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Abstract

Digital imaging in pathology has undergone an exponential period of

growth and expansion catalyzed by changes in imaging hardware and

gains in computational processing. Today, digitization of entire glass

slides at near the optical resolution limits of light can occur in 60 s.

Whole slides can be imaged in fluorescence or by use of multispectral

imaging systems. Computational algorithms have been developed for

cytometric analysis of cells and proteins in subcellular locations by use

of multiplexed antibody staining protocols. Digital imaging is unlocking

the potential to integrate primary image features into high-dimensional

genomic assays by moving microscopic analysis into the digital age. This

review highlights the emerging field of digital pathology and explores

the methods and analytic approaches being developed for the applica-

tion and use of these methods in clinical care and research settings.
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DIGITAL PATHOLOGY AND
WHOLE-SLIDE IMAGING
SYSTEMS: AN OVERVIEW

Since the development of the first automated,

high-resolution whole-slide imaging (WSI)

system by Wetzel and Gilbertson in 1999

(described in Reference 1), interest in using

WSI for different applications in pathology

practice has steadily grown (1–3). All current

WSI systems consist of illumination systems,

microscope optical components, and a focusing

system that precisely places an image on a

camera. The final product, or virtual slide, can

be assembled in various ways, depending on the

particular scanner being used (tiling, line scan-

ning, dual sensor scanning, dynamic focusing,

or array scanning) (3). The result is a com-

prehensive digital rendering of an entire glass

slide, visible at resolutions of less than 0.5 µm,

that can be examined with interactive software

on a computer screen (4). The viewing software

closely emulates the performance characteris-

tics of a light microscope in that the pathologist

can freely navigate a digital image of a histolog-

ical section over a complete range of standard

magnifications (including oil immersion) and

perform functions that have historically been

carried out with a light microscope. WSI tech-

nology holds tremendous promise with respect

to the digitization of pathology because it avoids

many of the limitations imposed by earlier

methods such as photomicroscopy (the cap-

turing of selected representative images) and

robotic microscopy (5). These approaches were

limited by several factors, including subopti-

mal image quality, the inability of the viewing

pathologist to see a high-resolution overview of

the entire slide or to have control over its nav-

igation, and the need for an extended amount

of time to adequately review a slide (1, 3, 6–8).

Pathology, as with most medical specialties,

is currently facing a growing demand to

improve quality, patient safety, and diagnostic

accuracy because there is an increasing empha-

sis on subspecialization. These factors, coupled

with economic pressures to consolidate and

centralize diagnostic services, are driving the

development of systems that can optimize

access to expert opinion and highly specialized

pathology services. Digital pathology networks

based on WSI systems provide a potential

solution to all of these challenges and will

undoubtedly play a critical role in this regard

in the future (2). As with digital radiology, it is

now believed that transformation to a soft-copy

reading environment is possible for pathology

as well. The emergence of more than 10 differ-

ent WSI vendors over the past 5 years further

indicates that pathology will eventually be-

come a digital specialty. To date, however, the

adoption of digital platforms by the pathology

community as a whole has been slow, and the

applications of WSI systems in pathology have

been limited to education, research, and specific

niches in clinical practice. Much work remains

to be done before WSI technology for diag-

nostic purposes can be widely adopted (8–10).

Arguably, the most important limiting factor

is the perception among pathologists that WSI

systems are inferior in terms of performance

when compared with light microscopes. Given

that pathologists have carried out their work

with light microscopes for more than 100 years,

WSI is considered a disruptive technology.

In this review, we focus primarily on the

factors that currently facilitate or impede the

adoption of WSI systems in pathology. We

also review the limited but growing literature

that describes the validation of WSI systems

for diagnostic purposes and the use of this tech-

nology for actual patient care, multidisciplinary

patient conferences (tumor boards), quality-

assurance (QA) activities, and education.

ADOPTION OF DIGITAL
PATHOLOGY SYSTEMS BY
PATHOLOGISTS: FACILITATORS
AND BARRIERS

One can easily identify advantages and disad-

vantages to switching from glass slides and light

microscopes to WSI platforms. The adoption

of digital technology by the pathology com-

munity has been slower than in radiology for
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various reasons (11). Although pathology can

learn lessons from radiology concerning the

switch to digital reporting, there are key dif-

ferences that prevent pathologists from sim-

ply reapplying the digital radiology template.

These differences include our need for color

images and the data-storage challenges that are

created when large volumes of slides are com-

pletely digitized (12). In addition, radiology was

able to eliminate films and all of the hazardous

chemicals associated with producing them (13).

The same cannot be said for pathology, wherein

glass slides must still be produced and stored as

well as scanned, which adds an extra step to the

prediagnostic work flow.

Facilitators

Facilitators for the adoption of digital pathol-

ogy can be considered in terms of cost savings,

performance, work-flow efficiency, and access

to pathology services in underresourced lo-

cations. The cost of replacing single-purpose

microscopes with multipurpose computers

and monitors can be shared among various

departments as the number of WSI applica-

tions increases within and between institutions,

which should stimulate growth in investment

in this area over the next few years (7, 10,

14, 15). Digital pathology systems are also

likely to be more ergonomically friendly than

light microscopes, a factor that led a group in

Kalmar, Sweden, to adopt the former technol-

ogy to keep one of its members functioning

as a pathologist (16). WSI systems can now be

integrated with laboratory information systems

to reduce errors related to specimen-patient

mismatching. In terms of work-flow efficiency,

WSI systems allow for more-streamlined

navigation of slides at all magnifications by

eliminating disruptions that can occur when a

pathologist bumps a slide on the microscope

stage (particularly when viewing a slide at high

magnification). Computer-aided diagnostic

tools will undoubtedly make pathologists

more efficient and precise at quantifying

histoprognostic factors such as mitotic figures.

Because relatively little is known about the

cognitive factors that affect human perfor-

mance in pathology practice, human-factor

studies using digital pathology platforms have

been performed. These studies have focused

primarily on understanding the diagnostic

pathways used by virtual slide readers in order

to develop more usable interfaces for visual-

ization of virtual slides, design more efficient

digital reading environments, and improve the

accuracy of digital slide interpretations (17, 18).

It is more efficient to review virtual slides with

residents in sign-out situations that involve

more than one or two trainees. Residents can

also have access to annotated online education

modules, which is particularly advantageous for

the independent study of rare or unusual cases

without the need for a staff pathologist. Time

and motion studies have convincingly shown

that pathologists spend up to 15% of their

professional time matching slides to paper req-

uisitions and looking for glass slides for signing

out, second opinion, tumor boards, research,

and resident teaching. WSI systems with

online digital archives have the potential to

greatly reduce these inefficiencies and improve

pathologist productivity (19, 20). Finally, WSI

systems have tremendous potential to provide

access to subspecialty pathology services for

remote locations that have limited or no on-site

pathology support. The digital approach obvi-

ates both the costs and time delays associated

with shipping glass slides between centers and

the risk of valuable slides being lost or dam-

aged during transport. These potential benefits

certainly make WSI systems an attractive alter-

native to traditional microscopy for a complete

spectrum of activities in clinical pathology (2).

Barriers

Despite the numerous advantages outlined

above, many technical and practical issues must

be overcome before pathology can follow radi-

ology’s example in terms of going digital (11).

These barriers can be considered in terms of

cost and required infrastructure, image quality

and speed of acquisition, data management,
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standards, and regulatory approval, as well as

pathologists’ concerns with respect to inferior

performance.

The cost of purchasing, implementing, and

maintaining a WSI system can be prohibitive,

depending on the scope of the digital pathology

service under consideration, and especially

for small pathology groups in nonacademic

institutions or in situations where a compelling

business case cannot be made. Apart from the

cost of scanners (in excess of US$100,000–

150,000 apiece), one must consider the cost

associated with training of pathology staff

and lab personnel, service contracts, tech-

nical support during the installation phase

and ongoing use, digital slide storage and

retrieval, and regulatory or licensure issues

that may have to be addressed. There is also

the possibility that labs will have to retrofitted

with bar-code tracking systems, particularly if

the WSI platform is to be integrated with a

departmental laboratory information system.

Although robust, high-throughput slide

scanners are now commercially available, their

scanning speed and the acquisition of consis-

tently well-focused digital slides are shortcom-

ings (1, 4). Vendors in the digital pathology

space are acutely aware of the need for fast WSI

systems that provide image quality that matches

or exceeds the visual experience obtained with

light microscopy, and there has been progress

in this area. Today’s scanners can be loaded

with 400 or more slides and can scan slides con-

tinuously; however, round-the-clock operation

of multiple scanners is required to completely

digitize the slide volumes of a typical academic

pathology department (12), and rescanning is

required for a variable percentage of slides.

More than 1 min is still required to scan a typi-

cal 1.5 × 1.5 cm section at 20× magnification.

Most image-quality problems are focus related,

and many can be traced back to the quality of the

histologic section that was placed in the scan-

ner. With current WSI technology, the quality

of the slides to be scanned must be optimized in

terms of uniform section thickness, placement

of the section in the center of the slide such

that it is completely covered by the coverslip,

avoiding the creation of chatter artifact and tis-

sue folds during microtomy, and avoiding the

creation of air bubbles during coverslipping.

All of these irregularities can adversely affect

the focus and image quality of adjacent areas

on the resulting virtual slide (Figures 1 and 2).

a b
Mounting media
with dirt

Edge of
coverslip
Edge of
coverslip

Figure 1

Representative examples showing the limitations imposed by suboptimal slide quality on the quality of images
produced by whole-slide imaging devices. (a) Excess mounting media (with attached dirt) on the top of the
coverslip adversely affect the focus of adjacent tissue. Dirty slides, such as this section from a seminoma,
should be cleaned prior to scanning. (b) The coverslip on this kidney section has shifted, leaving the left edge
of the section uncovered and out of focus. The coverslip should be reapplied and the slide rescanned.

334 Ghaznavi et al.
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a b

Tissue fold

Air bubbleAir bubble

Figure 2

Representative examples showing the limitations on image quality imposed by suboptimal histologic
processing of frozen sections read by whole-slide imaging. (a) A prominent tissue fold in this frozen section
has adversely affected the focus of the top half of the image. Depending on the slide scanner being used, one
must pay careful attention to avoiding the inclusion of tissue folds in the focus map that is generated prior to
the scanning process. The alternative is to get a recut section without tissue folds. (b) Air bubbles likewise
cause the affected area to be completely out of focus, rendering that portion of the slide unsuitable for
assessment.

A recent study by Bautista & Yagi (21) investi-

gated an automated method for detecting and

avoiding these suboptimal areas during the

focus-mapping stage of scanning; however,

more work is required before this process

can become successfully integrated into WSI

scanners. Not all WSI systems can perform

real-time multiplanar focusing to compensate

for suboptimally focused areas. Although vir-

tual focusing is now technically feasible, slides

need to be scanned at multiple focal planes,

which generates enormous image files (22, 23).

For these reasons, current WSI systems are not

suitable for reading cytology slides, wherein

multiplanar focusing is frequently required to

examine three-dimensional details of cells and

cell clusters (24).

Development of an effective data-

management system that can handle huge

amounts of data (terabytes to petabytes),

provide a streamlined image-retrieval process,

and ensure security with currently available

medical information systems remains an area of

concern (9, 15, 25). Due to rapid technological

advances in the area of digital processing and

storage and the availability of effective com-

pression algorithms, current difficulties related

to the management of digital slide archives can

be overcome. To illustrate this point, Huisman

et al. (12) digitally archived all of the cases

reported since November 2007 at University

Medical Center in Utrecht, Netherlands. They

undertook this project primarily to aid patholo-

gists in their preparation for clinicopathological

conferences. Three 120-slide scanners were

used to continuously scan slides at 20× magni-

fication with a JPEG compression ratio of 70.

More than 2,000 slides were scanned per week,

on average, and the file sizes for individual

slides ranged between 5 MB and 3.9 GB.

This process generated roughly 40 TB of data

annually, and by April 2009, the digital archive

contained approximately 150,000 slides.

The increasing emphasis on quality and

accuracy in pathology has created a growing

need for pathology departments to follow

best-practice standards and standard operating

procedures, particularly when introducing new

technologies such as WSI. The CLIA (Clinical

Laboratory Improvements Act) requires all

laboratory tests to be validated; however, it is

not clear what part of examining a hematoxylin

and eosin (H&E)-stained slide with a WSI

system constitutes “the test” (5). The US Food
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and Drug Administration (FDA) has not yet

approved the use of WSI systems for H&E

diagnosis, although the approval process has

been initiated by several WSI vendors. Guide-

lines on monitor resolution and image quality

and standards, such as the Digital Imaging

and Communications in Medicine [DICOM,

Supplements 122 (26) and 145 (27)], to create

interoperability between WSI platforms, com-

pression ( JPEG 2000), and retention of digital

slides used for diagnostic purposes are only

beginning to appear (28). In addition, medi-

colegal and licensure guidelines governing the

use of WSI systems for providing diagnostic

services across jurisdictional boundaries have

not yet been established. Because we are only

just entering the digital era in pathology,

it is not surprising that there is a paucity

of guidelines. It is also not surprising that

the pathology community is guarded about

adopting a technology that lacks best-practice

benchmarks.

Today’s pathologists are under increasing

pressure to handle large volumes of cases in a

timely manner while providing an increasingly

large amount of histoprognostic information in

their consultation reports (especially in cancer

cases). The stakes are high in that definitive

surgical and medical treatments are based on

the information provided by pathologists. In

such an environment, pathologists are naturally

wary about adopting digital systems that they

think could both slow them down and increase

the possibility of diagnostic error (11). Another

key performance factor that remains to be eval-

uated is the possibility of visual fatigue (over and

above that encountered with light microscopes)

caused by signing out cases at a monitor for pro-

longed periods of time (29). Computerized sim-

ulations of a high-volume histology laboratory

work flow carried out by McClintock et al. (30)

provide a quantitative assessment of the feasi-

bility for the full adoption of WSI in pathology

practice. These authors’ results, together with

those from a study by Isaacs et al. (31), show that

implementing WSI into high-volume pathol-

ogy work flows has significant implications in

terms of extra work, cost, and time.

OVERCOMING THE
PERCEPTION OF INFERIOR
PERFORMANCE: THE ROLE OF
VALIDATION STUDIES

Even if most of the barriers are overcome,

widespread adoption of WSI for primary diag-

nosis will not occur as long as pathologists be-

lieve that the performance of digital pathology

systems is inferior to that of light microscopy

(11, 32). The information required to surmount

this important barrier can be obtained only

by collecting objective data from well-designed

validation studies that demonstrate the diag-

nostic equivalence (if not the superiority) of

WSI systems to the light microscope. Such in-

vestigations will be necessary to gain regulatory

approval from agencies such as the FDA, as well

as to ensure pathologists’ confidence in the di-

agnoses they make with these systems. In an

effort to standardize the validation process, the

College of American Pathologists has drafted

recommendations on how to structure valida-

tion studies (33).

There is a relative paucity of peer-reviewed

literature on validation studies for making

primary diagnoses with WSI; however, new

studies are steadily appearing in abstract form.

In terms of published papers, Jukic et al.

(34) investigated intrapathologist diagnostic

discrepancy rates and diagnostic certainty

between glass and digital slides by having three

pathologists review 101 cases (900 slides in

total from neoplastic and nonneoplastic cases)

by both methods. They concluded that the use

of WSI technology would not have adversely

affected patient care or the diagnostic certainty

of each pathologist.

A recent study by Mooney et al. (35) as-

sessed the diagnostic accuracy and acceptability

of virtual slides in dermatopathology. Ten

pathologists and dermatopathologists were

presented with a randomized series of 20 glass

and virtual slides. These investigators found no

significant differences in the diagnostic ability

of the participants between the two modalities

(0.85 for digital versus 0.81 for conventional

microscopy; p = 0.286). Chargari et al. (36)
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compared assessments of pathological features

in a series of 816 prostate needle biopsy

cores from 69 consecutive patients by using

optical microscopy and digital means. Their

results showed no significant difference in the

percentage of biopsies in which cancer was

detected (34.8% for conventional slides versus

33.4% for digital slides). Gilbertson et al.

(4) demonstrated that WSI can be used for

making routine diagnoses on genitourinary and

dermatology cases. Although the three study

pathologists raised concerns about areas on

specific virtual slides that were suboptimally fo-

cused, this study reported complete agreement

between WSI consensus diagnoses and gold

standard diagnoses based on light microscopy.

In a retrospective study by Fine et al. (37),

five reviewers examined 30 diagnostically chal-

lenging prostate needle biopsies that required

the use of immunohistochemical stains. The

diagnostic performance of a WSI system was

compared with that of light microscopy based

on intra- and interobserver κ values, the time

required to examine the cases, and information

gathered from poststudy focus group discus-

sions. Intraobserver agreements were reported

as perfect for one reviewer, substantial for

three reviewers, and moderate for the remain-

ing reviewer. Although diagnostic agreement

between each pathologist and the gold standard

ranged from 0.52 to 0.73, agreement was in the

excellent range (κ = 0.817) when comparing

consensus WSI diagnoses with interpretation

based on light microscopy.

A pilot study of 15 cases in Kyoto, Japan,

conducted by Tsuchihashi et al. (38) sug-

gested that rapid and accurate frozen-section

diagnoses can be made by WSI. Fallon et al.

(39) had two pathologists examine virtual

slides created from 52 consecutive ovarian

tumor frozen-section cases that covered

benign, malignant, and borderline tumors.

Although the reviewing pathologists did not

have the full clinical information when they

reviewed the virtual slides, they reported 96%

concordance between WSI and the original

light-microscopy diagnoses issued at the time

of surgery. Interestingly, in some cases the

WSI diagnoses were more accurate than those

given at the time of surgery. Importantly,

the discrepant cases were associated with

well-known interobserver variability issues and

were not considered to be a function of WSI.

Recently, Nielsen et al. (40) reported the di-

agnostic performance of virtual microscopy for

routine histological diagnosis of skin tumors.

Four pathologists who had limited experience

in the use of virtual slides rendered diagnoses on

96 cases based on glass and digital sides (scanned

at 20× magnification). They reported an over-

all diagnostic accuracy of 89.2% for virtual mi-

croscopy and 92.7% for light microscopy; the

κ values were in the very good range for both

intra- and interobserver agreement. Diagnos-

tic discrepancies between WSI and light mi-

croscopy were attributed to the pathologists’

lack of experience with the digital platform.

These investigators concluded that it is feasi-

ble to use WSI systems to make diagnoses on

the skin tumor types represented in the study.

A series of recent abstracts presented at the

2011 US and Canadian Academy of Pathology

meeting has also provided encouraging valida-

tion data. Ramey at al. (41) reported complete

diagnostic concordance of 91% between WSI

and the original light-microscopy diagnoses

issued for 72 consecutive frozen sections that

were scanned at 20× magnification and subse-

quently reviewed by eight pathologists on both

desktop and laptop computers. The overall κ

value was 0.84. All the discrepancies were mi-

nor in nature and would have had no impact on

intraoperative management. The type of frozen

section had no influence on performance. In

a companion abstract, the Ramey group (42)

reported essentially identical results in terms of

concordance when virtual slides of these frozen

sections were reviewed on a high-resolution

mobile device (an iPad). Finally, Reyes et al.

(43) had three pathologists examine 103 breast

needle biopsies by WSI (20× magnification

scans) and light microscopy. These authors

reported no disagreements with respect to

distinguishing benign from malignant diseases.
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All disagreements were associated with cases

diagnosed as duct hyperplasia or atypical duct

hyperplasia.

The validation studies summarized above

indicate that WSI platforms can be used to

make diagnoses that are as accurate as those

made by light microscopy. The emerging

theme from all of them is that when discrep-

ancies between WSI and light-microscopy

diagnoses arise, they tend to involve entities

that are known to be plagued by interobserver

variability. However, the problems with these

studies are that they are limited to specific

applications and that the results cannot be

generalized to all areas of surgical pathology.

Validation studies that cover the entire spec-

trum of cases and tissue types encountered in

surgical pathology have not been performed,

but will be required. A key issue, for which there

are currently no guidelines, is how to design the

ideal validation study. How many cases should

there be? What about the mix of cases? How

many pathologists should there be? Is the end

point diagnostic concordance, feature recogni-

tion, or a combination of the two? What is an

appropriate washout period between reviewing

cases with WSI and light microscopy? How

does one control for intra- and interobserver

variability? In how many different centers do

these studies need to be performed? These are

only some of the issues that need to be consid-

ered, although it will probably be impossible

to design a single perfect validation study (44).

VALIDATION OF WHOLE-SLIDE
IMAGING FOR USE IN
CONSULTATION MODELS

WSI technology is an obvious way to provide

rapid consultation services to hospitals that

lack on-site pathologists (45). The same would

apply to solo pathologists in remote locations,

who could benefit from expert consultations

without having to incur courier costs, time

delays, and the risks of losing or damaging

slides if they are shipped to a referral center

(37, 39). The number of studies evaluating

WSI in consultation models is small; however,

available data are encouraging. Rodriguez-

Urrego et al. (46) recently published the results

of an inter- and intraobserver agreement study

in which four urologic pathologists compared

WSI with light microscopy with respect to

assigning Gleason scores and identifying

other useful histoprognostic parameters in 50

challenging prostate biopsies in a consultation

setting. Interobserver agreement in both

methods was similar; the κ values ranged from

0.35 to 0.65 for all parameters. Intraobserver

agreement was very good to excellent; the κ

values for primary Gleason grade and Gleason

score were >0.73. Tumor quantitation and

perineural invasion also showed a high level of

inter- and intraobserver concordance. These

investigators concluded that WSI platforms

would be sufficient for providing reliable

consultation diagnoses on prostate biopsies.

A study by Wilbur et al. (47) looked at the

feasibility of using WSI systems to provide con-

sultation diagnoses for challenging cases from

various anatomic sites. Fifty-three cases were

assessed by two subspecialty pathologists, one

using light microscopy and the other using

WSI. They reported an overall concordance of

91% between WSI and light microscopy; neo-

plastic cases showed better concordance (93%)

than did nonneoplastic cases (88%). Impor-

tantly, these investigators noted difficulties with

navigation at high magnifications and in the in-

terpretation of inflammatory or infectious le-

sions when using WSI.

USE OF WHOLE-SLIDE IMAGING
FOR ACTUAL PATIENT CARE
OUTSIDE OF VALIDATION
STUDIES

Given the barriers described above, it should

not be surprising that the literature describ-

ing the use of WSI systems for actual patient

care, so-called off-label use, is sparse. Isolated

abstracts have been presented that describe the

use of WSI in a subspecialty consultation net-

work in the United States (48) and for making

primary diagnoses in the setting of a small group

pathology practice in Kalmar, Sweden (16).
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Starting in late 2006, Evans et al. (7) at Uni-

versity Health Network (UHN) in Toronto,

Canada, have used WSI to make primary

frozen-section diagnoses in the absence of

an on-site pathologist. UHN is a three-site

academic institution in downtown Toronto.

The pathology department is consolidated in

one site, leaving two sites without regular on-

site pathologists for frozen-section coverage.

One site is located approximately 1 mile from

the consolidated department; it generates a low

volume of frozen sections (typically fewer than

10 per week), the vast majority of which come

from neurosurgery. WSI telepathology was im-

plemented to deal with the inefficiencies as-

sociated with sending a single pathologist to

cover frozen sections and the quality issues

that may arise when a lone pathologist is faced

with challenging cases in the absence of sup-

port from a colleague. This program is the first

of its kind to use WSI for real-time diagno-

sis in patient care. On the basis of experience

with more than 2,000 cases as of December

2011, single-block frozen sections are routinely

reported with a total turnaround time of 14

to 16 min, with a deferral rate of ≤5% and a

discrepancy rate of ≤2% (when comparing in-

traoperative WSI diagnoses with the diagnoses

provided by light microscopy at final sign-out).

This program has leveraged the ability of WSI

to enable real-time consultation on all cases in

which the primary pathologist is considering

deferring a frozen-section diagnosis. Patholo-

gists have used WSI to make reliable interpre-

tations of smears (or squash preps), which are

often important in intraoperative neuropathol-

ogy. It has been their experience that 20× mag-

nification scans are sufficient for assessing both

frozen sections and smears, and image quality is

not a problem if well-prepared slides are placed

in the scanner (Figure 3). Figure 4 shows

an approach to scanning intraoperative smear

slides that minimizes the area of the smear that

needs to be scanned and optimizes the focus

of cells at the diagnostic (thinnest) end of the

smear.

The WSI telepathology program at UHN

has recently been expanded to provide primary

frozen-section support, without incident, to a

hospital 400 miles north of Toronto when there

is no on-site pathologist (A. Al Habeeb, A.

Evans, S. Serra & R. Vajpeyi, unpublished ob-

servations). This system also facilitates the in-

troduction of quality measures, such as rapid

consultation between colleagues, when there is

an on-site pathologist (3, 7).

MULTIDISCIPLINARY PATIENT
CONFERENCES

Multidisciplinary conferences, or tumor

boards, play a central role in decision making

for quality cancer care. Although tumor boards

may seem an obvious application for WSI

technology, there is, once again, a paucity of

literature on the subject. Spinosa (49) provided

a comprehensive overview of a pilot project

investigating the effectiveness of using WSI for

tumor boards at Scripps Memorial Hospital

La Jolla in California. This study demonstrates

benefits such as increased efficiency for pathol-

ogists when preparing cases for presentation,

improved quality in terms of information

that is presented to clinical colleagues, and

increased satisfaction on the part of all who

attend these meetings.

QUALITY ASSURANCE

All medical specialties face increasing pressure

to improve quality and patient safety. In pathol-

ogy, the public attitude has shifted toward

expectations of faster and more patient-centric

subspecialty service that minimizes diagnostic

errors (50–52). QA plays a central role in this

process, and indeed, a growing number of

institutions are adopting QA policies whereby

a given percentage of cases must be indepen-

dently reviewed by a second pathologist before

sign-out (1, 50). Several studies, using different

approaches, have investigated the incidence

and characteristics of discrepancies between

original and second reviews when both are

performed using only glass slides. Manion et al.

(53) reviewed 5,629 surgical pathology cases at

the University of Iowa Hospitals and Clinics
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a b

c d

a b

c d

Figure 3

Representative examples of the image quality that can be obtained from 20× magnification scans of
well-prepared frozen sections and intraoperative smears. (a,b) A meningioma frozen section and a paired
smear, respectively. (c,d ) A low-grade astrocytoma frozen section and a paired smear, respectively.

and found 132 (2.3%) major disagreements,

of which 68 resulted in changes in clinical

management. In a nonconcurrent cohort study

by Raab et al. (54), pathologists reviewed glass

slides from a total of 7,824 in-house cases, of

which 7,444 were selected using a targeted 5%

random review process and 380 were chosen

for focused review. The total number of dis-

crepancies detected by random review was 222,

of which 27 (12%) were considered major ( p <

0.001). Through the use of focused review, 12

of 62 (19.4%) discrepant cases were considered

major ( p < 0.001). Published results based on

reviews of outside material report discrepancy

rates ranging from 1.4 to 11.3%; almost 60%

of major discrepancies resulted in changes in

clinical management (55).

QA is an area in which WSI technology can

play a critical enabling role. Digital pathology

networks can avoid costs and potential diffi-

culties associated with transporting glass slides

between facilities. They can also be set up in

such a way that potential second-reviewer bias,

in favor of or against the original diagnosis,

can be minimized (1, 56).

One of the first pilot studies demonstrating

the potential of using WSI for QA purposes

came from the University of Pittsburgh

Medical Center in 2006. In this study by

Ho et al. (1), 24 full genitourinary pathology

cases with significant diagnostic complexity

(comprising 47 separate parts and 391 slides)

were rereviewed by three pathologists using

WSI and traditional light microscopy. All of

the reviewers had prior experience in reading

digital slides. Four clinically insignificant

discrepancies were found, two of which were

based on the WSI review and two on light

340 Ghaznavi et al.
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b

a

cb

a

c

Thinner portionThinner portionThicker portion

Figure 4

An approach to handling intraoperative smears (squash preps) by whole-slide imaging, as illustrated with a
high-grade astrocytoma. (a) An overview of the entire smear. The area adjacent to the location where the
tissue was placed on the slide prior smearing is thick (left), whereas the distal portion of the smear is much
thinner (right). (b) Including the thick portion on the smear in the area to be scanned creates a much larger
digital slide file, prolongs the scanning time, and produces a suboptimally focused image (in the absence of
the ability to perform real-time multiplanar focusing). (c) Limiting the scanned area to the thinner, distal
portion of the smear reduces scanning time and maximizes the image quality in terms of cytological detail at
the diagnostic end of the slide.

microscopy. No significant concerns were

raised by the study pathologists with respect to

image quality, and all of them agreed that WSI

is a viable foundation on which to build a QA

program in a multisite health care facility.

In a recently published review, Graham et al.

(56) described a WSI-enabled QA program

at the University of Arizona. This system is

used to provide same-day QA reviews between

two hospitals located 6 miles apart in Tucson.

One of these sites is a high-volume center

staffed by several pathologists, whereas the

other has a considerably lower volume of work

and is staffed by a single part-time pathologist.

During daily QA conferences, all new cancer

cases and other difficult cases encountered at

the low-volume site are scanned and rereviewed

by staff pathologists and pathology residents

at the larger site. This study has nicely shown

that the vast majority (>95%) of QA work

between two or more centers can be performed

using WSI without having to transport glass

slides. On the basis of QA of 329 cases between

March 2006 and September 2008, there was

complete diagnostic agreement in 91.8% of

them. Minor discrepancies that would have

had no impact on patient care were noted in

3% of the cases, and major discrepancies that
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would have resulted in different treatment

were found in 1.5%. In 1.8% of the cases, the

QA diagnoses were deferred pending review of

the original glass slides.

Another study conducted at the University

of Arizona (51) described the performance of

a WSI-based same-day second-opinion service

for 154 newly diagnosed breast cancers in a

four-site institution. As with the earlier report

from Graham et al. (56), the vast majority

(>95%) of QA work could be accomplished

using digital slides. The breast cancer QA

program identified a small number (1.9%) of

minor discrepancies. Major discrepancies that

would have resulted in different treatment

were found in 2.3% of rereviewed cases, 1.9%

of cases were deferred for further immunohis-

tochemical staining, and 1.3% were deferred

pending review of the original glass slides.

CLINICAL EDUCATION AND
COMPETENCY ASSESSMENT
IN PATHOLOGY

Because of efforts to satisfy the demand for

high-quality pathology services, there is a grow-

ing need for systems that can efficiently assess

the diagnostic proficiency of pathology trainees

and staff pathologists (57, 58–60). WSI is a

logical platform on which to build such educa-

tion and proficiency-testing programs (61, 62).

Importantly, WSI platforms ensure that exactly

the same slides can be simultaneously reviewed

by all participants. WSI provides an effective

means of annotating images for instructional

purposes and creating digital slide archives

that can easily be coupled with the relevant

clinical and/or radiological information. These

approaches improve teaching efficiency and

increase pedagogic versatility (14). The experi-

ence at the University of Oklahoma Health Sci-

ences Center (63) shows that integrating WSI

into their online pathology education program

has enabled content such as annotated digital

slides and an online WSI atlas. van den Tweel

& Bosman (64) recently reported on the bene-

fits of incorporating virtual slides into a system

known as EUROPALS (European Pathology

Assessment and Learning System) to assess

the diagnostic skills and theoretical knowledge

of pathology trainees across Europe. Despite

technical challenges from both server and user

sides, the use of virtual slides provided greater

flexibility than did selected static images.

Several institutions, including the Uni-

versity of Iowa in the United States (14),

the University of Basel in Switzerland, and

the University of Saarland in Germany, have

successfully implemented digital technology in

their undergraduate medical curricula (65, 66).

Emerging data suggest that today’s medical

trainees prefer teaching modules based on WSI

systems to those based on light microscopy

and glass slides (65). To assess the effectiveness

of virtual microscopy for teaching purposes,

Collier et al. (67) interviewed 12 teaching

assistants from an undergraduate human

anatomy course. They found that the majority

of interviewees cited ease of use, universal

access to teaching material, and increased

student collaboration as advantages of the new

technology. Fonyad et al. (59) summarized

their 4-year experience of using digitalized

histology labs in graduate student education at

Semmelweis University in Hungary. Between

2007 and 2009, their digital histology lab served

928 students with a virtual slide set comprising

predominantly H&E slides scanned at 20×

magnification. These authors reported high

user satisfaction with the WSI approach. The

University of Pittsburgh has successfully im-

plemented a Web-based digital teaching model

for genitourinary pathology (60). Bruch et al.

(58) have similarly developed a WSI-based

tool for assessing the competency of pathology

residents at the University of Iowa. This

program allows them to follow an individual

resident’s progress throughout the course of

his or her training. These authors concluded

that their model can be applied across multiple

pathology residency programs. A survey con-

ducted at the University of Queensland School

of Dentistry in Australia (68) indicated that

undergraduate students were reluctant to use
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traditional light microscopes and were heavily

in favor of learning through virtual microscopy.

A majority of students (>88%) felt that the vir-

tual slide method increased their engagement

with course content. Finally, two Web-based

virtual microscopy applications in breast

pathology and Gleason grading of prostate

biopsies indicated that WSI systems provide

a robust platform for educational purposes

(69, 70).

CYTOMETRIC ANALYSIS OF
PATHOLOGY MATERIALS:
BACKGROUND

For decades, pathologists have been using

immunohistochemistry (IHC) as an adjunctive

tool to evaluate protein-expression patterns

in tissue. This process assists in diagnosis by

finding protein-expression patterns that cor-

relate with the type of tumor (e.g., carcinoma,

sarcoma, lymphoma, or melanoma) or, more

specifically, the site of a primary tumor when

an occult metastasis is identified. Although

few single proteins define a site of origin,

combinations of stains often allow pathologists

to predict the probable site of a tumor’s origin.

More recently, immunohistochemical stains

have been used to quantitate biomarkers to

assist in therapeutic drug selection. Perhaps

the best-known example of this application

is in breast cancer management. Expression

of hormone receptors for estrogen (ER) and

progesterone (PR) are semiquantitatively mea-

sured using IHC. The resulting Allrad score can

then be used to select hormone targeted ther-

apy in tumors that are ER positive. In addition,

overexpression of the epidermal growth factor

receptor (EGFR)-family protein HER-2/neu

is also measured semiquantitatively to evaluate

for protein overexpression (usually associated

with gene amplification) for a selection of pa-

tients who may respond to antibody therapy to

the Her-2 gene product, such as trastuzumab.

Although such visual, analog, pathologist-

driven scoring systems have been used for

decades to evaluate protein expression, recent

advances in WSI, multispectral imaging, and

immunofluorescence microscopy, combined

with automated image-analysis tools, have

begun to allow pathologists to consider new

paradigms for automated scoring of IHC

studies. Importantly, these new technologies

allow pathologists to consider adopting new

staining protocols, including multiplexed

antibody studies, which are very difficult, if

not impossible, to accurately quantitate using

historical analog-driven approaches. These

new digital methodologies also allow for the

broader adoption of immunofluorescence,

rather than IHC, as a primary diagnostic tool.

Immunofluorescence has many advantages

over IHC, including the ability to develop

high-order multiplexing. Immunofluorescence

is also linearly related to the amount of anti-

body bound to the tissue, which renders it more

suitable for reproducible quantitative studies.

A significant limitation of immunofluorescence

studies is the need for the end-user pathologist

to spend time in dark rooms at a fluorescence

microscope. New digital imaging platforms

obviate the need for the pathologist to drive a

fluorescence scope and allow imaging techni-

cians to perform the primary image capture and

automated analysis; the pathologist reviews and

integrates the information from these systems

with the morphology to create a comprehensive

disease report. If this paradigm sounds familiar,

it should. It is the exact paradigm used in the

practice of hematopathology, in which a techni-

cian performs multiplexed immunofluorescent

stains (four to six stains at a time) by using a

flow cytometer. (It is a rare hematopathologist

who has time to run the flow cytometer in

today’s busy clinical environment.) The tech-

nician returns the resulting flow scatter plots to

the hematopathologist for interpretation and

integration into the hemepath report. If data

need reanalysis, the hematopathologist directs

the technician how to perform the reanalysis.

This is the future of cytometric analysis of

tissue sections, which will be enabled with the

advent of the technologies discussed in the next

section, namely multispectral histocytometric
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image analysis and immunofluorescence

histocytometric image analysis.

MULTISPECTRAL IMAGING:
BACKGROUND

Spectral microscopic imaging refers to the cap-

ture of spectrally resolved information at each

pixel in an image—in essence, spatial spec-

trophotometry. The number of wavelengths of

the information captured distinguishes multi-

spectral (10–30 bands of data) from hyperspec-

tral (hundreds to thousands of bands of data)

imaging systems. Spectral microscopy, there-

fore, is a specialized form of digital microscopy

designed to capture spatially resolved spectral

information (using bright field, fluorescence,

or even a combination of the two). Although

it is feasible to capture a multispectral image

of a whole slide, this is not routinely done be-

cause only a few dozen fields of information

are required to create a statistically meaning-

ful sample of a tissue slide. The resulting spec-

tral information captured by a spectral imag-

ing system is a data cube that comprises x and

y coordinates of information from the charge-

coupled device (CCD) sensor; each z plane in

the data cube provides information about in-

tensity at each pixel as a function of wavelength

(z axis of the data cube). Figure 5 illustrates the

creation of a spectral data stack.

Whole-slide digital imaging systems cur-

rently on the market use red-green-blue

(RGB)-based imaging methods. Spectral

imaging systems offer advantages over RGB

systems, including the ability to analyze pathol-

ogy slides stained with multiple antibodies (in

either bright-field or fluorescence mode). Spec-

tral imaging systems also permit the use of fluo-

rescence imaging by overcoming autofluores-

cence, which is very commonly observed in

formalin-fixed paraffin-embedded tissue. Au-

tofluorescence removal is accomplished by

directly measuring autofluorescence spectrally

and then unmixing (by using a curve-fitting

algorithm to separate the spectral fluorescence

curve attributed to autofluorescence from the

spectral curve associated with a specific fluo-

rophore). Although both the autofluorescence

and the fluorophore may appear green, they

are spectrally different. Through the removal

of autofluorescence, spectral imaging allows

pathologists or researchers to use single or mul-

tiplexed fluorescence imaging methodologies

in routine surgical pathology. Finally, spectral

imaging enables computer analysis of routine

stains (H&E- or Papanicolaou-stained sam-

ples) in order to develop automated machine

classification systems to predict disease types or

outcomes (71–73). Like fluorescence imaging,

the application of multispectral imaging in

bright field–based IHC application allows for

the use of multiplexed immunohistochemical

stains that are in spatially overlapping cellular

compartments (74–77). The ability of whole

slide–based RGB imaging systems to resolve

more than three colors of information is, in

practice, impossible. RGB imaging systems are

not able to adequately deconvolve or separate

the chromogens for analysis. In contrast, spec-

tral imaging systems can resolve three of more

chromogens. Figure 6 shows a multispectral

data stack of breast carcinoma stained with

DAPI (4′,6-diamidino-2-phenylindole) and

EGFR, comparing (a) conventional fluores-

cence imaging with monochrome band passes

without autofluorescence removal with (b) the

same field of view imaged using a spectral sys-

tem with autofluorescence removal. Multiplex-

ing more than two antibody labels is not done in

routine pathology practice at present; however,

the ability to simultaneously label more than

two proteins in a single slide will allow for the

development of cellularly resolved information

about pathways (e.g., an antibody to phos-

phorylated ERK, a member of the mitogen-

activated protein kinase signaling pathway), cell

fate (e.g., a second antibody to Ki-67) and cell

types (e.g., a third antibody to cytokeratin to

find tumor cells in a field of view versus nontu-

mor stromal areas). Roysam and colleagues (78,

79) have developed a system for the analysis of

cytometrically resolved multiplexed IHC or im-

munofluorescence. This slide-based system is

344 Ghaznavi et al.

A
n
n
u
. 
R

ev
. 
P

at
h
o
l.

 M
ec

h
. 
D

is
. 
2
0
1
3
.8

:3
3
1
-3

5
9
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v

ie
w

s.
o
rg

b
y
 C

as
e 

W
es

te
rn

 R
es

er
v
e 

U
n
iv

er
si

ty
 o

n
 1

1
/1

2
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Spectral unmixing

Acquisition
Wavelength

Nuance™
multispectral
imaging system

RGB representation of
spectral cube

Spectra of labels

RGB representation of
spectral cube

Unmixing of overlapping �uorophores using pure component spectra

1.0

0.5

0.0
450 500 550 600

Wavelength (nm)

650 700

a c

b d

Figure 5

A multispectral imaging system and the resulting spatially aligned image stack are illustrated for a carcinoma stained with DAPI
(4′,6-diamidino-2-phenylindole) and three fluorescently labeled antibodies. In this case, a liquid-crystal tunable filter multispectral
imaging system from CRI, Inc. (NuanceTM) was used to capture the data from 420 to 720 nm. The spectral profiles of the four
fluorochromes are shown: (a) DAPI, (b) Alexa 488, (c) Alexa 594, and (d ) Alexa 660. With a known spectral library of the pure
fluorochromes, linear unmixing allows the individual fluorochromes to be separated from the complex mixture in the original starting
image, shown as a red-green-blue (RGB) image.

analogous to flow cytometry and is aptly named

quantitative histocytometry. Applications of

quantitative histocytometry are explored

further below. However, the implications of

quantitatively measuring cell-signaling path-

ways and linking them to cell fate (proliferation,

apoptosis, or autophagy) will be significant

as pathologists enter the era of personalized

diagnostics and the development of companion

diagnostics for pharmacologic agents that

target signaling pathways, of which there are

hundreds in various stages of clinical trials.

MULTISPECTRAL HARDWARE

Spectral imaging requires specialized imag-

ing hardware that is different from WSI

systems. A means of generating spectrally

encoded information is required. There are

multiple methods for creating the spectral

data, including liquid-crystal tunable filters

(LCTFs) and tunable light sources, acousto-

optical methods, diffraction gradients, and

fixed-filter methods (80). Three of these

systems are commercially available: the LCTF

(CRI, Inc.; see http://www.cri-inc.com),
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Spectra of labels

450 500 550 600

Wavelength (nm)

650
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Detecting EGFR in breast tissue

Monochrome bandpass image

Unmixed EGFR signal

Conventional

Multispectral

 Signal (counts)

Membrane 69.1

Nuclear 99.9

O� sample 6.9

 Signal (counts)
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Figure 6

A breast carcinoma case stained for DAPI (4′,6-diamidino-2-phenylindole), epidermal growth factor receptor (EGFR) (Alexa 594), and
estrogen receptor (Alexa 547) is (a) shown as a red-green-blue image and then analyzed (b) by conventional monochrome band-pass
filters without autofluorescence removal or (c) after autofluorescence is removed following multispectral image acquisition. The removal
of autofluorescence, followed by unmixing of the two antibodies, allows for precise measurement of the EGFR membrane signal.

the prism-based method (Lightform; see

http://www.lightforminc.com/), and the

fixed- or diffraction methods filter (Zeiss; see

http://zeiss-campus.magnet.fsu.edu/articles/

spectralimaging/index.html).

In general, spectral imaging systems allow

for the capture of spectrally resolved infor-

mation across the visible range and into the

near-IR bands (1-nm band passes between 420

nm and 900 nm). These systems allow transmis-

sion of saturated colors within narrow spectral

bands that can be electronically and randomly

changed (or tuned) to any wavelength. Spectral

imaging systems typically couple the spectral

imaging hardware (LCTF or a prism or

diffraction system) with coupling optics and

a cooled, scientific-grade monochrome CCD

into an integrated imaging platform. Software

coordinates the image-acquisition process.

These systems are capable of fluorescence-

based analysis or bright field–based projects

for chromogen-based assays. Image acquisition

is accomplished via a software interface that

can be automated. The resulting data cube (x

and y coordinate position on a CCD sensor;

the z axis represents intensity data at different

wavelengths) is then stored for further analysis.

SOFTWARE (ANALYSIS OF
SPECTRAL IMAGES)

Images acquired using a spectral imaging sys-

tem can be either further analyzed by unmixing
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(multianalyte assays or for object classification

systems) or used in classification projects in

which the spectral signature of different object

classes is used to discriminate cells or tissue on

the basis of routine sample preparation (H&E-

or Papanicolaou-stained materials). The use of

spectral images to classify disease processes has

shown promise in some disease states. El Diery

and colleagues (81) have used spectral spectral

imaging to distinguish benign from neoplastic

melanocytic lesions, with good success. In

cytopathology, Rimm and colleagues (71–73)

have used multispectral imaging to classify

bladder cytology samples for the identification

of high-grade dysplastic cells and thyroid cy-

tology samples for thyroid neoplasia, with very

good success. Classification of these different

disease states may occur according to simple

differences in the spectral signatures of the

different disease states, or it may require more

complex analysis of the spectral patterns inher-

ent within different disease classes (described

below in the section titled Image Analysis).

In addition to the application of multispec-

tral imaging for disease classification, a more

common use of spectral imaging is in the analy-

sis of tissue stained with one or more antibodies,

either in fluorescence or bright-field imaging

applications. Analyses of multianalyte problems

begin by unmixing or spectrally separating the

individual stains into their individual spectra.

Unmixing begins with pure spectra of the indi-

vidual stains, which are obtained by staining the

tissue with one antibody or counterstain alone

before applying them in combination. The in-

dividual spectra of each stain can then be di-

rectly measured and used to build a spectral li-

brary. Through the use of the individual pure

spectra, unmixing is based on a least-squares

curve fitting for linear unmixing (77). The re-

sulting unmixed spectra then show the intensity

contribution of each stain at every pixel in the

image, thereby allowing for additional image

analysis and classification schemas (described

in detail below). In addition to linear unmix-

ing, some applications are best performed using

alternative algorithms, including nonlinear un-

mixing approaches such as spectral waveform

cross-correlation analysis (81). These alter-

nate spectral unmixing algorithms are especially

valuable when linear unmixing approaches fail

[i.e., when stains do not obey Beer’s law (82)].

STAINING LIMITATIONS PLUS
AUTOFLUORESCENCE

The use of fluorescent dyes in formalin-fixed

paraffin-embedded tissues has not been widely

adopted in clinical practice. It is mostly seen

in research settings. A major limitation of

using fluorescent dyes has been the challenge

of autofluorescence. Different tissues from

different people have variable amounts of

autofluorescence. Autofluorescence may be

so intense that it overwhelms the signal from

antibodies labeled either directly or indirectly

to fluorochromes. Removal of autofluores-

cence can be accomplished by independently

measuring the autofluorescence of the tissue

and subtracting it from the combined signal of

autofluorescence plus specific fluorochrome(s).

Use of a least-squares fit algorithm to re-

move autofluorescence leads to between 100-

and 1,000-fold suppression of autofluores-

cence, allowing visualization of underlying

fluorescently labeled antibodies (Figure 6).

Other approaches use nonspectral imaging

approaches and provide similar amounts of au-

tofluorescence suppression (83). The additional

advantages of fluorescence compared with stan-

dard chromogenic IHC include a more linear

relationship between antibody binding and

fluorescence signal intensity, which makes

quantitation and calibration much more uni-

form and reproducible (84, 85). Fluorescence

also allows for the development of multiplexed

antibody studies in tissues. One can use multi-

ple antibodies with chromogenic IHC when the

dyes do not spatially overlap. However, when

two or more antibody stains overlap in the same

spatial compartment (i.e., there are two nuclear

signals), it can be challenging to separate the

individual signals when they are chromogenic.

Whereas two stains can be separated from

each other (using color deconvolution for

standard RGB-based systems, or using spectral
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unmixing), the addition of a third or fourth

antibody in the same spatial cellular compart-

ment causes these separation techniques to fail

because color deconvolution uses only three

data channels (RGB channels) to unmix mul-

tiple colors. Also, the aggregation of multiple

chromogens causes the role of chromogens to

change from light absorber to stronger light

scatterer, and at very strong stain intensities, the

scattering properties of the chromogens pre-

vent light from passing through the aggregated

chromogens.

HISTOCYTOMETRIC ANALYSIS
OF MULTISPECTRAL IMAGES

Antibody staining to reveal specific molecular

biomarkers is increasingly being used to

improve cancer diagnosis and classification,

establish prognosis, and determine therapy.

Although molecular biomarkers play an in-

creasingly large role in this process, the scoring

of stained specimens (immunohistochemically

or immunofluorescently) remains largely

visually subjective: Cells are scored as positive

or negative or are graded for degree of antigen

staining, the percentage of positive cells is

estimated, and overall scores are binned or

scaled using semiquantitative approaches.

This process requires considerable expertise

and is susceptible to interobserver variability,

despite standardization efforts (86–88). The

use of semiquantitative scoring (e.g., 0, 1+,

2+, 3+ staining) and H-scores acknowledges

the inherent imprecision and subjectivity

involved.

Computer-automated methods to quantify

antigen expression in tissue images have

been developed (89–92); these methods offer

objectivity, reproducibility, and quantifica-

tion on a continuous scale. Most operate by

measuring the number of pixels stained for

one or more antigens and by quantifying the

colocalization of stains. These methods can

quantify at the level of individual pixels, groups

of pixels, or image regions. Although such

pixel-based approaches offer improvements

in quantitation and reliability over manual

scoring methods, they are not performed

on a cytometric basis (i.e., individual cell

analysis). The HistoRx platform (see http://

www.historx.com/launch/index.html) is per-

haps the most advanced pixel-level automated

image-analysis system available today; multiple

studies have shown the advantage of automated

quantitation using this platform compared with

the manual scoring of pathology samples (84,

85, 89, 93, 94). Cells, rather than pixels, are the

fundamental units in which many biological

processes occur. Sufficiently reliable automated

methods to segment (delineate) individual cells,

identify subcellular compartments within cells,

and quantify biomarkers within the subcellular

regions have only recently been developed.

Roysam and colleagues (79) have developed an

open source–based cytometric analysis system

(Farsight; see http://farsight-toolkit.org)

for the analysis of cells in surgical pathology

samples. Using tissues stained with hema-

toxylin and DAB (diaminobenzidine) or DAPI

and fluorochromes, Farsight uses the nuclear

channel (either DAPI or hematoxylin) to

perform a nuclear segmentation process by

converting the image into a binary map,

then finding and refining the center of nuclei

to segment the nuclear contours. Following

nuclear segmentation, a cell-membrane marker

in another spectral channel is used to define

the cell membrane (e.g., E-cadherin is used

for breast carcinoma). The resulting nuclear

and membrane boundaries are then utilized

to define the cytoplasmic area by use of an

adaptive algorithm that switches between dif-

ferent cell-based models on a cell-by-cell basis.

The resulting cellular segmented maps with

associated subcellular localization can then be

used to associate additional staining informa-

tion from additional analyte channels from

the multispectral assay on a cell-by-cell basis

with subcellular localization to the nucleus,

cytoplasm or cell membrane. The resulting

output data set resembles a list-mode data file

from a flow cytometer in that each row of data

represents a cell and each column a marker of

interest within a subcellular compartment of

the individual cell (Figure 7).
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c
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c

b d

Figure 7

The inFormTM machine learning and classification system is used to score a breast carcinoma case stained for progesterone receptor.
(a) A pathologist shows inForm a few areas of tumor (red ) and a few areas of tumor stroma ( green). On the basis of these training
regions, (b) inForm learns the remaining areas with high accuracy and classifies the remainder of the image into tumor regions (red ) and
nontumor regions ( green). (c) The system finds the nuclei only within the tumor region. (d ) The system displays a list-mode data file for
the optical density of diaminobenzidine for each tumor cell nucleus it finds. If more than one stain was applied to the tissue, each stain
and its component intensity are associated with each cell and its subcellular localization.

In addition to open-source applications,

commercial vendors are entering the quan-

titative analytic space. Industrial applications

from Aperio, Definiens, and Perkin Elmer

(formerly CRI, Inc.) have been developing

cytometric image-analysis solutions. Although

the software from Aperio is designed to work

on whole slides, Aperio has extended its

analytic platform to fluorescent images as well

as spectral images that have been unmixed

into spectral component planes. The software

from Aperio, Definiens, and Perkin Elmer also

includes region segmentation algorithms that

are designed to classify regions on the basis of

a user-training paradigm. During training, an

experienced end user trains the segmentation

algorithm by showing the software a few exam-

ple regions of different disease classes (invasive

tumor, in situ tumor, stroma, etc.); the algo-

rithm then classifies the remaining image, as

well as additional images that might be needed

for analysis in a batch-mode study. The Aperio

platform uses a genetic algorithm (Genie R©)

licensed from Los Alamos National Labo-

ratory. Perkin Elmer has developed its own

learn-by-example algorithm, which uses a pro-

prietary advanced machine learning algorithm

(inFormTM) similar to Genie’s, and Definiens

has developed another proprietary train-by-

example paradigm. Figure 7 illustrates a

typical training session with inForm in which

a breast carcinoma was stained for ER and the

tumor counterstained with hematoxylin.

IMAGE ANALYSIS

Background

WSI has led to substantial growth in the

number of researchers and companies seeking
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to utilize computer-based image analysis for

pathology images and to develop new software

tools to assist pathologists. Prior to WSI, the

field of pathology image analysis was limited by

pathologists’ need to select fields of view upon

which computer image-analysis routines could

run. WSI allows the entire slide to be available

for analysis; field selection can then be auto-

mated, allowing the pathologist to act as final

interpreter and analyzer of the resulting data,

rather than as a field selection technologist.

In general, image analysis is a multistep pro-

cess that involves feature extraction, feature se-

lection, dimensionality reduction, and classifi-

cation steps. These steps are discussed in the

following sections.

Feature Extraction

Research on useful features for cancer classi-

fication and diagnosis has often been inspired

by grading features determined by clinicians

to be particularly important for the diagnosis.

The vast majority of these features are nuclear

features, and many have been established as

useful in the analysis of both cytopathology

and histopathology imagery. Other features

that assume discriminatory importance in-

clude the margin and boundary appearance

of ductal, stromal, tubular, and glandular

structures. Although a compilation of features

for cytopathology imagery exists (95), there is

relatively little such work for histopathology

imagery.

Human observers’ (pathologists’) concept

of the world is inherently object based, as op-

Figure 8

Automated segmentation of nuclei on a prostate histology image from a fully
digitized virtual slide. In this image, the nuclei are mathematically identified by
use of a combination of color, shape, and texture information. The resulting
mathematical model can accurately trace out the nuclei of each cell on the basis
of its digital information. Although a human can easily trace out the same
nuclei, once trained a computer can perform this task in seconds; a human
would take hours.

posed to the largely pixel-based representation

of computer vision. As such, pathology experts

describe and understand images in terms of

such objects. For pathologists, diagnostic crite-

ria are inevitably described by using cytologic

terms, such as nucleus and cell, and by the

relationship of larger objects to one another

and to benign adjacent tissue, arrangement of

glands, invasion of tissues, and desmoplastic

reactions. It is therefore important to develop

computer vision methods that are capable of

such object-level analysis. Figure 8 shows

an automated algorithm for nuclear identi-

fication, known as nuclear segmentation in

image-processing parlance.

In addition to cytologic features (cells, nu-

clei, cell membranes), spatial relationships are

used by pathologists to classify diseases. To cre-

ate a set of mathematical features that relate to

the spatial information that pathologists use, re-

searchers have utilized the mathematical tech-

nique of graph theory as an effective means of

representing structural and spatial information

by defining a large set of topological features.

Real-world graphs of various types and scales

have been extensively investigated in techno-

logical, social (96), and biological (97) systems.

Use of the mathematical principle of graph the-

ory has allowed for the development of addi-

tional features from digital pathology images

that can be used to model tissues and disease

states. These graph-based features are quanti-

fied by definition of computable metrics. The

use of graph-based spatial arrangement of his-

tological entities (generally at low resolutions)

is relatively new, especially in comparison to

the wealth of research on nuclear features (at

higher resolutions) that has accumulated dur-

ing the same time frame. Graph-based feature

extraction methods have allowed for the addi-

tion of approximately 150 new features for all

graph structures (98).

Graph-based metrics can be defined and

computed on a graph created by connecting the

nuclei of cells to each other (i.e., a cell graph)

to create a rich set of descriptive features that

can be used for tissue classification. These fea-

tures provide structural information about the
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tissue organization, such as the distribution of

local and global information around a single cell

cluster or the global connectivity information

of a graph. The end result of these feature ex-

traction algorithms is a set of features that can

be used for image classification. Figure 9 il-

lustrates graph-related features based on two

computational tools: the Delaunay triangula-

tion (Figure 9c) and the minimum spanning

tree (Figure 9d).

Interestingly, although pathologists do

not compute succinct graph-based features,

pathologists often observe information about

objects relative to one another, in effect using

observation graph networks to understand

the relationships among nuclei (for instance:

Are the nuclei overlapping? Are they uni-

formly spaced? Are they basally oriented?) or

the arrangement of glandular patterns (e.g.,

defining a normal lobule from an infiltrative

acinar pattern). Therefore, it is unsurprising

that the use of mathematically derived graph

networks yields informative data about spatial

information within digital pathology images.

Feature Selection

Although humans have innate abilities to

process and understand imagery, explaining

how they reach their decisions is more difficult;

pathologists often rely on a small set of features

that occur at a high frequency within an image

scene to classify disease states and patterns. As

such, image-analysis applications often begin

with large feature sets that are generated in the

hopes that some subset of features incorporates

the information used by the human expert for

analysis. Therefore, many of the generated fea-

tures could be redundant or irrelevant. Feature

selection is a way to extract the relevant and

important features from a large set of features.

Feature selection in histopathological image

analysis provides several benefits in addition

to improving accuracy. Because images tend

to be relatively large, one should calculate a

small subset of features, which reduces the

computational complexity of classification

algorithms. A smaller number of features also

a b

c d

a b

c d

Figure 9

(a) Hematoxylin and eosin–stained image of breast carcinoma. (b) Nuclei of
breast carcinoma cells identified by automated algorithm based on color
deconvolution. (c) Delaunay triangulation calculation applied to breast cancer
nuclei. (d ) Minimum spanning tree (MST) computed on the tumor nuclei
identified in panel b. To understand the general nature of the tissue
architecture, we construct graphs such as the Delaunay triangulation and the
MST. Statistics such as those related to triangle area, triangle perimeter, and
MST edge length are calculated to quantify the spatial arrangement of the
nuclei in the image.

makes it easier to explain the underlying model

and to improve the chances of generalization of

the developed system. Additionally, in a mul-

tiresolution framework (e.g., a whole digital

slide with varying levels of magnification), a set

of features that are useful at a given resolution

may not be relevant at another resolution, even

within the same image. A feature selection

algorithm helps determine which features

should be used at a given resolution. This

fact is intuitively obvious to the practicing

pathologist, who uses scale-based information

naturally and seamlessly. Who hasn’t opened

a slide tray and moved immediately to the

diagnostic slide by looking for the bluest slide?

At very low magnification (scale), color infor-

mation is very informative, whereas at higher
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magnification, other features of architecture

and nuclear morphology become important.

An optimal feature selection method re-

quires an exhaustive search, which is not prac-

tical for a large set of features generated from a

large data set. Therefore, several heuristic algo-

rithms that use classification accuracy as the op-

timality criterion have been developed and used

in various image-processing strategies. (14–16,

99–101).

Dimensionality Reduction

Whereas feature selection aims to choose those

features (and reduce the feature dimensionality)

that best optimize some criterion related to the

class labels (i.e., that separate different classes or

states of disease) of the data (e.g., classification

performance), dimensionality reduction tech-

niques aim to reduce the overall dimensionality

of the data set from thousands of features to

a smaller set of features on the basis of some

other criterion. A well-known and commonly

used method of linear dimensionality reduction

is principal components analysis (PCA).

PCA (103) attempts to find a new coordi-

nate system that shows the first three axes that

define the maximum variance of the data. The

first feature (eigenvector) is incorporated in the

first dimension, the next-largest eigenvector

holds the next-largest amount of variance in

the starting high-dimensional data set, and so

forth. By reducing the dimensionality of the

starting problems from a feature space with

thousands of features to three features, one

can more easily visualize the data and their

relationship to the outcome variable. In this

lower-dimensional feature space, classification

algorithms can be run to separate clinical or

biological conditions. Thus, when only the

first few dimensions of the PCA transform are

retained, the sources of the largest amount of

variation in the data are maintained.

Recently, nonlinear dimensionality reduc-

tion (NLDR) methods have become popular

in learning applications. These methods over-

come a major limitation of linear dimension-

ality reduction methods, such as PCA, which

assume that the geometrical structure of the

high-dimensional feature space is a linear or

straight-line relationship. PCA is a linear trans-

formation that transforms the data to a new

coordinate system such that the direction with

the greatest variance lies on the first coordinate

(termed the first principal component), the sec-

ond greatest variance on the second coordinate,

and so on. In reality, high-dimensional feature

spaces are often composed of highly nonlin-

ear structures, and locality-preserving dimen-

sionality reduction methods are highly sought.

Several manifold learning algorithms have been

constructed to deal with different types of data

(104–108). Graph embedding is one such al-

gorithm that aims to nonlinearly project high-

dimensional data into a reduced dimensional

space while preserving object adjacencies (109–

111). The high-dimensional feature space is sig-

nificantly reduced, in terms of the number of di-

mensions, to a lower-dimensional feature vec-

tor space. A key value of NLDR methods is that

they preserve object adjacencies. Thus, if two

objects (e.g., pathology images) are close to one

another in the original high-dimensional fea-

ture space, they will likewise be embedded close

to one another in the lower-dimensional sub-

space. This preservation of feature adjacency

suggests that the two objects are similar to one

another, perhaps in terms of biological or clin-

ical potential (survival, nuclear grade, etc.).

Classification

Following feature selection extraction, feature

selection, and dimensionality reduction, clas-

sification schema can be run on image data to

classify the features into clinical classes (such

as different histologic states, different tumor

grades, and different outcome measures).

Alternately, classification can be performed on

the large feature space, but doing so makes for a

computationally challenging problem. Unlike

some other applications of image analysis, in

histopathology imagery a primary considera-

tion in the choice of a classifier is its ability to

deal with large, highly dense data sets. Also,

due to multiple image scales at which relevant
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information may be extracted from histological

imagery, use of an ensemble (combination) of

classifiers as opposed to a single classifier has

been proposed. Following feature extraction,

selection, and dimensionality reduction, differ-

ent schemas for classification may be applied

to the histopathologic images.

Multiclassifier Ensemble Schemes

Both theoretical and empirical results have

established that, in terms of accuracy, en-

sembles of classifiers generally outperform

monolithic solutions. Learning ensembles or

multiple classifier systems are methods for

improving classification accuracy through

aggregation of several similar classifiers’

predictions and, thereby, reducing either the

bias or the variance of the individual classifiers

(112–114).

Support vector machines Support vector

machines (SVMs) project a set of training data,

E, that represents two different classes into a

high-dimensional space by means of a kernel

function, K. In this transformed data space,

nonlinear data are transformed so that a flat line

can be generated (a discriminating hyperplane)

to separate the classes so as to maximize the class

separation. Testing data are then projected

into the high-dimensional space via K, and the

test data are classified on the basis of where

they fall with respect to the hyperplane. The

kernel function K defines the method in which

data are projected into the high-dimensional

space. A commonly used kernel known as the

radial basis function has been employed to

distinguish among three different classes of

prostate tissue (115), as well as to differentiate

colon adenocarcinoma histopathology images

from benign histopathology images (116) and

to classify four different subtypes of menin-

giomas from their histopathology images

(117).

AdaBoost The AdaBoost algorithm for classi-

fication is used to combine a number of weak

classifiers (image features that do not individ-

ually sort images into different object classes)

to generate a strong classifier (a combined clas-

sifier made by linearly combining and weight-

ing weak classifiers). A study by Doyle et al.

(118) presented a hierarchical boosted cascade

scheme (a linear combination of features cre-

ated through the selected weighting of individ-

ual features to best classify an image) for de-

tecting suspicious areas on digitized prostate

histopathology. Efficient and accurate analysis

is performed by first detecting those areas found

to be suspicious only at lower scales (low mag-

nification). Analysis at subsequent, higher mag-

nifications is limited to those regions deemed to

be suspicious at lower scales. Pixels classified as

nontumor at a lower magnification (scale) are

discarded at the subsequent higher scale, which

reduces the number of pixels needed for analy-

sis at higher scales. The process is repeated us-

ing an increasingly large number of image fea-

tures and an increasing classification threshold

at each iteration.

Case Study: Prostate Carcinoma
Grading

Classification of histopathology images is often

the ultimate goal in image analysis, particularly

in cancer applications. Features derived from

segmented nuclei and glands from histopathol-

ogy are usually a prerequisite to extraction of

higher-level information regarding the state of

the disease. For instance, the grading of prostate

cancer by Jafari-Khouzani & Soltanian-Zadeh

(119) yielded 97% accuracy for H&E-stained

imagery on the basis of features derived from

nuclear structures in histopathology. Tabesh

et al. (120) found 96.7% accuracy in discrim-

inating between prostate tissue slides with can-

cer and without cancer, and they found 81%

accuracy in the discrimination between low and

high Gleason grades. Using nonlinear dimen-

sionality and SVMs, Madabhushi et al. (121)

demonstrated 95.8% classification accuracy be-

tween Gleason grade 3 and grade 4, 96% accu-

racy between Gleason grade 3 and benign, and

100% accuracy between Gleason grade 4 and

benign.
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Case Study: Predicting Breast
Carcinoma Outcomes

In contrast to prostate cancer grading, in which

a computer is trained to mimic the effort of a

pathologist (i.e., to identify and grade cancer by

using predefined human categories), Beck et al.

(122) used an unbiased image-analysis solution

that they developed, named C-Path, to identify

a feature set that predicted 5-year survival of

breast carcinoma patients. Tissue microarrays

(TMAs) of breast carcinoma were analyzed in

the Definiens Developer XDTM software plat-

form, and a feature set of some 6,000 image

features were defined and measured. This fea-

ture set included both epithelial and stromal

features. Using a machine learning algorithm

(L1 logistic regression), Beck et al. developed a

prediction model that accurately predicts good-

versus poor-prognosis patients and is indepen-

dent of molecular subtype, stage, ER status,

and pathology grade. This model was trained

on a TMA from the Netherlands Cancer In-

stitute and was validated on a separate breast

cancer TMA from Vancouver General Hospi-

tal. One of the unique features of this study

was the identification of stromal features that

are strongly prognostic, are not routinely ex-

amined, and are scored in routine pathologic

analysis of breast cancer samples. This study

underscores the power of automated and unbi-

ased image-analysis and machine learning sys-

tems and points toward an exciting opportunity

for future studies in this area.

CONCLUSIONS

From its genesis as an interesting idea in the late

1990s, digital pathology has become a useful

and valuable tool in clinical and research pathol-

ogy. This transition was initially fueled by the

development of digital slide scanners, fluores-

cent slide scanners, multispectral imaging hard-

ware, and computational horsepower. Today,

integrated systems with increasingly complex

and functional software tools are being devel-

oped and will become part of our diagnostic

toolbox as we move into personalized medicine.

Of the various barriers to widespread adoption

that were described above, comprehensive

validation of this technology for diagnostic

purposes across the complete spectrum of sur-

gical pathology represents the most important.

As this process unfolds, digital pathology will

undoubtedly open up new avenues for compu-

tational exploration of individual disease tissues

and will transform the practice of pathology.
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