity of population (DP) and success rate (SR), 

respectively.  The relationship seems linear regarding (DP) 

and nonlinear regarding (SR). Besides, there is nonlinear 

relationship between (DP) and (SR). The generated model 

was: 𝑄𝑆 =  𝑎1 +  𝑎2 ∗ 𝐷𝑃 +  𝑎3 ∗ 𝑆𝑅 +  𝑎4 ∗ 𝐷𝑃 ∗ 𝑆𝑅 +  𝑎5 ∗ 𝑆𝑅^2 +  𝑎6∗ 𝐷𝑃 ∗ 𝑆𝑅^2 +  𝑎7 ∗ 𝑆𝑅^3 +  𝑎8 ∗ 𝐷𝑃 ∗ 𝑆𝑅^3 +  𝑎9 ∗ 𝑆𝑅^4 

Estimated values of coefficients 𝑎1 − 𝑎9 are shown in Table 

XIII. The goodness of fit for this model was (R-square: 

0.9677, Adjusted R-square: 0.9533, and RMSE: 665.5). This 

means that the estimated mathematical model is highly fitted 

to predict future data of quality of solution when the sum of 

the median values of (DP) and (SR) for D=10 is given. Note 

that D=10 is considered as a case study. Figure 22. Illustrates 

this model.  

 
  

FIGURE 18. The ranking of all algorithms according to the three metrics success rate, diversity of population and quality of solution 
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TABLE XIII. ESTIMATED VALUES OF COEFFICIENTS 𝑎1 − 𝑎9 FOR THE 

MODEL REPRESENTING THE RELATIONSHIP BETWEEN QS,SR , AND DP 

 
Coefficients Estimated value 

a1 3923  

a2 -0.34  

a3 1299   

a4 -0.4653  

a5 -1669   

a6 1.667   

a7 399.1   

a8 -0.5101   

a9 -8.33 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

VI. RECOMMENDATIONS, INSIGHTS, AND GUIDELINES 

 

Obviously, from the above results, comparisons and 

discussion, the following recommendations, insights, and 

guidelines must be taken into consideration when interested 

researchers would like to design effective and efficient DE 

algorithm. To be more precise and for a better explanation, 

recommendations, insights, and guidelines will be discussed 

form two directions: (1) quality of solution which is discussed 

in section 4, (2) convergence behavior which is discussed in 

section 5.  

Firstly, regarding the quality of solution, which reflect the 

effectiveness of all evolutionary algorithms (in general) the 

DE-based algorithm (special case). The following 

recommendations, insights, and guidelines must be taken into 

consideration: 

1. AGDE algorithm is of better searching quality, 

efficiency, and robustness for solving small, 

moderate, and high dimensions unconstrained global 

optimization problems. It is clear that AGDE 

algorithm performs well and it has shown its 

outstanding superiority with separable, non-
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FIGURE 19. Scatter plot for the diversity of population (DP) 

and quality of solution (QS) 

FIGURE 20. Scatter plot for success rate (SR) 

and quality of solution (QS) 

FIGURE 21. Scatter plot for the diversity of population (DP) 

and success rate (SR) 

 

FIGURE 22. The fitted polynomial surface of the three metrics 
quality of solution (QS), diversity of population (DP) and success 

rate (SR)   
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separable, unimodal, multimodal, hybrid and 

composition functions with shifts in dimensionality, 

rotation, multiplicative noise in fitness and 

composition of functions. Consequently, its 

performance is not influenced by all these obstacles. 

Contrarily, it greatly keeps the balance the local 

optimization speed and the global optimization 

diversity in challenging optimization environment 

with invariant performance. Besides, its performance 

is superior and competitive with the performance of 

the recent and state-of-the-art well-known 

algorithms.  

2. Obviously, the outstanding performance and great 

success of AGDE is due to the utilization of the 

incorporation of the objective function value in the 

mutation scheme. To be more precise, the fully 

directed perturbations in the proposed mutation of 

AGDE resembles the concept of the gradient as the 

difference vector is directed from the worst vectors 

to the best vectors. Thus, it is considerably used to 

explore the landscape of the objective function being 

optimized in different sub-region around the best 

vectors within search space through optimization 

process [52].  

3. Consequently, it can be deduced that by utilizing and 

sharing the best and worst information of the DE 

population, the proposed fully directed mutation of 

AGDE balances both global exploration capability 

and local exploitation tendency. However, it must be 

noted that AGDE, triangular, IDM, ADE and 

trigonometric get 1st, 5th, 21st, 25th and 29th 

ranking according to Friedman test. Therefore, 

although all these algorithms belong to fully directed 

mutation category, AGDE and triangular algorithms 

perform well and show outstanding and competitive 

performance compared with other algorithms in 

different categories. However, the remaining 

algorithms IDM, ADE, and trigonometric show poor 

performance on the majority of functions. Thus, it is 

not guaranteed that all fully directed mutations will 

show superior performance. It depends on the design 

of the mutation itself. By the way, it is noteworthy to 

mention that the idea of directed mutation scheme 

was firstly proposed by Mohamed, Sabry and 

Khorshid [49] as a novel contribution in designing 

ADE algorithm. 

4. DE/rand-to-current/2 and DE/rand-to-best and 

current/2 get the second and third ranking although 

they belong to random and directed mutations 

groups, respectively. Furthermore, they maintain 

effectively the balance between the global 

exploration and local exploitation abilities during the 

search process and they outperform JADE in 

D=10,30 and 50. Actually, it must be noted that the 

design of these two mutations is better than another 

basic, classical and state-of-the-art mutations i.e. 

mutations with standard DE/X/Y/Z notation where 

DE denotes differential evolution, X denotes the 

target or base vector, Y denotes the number of 

randomly selected difference vectors and Z indicates 

type of crossover operator [23]. Really, these two 

mutations are highly recommended for further 

improvement.  

5. In general, although JADE shows good performance 

with continuous improvement as the dimension of 

the functions increases, it is ranked fourth. Moreover, 

it seems that JADE is significantly deteriorated 

without archive as it gets 12th ranking which proves 

that the concept of the archive has the main effect on 

the performance of mutation of JADE. Accordingly, 

this concept must be widely used, and it must be 

enhanced. 

6. Generally, the ranking of top ten algorithms are as 

follows: AGDE, DE/rand-to-current/2, DE/rand-to-

best and current/2, JADE, triangular, DEGD, 

DE/rand/3, NSDE, DE/2-opt/1, and MPADE. it can 

be clearly seen that 7 algorithms out of 10 belong to 

directed mutation group while the others 3 

algorithms belong to random group algorithm. 

Besides, out of seven directed algorithms, 2 

algorithms (AGDE and Triangular) are fully directed 

while the other five algorithms (DE/rand-to-best and 

current/2, JADE, NSDE, DE/2-opt/1, and MPADE) 

belong to partially directed group. Thus, it implies 

that the incorporation of the objective function value 

in the design of mutation scheme is better than pure 

randomness although both must be improved.  

7. Regarding the remaining mutations in the random 

group that are not included in top ten ranked 

mutations, it is not recommended to be used alone in 

designing DE algorithm because they are unable to 

maintain the balance between the population 

diversity and convergence speed. Some of them keep 

diversity but with slow convergence speed i.e., it 

favors exploration while the others are exploitative 

mutations i.e., it loses diversity but with fast 

convergence speed. Thus, it must be hybrid with one 

or more top ten mutations. 

8. Concerning probabilistic group, it includes just one 

mutation, GBDE with the poorest performance as it 

gets the last ranking. Accordingly, it is highly 

recommended to pay more attention and much 

research effort is needed to repair this mutation first 

and then to improve this research direction.   

9. Generally speaking, refereeing to the empirical 

taxonomy in sub-section IV.C.1, it is preferred to 

improve the mutations in the second category, which 

shows unstable performance as dimension increases, 

by combing them with the mutations form the first 

category which shows outstanding improvement as 
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dimension of the search-space increases. Thus, it is 

recommended to develop new hybridization using 

these two families of mutations.   

10. Finally, all mutations belong to third and fourth 

categories which show significant deterioration as 

dimension of the search-space increases or with all 

dimensions, they need further investigation for 

possible repair. In fact, most of these mutations 

suffer from premature convergence and/or stagnation 

in addition to the curse of dimensionality i.e., their 

performance is significantly deteriorated as the 

dimension of the search space increases. Besides, on 

the other hand, all mutations belong to first and 

second categories show excellent and satisfactory 

performance as the dimension of the search space 

increases. However, not all these mutations show the 

same convergence behavior i.e., they may have 

different merits and may suffer from different 

weakness. Therefore, it is suggested that the diversity 

of population and success rate and convergence 

speed of these mutations must be analyzed to 

proposing a novel idea for repairing for the first case 

or suggest an appropriate modification or 

improvements for the second case. 

 

Secondly, regarding the Convergence behavior, which 

reflects the efficiency of all evolutionary algorithm (in 

general) and the DE-based algorithm (special case). The 

following recommendations, insights, and guidelines 

must be taken into consideration: 

1. In fact, the success of the population-based search 

algorithms is based on balancing two contradictory 

aspects: global exploration ability and local 

exploitation tendency [49]. Actually, the 

effectiveness and efficiency of any population-based 

algorithm are measured by its capability of 

producing a high-quality solution with high 

convergence rate, respectively. Moreover, the 

mutation scheme plays a vital role in DE search 

ability to produce a high-quality solution with high 

convergence rate.  
2. However, until now, correct convergence scenario 

can be theoretically described but practically it 

cannot be consistently achieved over all runs and all 

dimensions with all benchmark functions due to its 

difficulty especially as the dimension of the search-

space increases. Thus, slow convergence scenario is 

virtually considered as the most appropriate 

objective when designing DE-based algorithm. 

3. Besides complete avoiding of the possible 

occurrence of both premature convergence and 

stagnation scenarios when solving benchmark 

functions with different dimensions or even real-

world problem or application is considered 

impossible or at least it is a very rare event. However, 

minimizing its frequent occurrence is a must. 

4. The diversity of population and success rate are two 

contradictory aspects. Therefore, the eminent 

performance of any evolutionary algorithm is based 

on balancing both of them during the optimization 

process. Thus, it is impossible to find one algorithm 

get 1st ranking in both metrics. From Table X and 

Table XI, IDM get 1st in success rate metric, while 

DE/rand/2 gets 1st in the diversity of population 

metric, respectively. On the contrary, it is possible to 

find one algorithm get the same ranking in both 

metrics especially when it shows very weak 

performance such as DE/best/1 get 29th ranking and 

trigonometric algorithms get 28th ranking in both 

metrics, respectively, from Tables X and XI. 

Besides, they get 28th ranking and 29th ranking in 

quality of solution ranking according to Table II, 

respectively. 

5. Besides, it is not guaranteed for any algorithm that 

being 1st in one of these aspects will greatly improve 

the performance as it may significantly deteriorate 

the other aspect. For instance, regarding the quality 

of solutions, the top four algorithms are AGDE, 

DE/rand-to-current/2 and DE/rand-to-best and 

current/2 and JADE, respectively. Besides, IDM and 

DE/rand/2 get 21st and 27th ranking, respectively. 

Regarding diversity of population and success rate, 

from Table X and Table XI, it can be observed that 

none of top four algorithms get first ranking in the 

diversity of population or success rate. AGDE, 

DE/rand-to-current/2 and DE/rand-to-best and 

current/2 and JADE get 14th, 11th, 10th, and 15th 

ranking in success rate (SR) metric and they get 15th, 

10st, 12th and 26th ranking in the diversity of 

population (DP) metric. On the contrary, IDM and 

DE/rand/2 get 1st and 25th ranking in success rate 

metric, respectively, while they get 18th and 1st in 

diversity metric, respectively. 

6. Accordingly, Like the classification of all algorithms 

according to their performances (the solution quality 

provided) as the dimension of the space increases, 

there are two classifications of all algorithms 

according to their success rates and population 

diversity as the dimension of the search space 

increases. The position of most algorithms is not the 

same in all classifications. For instance, JADE 

belongs to the first category according to the 

classification of (SR) while it belongs to the third 

category according to the classification of (DP). 

Thus, it means that JADE shows excellent success 

rate with continuous improvement while it shows 

Descent population diversity with significant 

deterioration as the dimension of the space increases.  
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7. However, in above mentioned three classifications of 

mutations according to their performance success 

rate and diversity, it must be taken into consideration 

that not all mutations that belong to a specific 

category show the same pattern or the amount of 

improvement or deterioration with the growth of the 

search-space dimensionality. For instance, according 

to success rate classification, although GBDE and 

IDM belong to the third category, they show slight 

and considerable deteriorations respectively, in the 

value of their success rates (SR) such that GBDE gets 

1st, 2nd, 3rdand 3rd ranking while IDM 10th, 17th, 

21st and 21st ranking in 10D, 30D, 50D, and 100D, 

respectively.  

8. All mutations belong to slow convergence scenario 

and mixed convergence scenario categories are 

reliable and can be lonely used to design effective 

and efficient DE algorithm with satisfactory 

performance. However, further, improvement is a 

must to reach more accurate solutions or very near 

solution to the global optimal solution. Therefore, the 

performance of these mutations can be easily further 

improved by finding manually or adaptively the 

optimal settings of the mutation parameter and/or 

control parameters NP, CR, F. 

9. On the other hand, all mutation strategies belong to 

premature convergence scenario and stagnation 

scenario categories are not qualified enough to be 

lonely used in constructing an effective and efficient 

DE algorithm because their search mechanism must 

be repaired. There are three directions for possible 

repair such that (1) the mathematical expression of 

the mutation must be analyzed, (2) combining 

different mutation strategies with different features 

together to complement each other must be 

empirically investigated, (3) hybridization with other 

evolutionary algorithms, local search operators are 

highly recommended as one alternative possible 

solution.  

10. Besides, according to the convergence behavior 

analysis, all mutations belong to second and third 

categories (Premature convergence and stagnation), 

need further investigation for possible repair. 

Besides, all mutations belong to first and fourth 

categories (slow convergence and mixed 

convergence scenarios), need further improvement 

but they can still be used solely without involving 

other mutations to perform the optimization process. 

However, taken into consideration that not all 

algorithms that belong to a specific category 

provided similar quality of solutions i.e., for any two 

algorithms A and B, they may get the same 

percentages of convergence scenarios but one of 

them may produce better solution quality than the 

other. In other words, it may prematurely converge, 

or it can be stagnated very near to the global optimal 

solution. Alternatively, one of them may be slowly 

converged to a better solution than the other. Thus, 

the quality of solution provided by many algorithms 

that show the same convergence scenario must be 

checked to consider which algorithm is better than 

the other. 

Altogether, it is recommended that the two contradictory 

aspects the diversity of population (DP) and the 

convergence rate (SR) must be taken into consideration in 

evaluating and comparing two or more algorithms in addition 

to the solution quality to perform a complete assessment. 

VII. CONCLUSION 

This study represents a significant step and a considerable 

trend to outline the progress of existing different mutation 

schemes of DE algorithm that have been developed to solve 

global optimization problems. In this paper, comprehensive 

review of 30 DE novel mutations and 6 DE novel concepts that 

were proposed between 1995 and 2020 is proposed. This 

review is based on new theoretical taxonomy. The proposed 

taxonomy classifies all novel contributions of DE mutations 

into two main areas (1) Novel Mutation and (2) Novel concept. 

In the first area, an innovative mutation scheme is added to 

basic DE mutation. However, regarding the second area, a new 

technique or method is proposed to enhance the selection 

process of the individuals to form the mutation scheme. Then, 

based on the structure of the novel mutation, it can be further 

classified into three groups: (a) Random, (b) directed, and (c) 

probabilistic. Then, the directed mutation can be classified into 

two main categories: (1) partial directed and (2) full directed. 

Actually, it is noteworthy to mention that this is the first 

research paper that proposes a new taxonomy to classify the 

contributions of DE mutations.  

The performance of the proposed DE-based algorithms using 

these mutations was tested on 29 benchmark functions 

proposed in the CEC 2017 special session on real-parameter 

optimization. Then, based on an overall performance and 

comparison between all mutations over all dimensions, an 

empirical taxonomy is also provided. This taxonomy classifies 

all algorithms into four categories based on the performance 

of algorithms with the growth of the search-space 

dimensionality from 10D to 100D. the first category includes 

algorithms with excellent performance that show outstanding 

improvement as the dimension of the search-space increases. 

The second category includes algorithms show slight 

diminishes and instable performance as dimensions of the 

functions increases. The third category includes algorithms 

show complete and/or significant deterioration with the 
growth of the search-space dimensionality. The fourth 

category includes algorithms show almost the same moderate 

to poor performance with insignificant improvement in all 

dimensions. Furthermore, in order to statistically analyze the 

performances of all algorithms, two non-parametric tests (the 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3077242, IEEE Access

 

VOLUME XX, 2017 9 

Friedman test and Wilcoxon’s test) are used with the 

significance level of 0.05.  

As a summary of results, the performances of the AGDE 

algorithm were statistically superior to and competitive with 

other recent and well-known state-of-the-art algorithms in the 

majority of functions and for different dimensions. 

Furthermore, DE/rand-to-current/2 and DE/rand-to-best and 

current/2, JADE and triangular get 2nd, 3rd, 4th, and 5th 

places, respectively, and they show outstanding performance 

on the majority of functions. Besides, DEGD, DE/rand/3, 

NSDE, DE/2-opt/1 and MPADE get 6th, 7th, 8th, 9th, and 

10th places, respectively, with promising solutions and 

competitive performance. Furthermore, following to 

theoretical taxonomy, 7 algorithms out of 10 belong to 

directed mutation group while the others 3 algorithms belong 

to random group algorithm which confirms that incorporation 

of objective function value in designing mutation scheme is 

better than pure randomness. 

On the other hand, according to empirical taxonomy, AGDE, 

JADE, GBPX, and MPADE show perfect performance with 

continuous improvement as the dimension of the functions 

increases while NSDE, DE/2-opt/1, DEGD, IMDE, DE/rand/1 

and   MDE-pBX algorithms show complete deterioration as 

dimension increases. Besides, the convergence behavior of top 

ten algorithms is also analyzed. Then, the superior 

performance of all algorithms is presented. On the other hand, 

the theoretical background, and the taxonomy of the 

convergence behavior of population-based-algorithm (general 

case) and DE algorithm (special case) are discussed. Besides, 

based on the results provided by all mutations, numerical 

experiments, and complete analysis of the convergence 

behavior for all mutations are presented using novel 

algorithmic design status and suggested convergence 

scenarios classifications which are based on the success rate 

and population diversity metrics. 

Finally, recommendations, guidelines, insights, and 

suggestions for experienced practitioners and interested 

researchers in designing and developing effective and efficient 

DE algorithms to address various optimization problems in 

different fields are discussed.  

Overall, based on results, tests, comparisons, and discussion, 

about 15 mutations out of 30 are very useful in solving 

different types of optimization problems due to its correct and 

slow convergence with all dimensions. Meanwhile, the others 

are not recommended to be used alone in designing DE 

algorithm. In fact, most of these mutations suffer from false 

convergence which may be classified as premature 

convergence and/or stagnation or even mixed convergence 

behavior in addition to the deterioration of performance 

as dimension increases. Thus, analysis of population 

diversity, success rate and convergence speed of mutation is a 

must to suggest an appropriate modification or proposing a 

novel idea for repairing by identifying the cause of defective 

or inefficiency. However, without these mutations, the 

innovation process might have been stopped and the top and 

successful mutations might not have been proposed. Finally, 

future research studies must focus on applying and 

experimentally investigate the proposed recommendations, 

insights, and guidelines to continue improving this research 

field. Furthermore, Future research studies may focus on 

applying these algorithms to solve constrained, multi-

objective and large-scale benchmark optimization problems. 

It is highly noted that the empirical analysis of this study 

may differ on another benchmark set according to no-free-

lunch theorem. 
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