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Abstract

Motivation: Cancer progression and development are initiated by aberrations in various molecular

networks through coordinated changes across multiple genes and pathways. It is important to

understand how these networks change under different stress conditions and/or patient-specific

groups to infer differential patterns of activation and inhibition. Existing methods are limited to cor-

relation networks that are independently estimated from separate group-specific data and without

due consideration of relationships that are conserved across multiple groups.

Method: We propose a pathway-based differential network analysis in genomics (DINGO) model

for estimating group-specific networks and making inference on the differential networks. DINGO

jointly estimates the group-specific conditional dependencies by decomposing them into global

and group-specific components. The delineation of these components allows for a more refined

picture of the major driver and passenger events in the elucidation of cancer progression and

development.

Results: Simulation studies demonstrate that DINGO provides more accurate group-specific condi-

tional dependencies than achieved by using separate estimation approaches. We apply DINGO to

key signaling pathways in glioblastoma to build differential networks for long-term survivors and

short-term survivors in The Cancer Genome Atlas. The hub genes found by mRNA expression,

DNA copy number, methylation and microRNA expression reveal several important roles in glio-

blastoma progression.

Availability and implementation: R Package at: odin.mdacc.tmc.edu/�vbaladan.

Contact: veera@mdanderson.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex biological processes, such as the development and progres-

sion of cancer, often involve the interaction of genomic and epigen-

etic factors with environmental factors (Cao et al., 2011; Schadt,

2009). Research has shown that genes can promote or inhibit tumor

development within coordinating modules such as functional or cell

signaling pathways (Boehm and Hahn, 2011). These genes and their

corresponding pathways form networks that regulate various cellu-

lar functions. Thus, the construction and exploration of the top-

ology of such networks and their constituents is of great interest for

developing and understanding the biological mechanisms behind

disease development and progression.

It is well-established that sub-networks within functional regula-

tory networks of genes and their products undergo changes in re-

sponse to different conditions, such as cellular DNA damage or

environmental stress. (Bandyopadhyay et al., 2010; Califano, 2011;

Luscombe et al., 2004). Analytic approaches for evaluating the regu-

lation of such networks have sought to determine how specific genes

and pathways operate in the promotion or inhibition of human dis-

ease (Goeman and Bühlmann, 2007; Khatri et al., 2012;
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Mitrea et al., 2013; Rhinn et al., 2013; Tarca et al., 2009; Tavazoie

et al., 1999; Taylor et al., 2009). For example, a hub gene within a

regulatory network is a gene that acts to influence the activity of a

large number of genes or transcription factors (Flintoft, 2004).

Thus, it is of interest to analyze the activity or expression of a hub

gene during different stages of disease. While differential gene ex-

pression analysis evaluates the changes in the expression of the hub

gene under different conditions or states, the incorporation of a net-

work structure extends the differential gene expression analysis to

differential network analysis (de la Fuente, 2010), which is one of

the primary aims of this article.

Figure 1 displays an example of the differential network analysis

of data from two groups (e.g. of patients) that represent two differ-

ent disease states. Each letter (vertex) represents a gene or any of its

products (e.g. expression, methylation, copy number or transcrip-

tion factor), and each line (edge) represents the co-expression in the

network. In the group-specific networks (left panels), the edge colors

and widths represent the signs and strengths of co-expression quan-

tities. A differential network between group 1 and group 2 (right

panel) is constructed by edge-wise subtraction of the co-expression

quantities in the group-specific networks. In the differential net-

work, the edge colors represent the signs of the differences and the

edge widths are proportional to the strengths of the differences. This

approach to network analysis allows us to discover some less obvi-

ous network relations that are not identified in the group-specific

networks. At the same time, it will allow us to discard the relations

that do not differentiate one disease state of interest from another

(e.g. group 1 from group 2 in Fig. 1) (Ideker and Krogan, 2012;

Mitra et al., 2013).

Most of the methods for differential network analysis rely on dif-

ferent correlation-based metrics to measure the strength of associ-

ation between pairs of vertices in a network. Broadly, there are three

main approaches for comparing group-specific networks in differen-

tial network analysis. The first approach obtains sparse group-

specific networks and compares the network topologies, such as de-

grees of vertices or modularities between groups (Reverter et al.,

2006; Zhang et al., 2009). The second approach handles weighted

group-specific networks and uses some functions of the edge-specific

weight differences as the edge weights to construct differential net-

works (Hudson et al., 2009; Liu et al., 2010; Rhinn et al., 2013;

Tesson et al., 2010). Instead of relying on edge-wise co-expression

differences, the last approach focuses more on finding gene sets

and identifying which correlation patterns differ between groups.

This approach formulates summary measures that represent

co-expressions within a set of genes and compares the quantities be-

tween groups (Rahmatallah et al., 2014; Watson, 2006).

Although the above approaches have been useful in addressing

important biological questions, the existing methods for analyzing

differential networks are limited to correlation networks (i.e. two

genes at a time). Also, the group-specific correlations are estimated

separately using observations within each group. In this article, we

obtain more refined, undirected relations than those based on correl-

ation networks by estimating conditional dependencies between two

genes after removing the effects of all other genes. This results in the

construction of an undirected graph of conditional dependencies

that is sparser than a correlation network (Markowetz and Spang,

2007). More importantly, the separate estimations are performed

without due consideration of the global relationships that are pre-

served for all groups, i.e. are invariant to group specifications. For

example, in our motivating example, we consider gene regulatory

networks constructed using different modalities of genomic data

(mRNA expression, DNA copy number, methylation status and

microRNA expression). We are interested in determining how the

network connectivity changes for patients with glioblastoma who

experience different survival times, long-term and short-term sur-

vival times. Our hypothesis is that some conditional dependencies

are shared across the groups and can be thought of as ‘passenger’

events and other conditional dependencies are unique to the groups

and thus can be ‘driver’ events that change with cancer progression.

The delineation of these components allows for a more refined pic-

ture of the major events (driver and/or passenger) in the elucidation

of cancer progression and development.

To this end, we propose a differential network analysis in gen-

omics (DINGO) framework, wherein we decompose the conditional

dependencies among the genes/variables into a global component

and a ‘local’ group-specific component and jointly estimate

the group-specific conditional dependencies after adjusting for the

global conditional dependencies. With the DINGO model, the di-

mension of the parameters is greatly reduced compared with that in

separate estimations. In addition, we provide techniques for con-

ducting rigorous statistical inference on the differential networks

based on bootstrap procedures for assessing the differences in the

group-specific conditional dependencies.

This article is organized as follows. In Section 2, we introduce

the DINGO model and the estimation approach for calculating the

group-specific networks and bootstrap thresholding to determine

the significant differential edges. In Section 3, we apply our method

to data obtained from The Cancer Genome Atlas (TCGA) glioblast-

oma study. We estimate differential networks for genes in glioblast-

oma cell signaling pathways, comparing data from long-term

survivors (LTSs) and short-term survivors (STSs) using data from

multiple platforms. In Section 4, we evaluate the DINGO method

and compare it with other estimation approaches via simulations

under different settings. We provide a summary and discussion in

Section 5. In the Supplementary Materials, we present the technical

details, additional results from the application of DINGO to TCGA

glioblastoma data and additional simulation results.

2 DINGO model

We develop an approach called differential network analysis in gen-

omics (DINGO) to infer differential patterns of network activation

between patient-specific groups. Suppose we observe gene-level ac-

tivity (such as mRNA, methylation or copy number) for p genes

(denoted by y) measured over a patient. Furthermore, we have

Fig. 1. Graphical representation of the group-specific and differential net-

works. The differential network is constructed by the edge-wise subtraction of

the strengths between the two group-specific networks
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group-level information regarding whether a given patient belongs

(generically) to group 1 or 2 (denoted by x¼0 or 1). Our aim is to

construct a p-dimensional group-specific network, NðxÞ, that repre-

sents the relationship among the p genes belonging to a pathway

and that has the following two components:

• A ’global’ component, G representing the relations that are com-

mon to both groups.
• A ‘local’ group-specific component, LðxÞ, that represents the dif-

ferential unique relations in each group depending on the value

of x.

This decomposition serves a bi-fold objective. First, it explicitly

allows for the delineation of specific network components that are

conserved as well as changed across the groups, which allows for

refined interpretations of differential networks. Second, as we show

hereafter, it admits a natural dimension reduction technique that

allows it to scale to moderate-to-large networks. Our model con-

struction as detailed in Section 2.1 is in a general setting that in-

cludes multiple covariates and multi-categorical covariates (more

than two groups) or continuous covariates. For ease of exposition,

our illustrative examples focus on the case where we observe two-

group membership data. In Section 2.2, the estimation methods are

described under this setting and a differential network between the

two groups is constructed by an inference procedure on the differ-

ences of the dependencies between the two groups. Supplementary

Table S8 lists the notations that describes the various types of struc-

ture and provides definitions of all the model constructs.

2.1 Model construction
We denote the p genes by a p-dimensional vector y 2 Rp. The condi-

tional dependencies among p genes constitute an undirected graph,

modeled via a Gaussian graphical model (GGM) for a set of vertices

V ¼ f1; . . . ; pg and a set of edges E 2 V � V, such that any edge be-

tween a 2 V and b 2 V belongs to E if and only if genes a and b are

conditionally dependent, given all other genes, V n fa; bg. We as-

sume that y � Npð0;NÞ where N ¼ ½N ab�p�p is a positive definite

precision matrix of y and N ab 6¼ 0 if and only if ða; bÞ 2 E

(Lauritzen, 1996). In this article, we call the precision matrix N a

GGM of the p genes. Suppose additionally we observe a q� 1 vector

of covariates x 2 Rq. Our goal is to provide a model and estimation

method for the conditional GGM of y given x; NðxÞ.

Global component, G
The global component represents the relations among p genes when

there are no covariate effects. For example, using the example of the

glioblastoma dataset, the global gene expression network describes

the co-expression patterns for patients with glioblastoma, regardless

of their survival times. To estimate the local group-specific compo-

nent, the global component is adjusted before the covariate is intro-

duced in the model.

We introduce a global network model,

y ¼ Gyþ e;

where a p�p coefficient matrix G ¼ ½Gab�p�p specifies global rela-

tions among variables in V, e is a p� 1 vector following Npð0;LÞ
where L is the ‘local’ GGM, the elements of which specify relations

among genes in V after taking out the effects of the global relations.

The local GGM can be expressed as a function of the GGM of y; N
and the global component, G; L ¼ ðI� GÞ�TNðI� GÞ�1.

Local group-specific component, LðxÞ
For the local group-specific component, we model the local GGM L
with the q� 1 covariate vector x. For a residual vector e 2 Rp, we

introduce the inverse of the local GGM (covariance of e), L�1 as a

function of x,

LðxÞ�1 ¼ CovðejxÞ

¼ QxxTQT þW;

where Q ¼ ½Qab�p�q is a p�q coefficient matrix, which is the main

construction of interest and W ¼ diagðw1; . . . ;wpÞ, with

w1 > 0; . . . ;wp > 0, is a p�p diagonal matrix whose elements,

w1; . . . ;wp, represent variances for pure noise in y. The covariance

function LðxÞ�1 is positive definite for all values of x. This model de-

composes LðxÞ�1 to a rank 1 p�p matrix that depends on covari-

ates x and variances of pure noise. By constraining W to be a

diagonal matrix, the elements in e are conditionally independent

given the values of covariates x. In essence, we represent the residual

vector e by a latent factor model with covariates x (Tipping and

Bishop, 1999). The covariance regression model (Hoff and Niu,

2012) decomposes the covariance matrixN�1
into two components:

a covariance explained by the covariates and the global covariance.

Because the model of Hoff and Niu (2012) is based on the covari-

ance matrix of y; N�1
, the non-zero off-diagonal elements of W rep-

resent the global relations, which are independent of x.

For a square matrix, trð�Þ is defined by the trace. The group-

specific precision matrix function, LðxÞ, with a q� 1 covariate vec-

tor x, is

LðxÞ ¼ W�1 � 1

1þ jðxÞW
�1QxxTQTW�1; (1)

where jðxÞ ¼ trðQxxTQTW�1Þ (Miller, 1981). This is the precision

regression model as opposed to the covariance regression model.

With a focus on precision matrix modeling in the DINGO model,

we decompose the residual precision matrix into a full rank diagonal

matrix that is independent of x and a rank 1 matrix that determines

the off-diagonal intensities of the precision matrices depending on x.

The precision regression modeling greatly reduces the number of

parameters to be used in estimating the group-specific networks.

When we observe two-group membership data, DINGO involves 2p

parameters for Q and p parameters for W, while a separate estima-

tion needs p� ðp� 1Þ parameters. When the number of groups in-

creases, DINGO needs p additional parameters, while a separate

estimation needs pðp� 1Þ=2 additional parameters. We exploit this

fact in our computations involving multiple molecular networks in

Section 3.

Concisely stated, the conditional GGM of y given x is obtained

by the convolution,

NðxÞ ¼ G � LðxÞ;

¼ ðI� GÞTLðxÞðI� GÞ;
(2)

where G is the global component and LðxÞ is the local group-specific

component related to x, which is specified by parameters Q and W
in the precision regression model (1).

2.2 Joint estimation
In this section, we provide an overview and illustration of our ap-

proach in the context of TCGA glioblastoma data described in detail

in Section 3. We consider how the gene networks in the cell signaling

pathways differ between LTSs and STSs. The conditional GGM of y

given x; NðxÞ provides group-specific GGMs for LTSs and STSs.
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Based on the group-specific GGMs, we build a differential network

between LTSs and STSs. In this section, the estimation method for

the group-specific GGMs and the differential network are described

under the two-group setting. A more detailed description of the tech-

nical aspects of our DINGO model and estimation, along with a

simplified example and R code, are provided in Supplementary

Sections S1 and S6, respectively.

Suppose that we have n patients. We denote the n�p data ma-

trix as Y ¼ ðy1; . . . ; ynÞ
T, where yi represents the ith row of Y and

includes expressions of p genes for the patient i. Each row is inde-

pendently and identically following a p-dimensional multivariate

normal distribution with a positive definite precision matrix (GGM)

N ; Npð0;NÞ for all i ¼ 1; . . . ;n. The n� 2 (q¼2) design matrix X

¼ ðx1; . . . ;xnÞT includes group information for LTSs and STSs with

an intercept term. We assume that xi ¼ ð1; 1ÞT for i in the LTSs and

xi ¼ ð1;�1ÞT for i in the STSs. Using gene-level data (Y) and the de-

sign matrix indicating LTSs and STSs (X), the detailed DINGO algo-

rithm and its workflow are displayed in Figure 2. As an output, the

DINGO algorithm provides pðp� 1Þ=2 differential scores for all

links among the p genes.

2.2.1 Step 1 (estimation of global component, G)
The global component G is obtained by the GGM N . The log likeli-

hood of N is proportional to lðN Þ ¼ logjN j � trðSNÞ where S ¼ YT

Y=n is the sample covariance matrix. When n�p; S is positive defin-

ite and S�1 is the maximum likelihood estimate (MLE) of N . Because

the MLE assumes no zero restriction on the elements of N, it is a satu-

rated model estimation (Lauritzen, 1996). This approach fails when

p>n and requires n to be much larger than p. Many methods for

determining the penalized MLE ofN have been proposed (Banerjee et

al., 2008; Fan et al., 2009; Friedman et al., 2008; Rothman et al.,

2008; Yuan and Lin, 2007). One of the most widely used methods is

the graphical Lasso (GLasso) method (Friedman et al., 2008), which

maximizes the following penalized log likelihood:

lðXÞ ¼ logjN j � trðSNÞ � g
X

a;b

jN abj; (3)

where g is a tuning parameter. As the tuning parameter g increases,

more zero values in N are induced. From the estimate of N , all

elements of G are estimated by using Gab ¼ �N ab=N aa for all

a 6¼ b 2 V and Gaa ¼ 0 for all a 2 V (Lauritzen, 1996). The sparse

estimation of GGM N provides a sparse estimate of the global com-

ponent G, in that there exist zero off-diagonal elements in G. We use

the Bayesian information criterion (BIC) to select the tuning param-

eter (Yuan and Lin, 2007).

2.2.2 Step 2 (estimation of local group-specific component, LðxÞ)
Suppose the global component G is known. For the n�p data ma-

trix Y, we transform the data matrix to E ¼ YðI� GTÞ, which is the

residual data matrix after taking out the effects of global relations in

G. We assume each column of E is standardized to have a mean of 0

and a standard deviation of 1. LðxÞ for x ¼ ð1; 1ÞT and x ¼ ð1;�1ÞT

in model (1) determine the dependencies in the LTSs and STSs, re-

spectively. The EM algorithm (Hoff and Niu, 2012) provides esti-

mates of Q and W. Applying the estimates of Q and W to the

precision regression model in Equation (1) provides the local group-

specific component LðxÞ. The explicit expressions of the elements of

LðxÞ are displayed in Supplementary Section S1.2.

2.2.3 Step 3 (differential scores for group-specific edges)

Through the above steps, we obtain estimates of the global component

G and the local group-specific components LðxÞ. The application of the

estimates of G and LðxÞ to the convolution operator in Equation (2)

provides the group-specific GGMs, NðxÞ when x ¼ ð1;1ÞT and

x ¼ ð1;�1ÞT for LTSs and STSs, respectively. We then construct a dif-

ferential network by thresholding a scaled difference in the conditional

dependencies between two groups for each edge (a pair of vertices).

The corresponding sets of pðp� 1Þ=2 partial correlations for the

LTSs and STSs are denoted by fq̂ð1Þab : a;b 2 V and a < bg and

fq̂ð2Þab : a; b 2 V and a < bg, respectively. For an edge between genes a

and b, we hypothesize that two conditional dependencies corresponding

to a pair of genes a and b are the same:

H0 : qð1Þab ¼ qð2Þab vs:HA : qð1Þab 6¼ qð2Þab . We construct a differential score as

Differential Score : dð12Þ
ab ¼ /̂

ð1Þ
ab � /̂

ð2Þ
ab

sB
ab

; (4)

where /̂
ð1Þ
ab and /̂

ð2Þ
ab are Fisher’s Z transformation of the estimates of

qð1Þab and qð2Þab , respectively, and sB
ab is the bootstrap estimate of the

standard error obtained from Supplementary Section S1.4. The dif-

ferential scores dð12Þ
ab for all a<b can then be used to determine the

edges in the differential network. The presence or absence of edges

in the differential networks is determined by the differential scores

in Equation (4): an edge (a, b) is present in a differential network

if jd12
ab j > k with k is a cutoff. The default k is 2 since it can be

treated as a Wald-type statistic using a bootstrap estimate of the

standard error. We classify the edges with jd12
ab j > k into two types,

Fig. 2. DINGO workflow (left panel) and the detailed algorithm for estimation and inference (right panel)
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conserved or differential edges according to signs in the dependen-

cies between the LTSs and STSs, as defined below.

• Conserved edges: an edge between genes a and b is defined as

conserved if the dependencies between genes a and b have the

same directions (i.e. positive or negative dependencies) for both

groups, implying similar behavior. We define ‘conserved’ signs if

(qð1Þab > 0 and qð2Þab > 0) or (qð1Þab < 0 and qð2Þab < 0).
• Differential edges: an edge is differential if the dependencies have

different directions (i.e. positive (negative) dependency in a

group and negative (positive) dependency in another group).

This is evaluated as (qð1Þab > 0 and qð2Þab < 0) or (qð1Þab > 0 and

qð2Þab < 0).

For edges in a differential network, we display three compo-

nents: (i) the differential strength, jd12
ab j (width); (ii) the sign of the

scores d12
ab (color) and (iii) directional change, whether it is differen-

tial or conserved (type).

3 TCGA glioblastoma application

3.1 Dataset
Glioblastoma multiforme (GBM) is the most common primary brain

tumor of adults. The median survival time of patients diagnosed

with GBM is approximately 1 year, which places GBM among the

most lethal of all cancers (McLendon et al., 2008; Mischel and

Cloughesy, 2003). TCGA glioblastoma study includes 233 patients,

along with their matched transcriptomic (mRNA), genomic (DNA

copy number), epigenomic (methylation) and microRNA data. In

this article, we take a pathway-based approach. We have focused

our attention on specific pathways associated with GBM biology to

investigate how the interactions between genes in a given pathway

are activated and inhibited in the two sub-groups of patients: LTSs

and STSs. This allows for more refined biological interpretations, es-

pecially for practitioners who tend to think in terms of pathway-

based disruptions involved with disease progression for potential

downstream clinical use. We present our analysis of genes that over-

lap with the three critical signaling pathways: RTK/PI3K, p53 and

Rb signaling pathways that are involved in cell migration, survival

and apoptosis (Furnari et al., 2007). The genes involved in those

pathways are obtained from http://cbio.mskcc.org/cancergenomics/

gbm/pathways and listed in Supplementary Section S2.2. In

Supplementary Section S2.3, we describe a more comprehensive

analysis involving multiple pathways from three established path-

way databases: KEGG, BIOCARTA and REACTOME. It is our hy-

pothesis that a better understanding of the interactions between the

molecular data for these core pathways will provide new insights

into the progression of GBM (Verhaak et al., 2010).

To define our patient groups, we partitioned the patients into

two groups on the basis of their survival times, taking the top 45%

(83 patients, surviving>407 days) as LTSs and the bottom 45% (73

patients, surviving<341 days) as STSs using an extreme discordant

phenotype design (Nebert, 2000). Detailed information on this par-

titioning is described in Supplementary Section S2.1. We analyzed

four different platforms to identify differential networks with re-

spect to the LTSs and STSs. We downloaded data from TCGA por-

tal for analysis, which included mRNA, DNA copy number,

methylation and microRNA data generated from the Affymetrix HT

Human Genome U133 Array Plate Set, Agilent Human Genome

CGH Microarray 244A, Illumina Infinium Human DNA

Methylation 27 and Agilent 8�15 K Human miRNA-specific

microarrays, respectively. For DNA copy number and methylation

data, we took the first principal components for several sites that

correspond to a gene in the GBM pathways. For microRNA data,

we took only human microRNAs. The number of vertices (p) con-

sisted of 49 genes for mRNA, 51 for copy number, 50 for methyla-

tion and 470 for microRNA. A more detailed description of the

datasets and pre-processing steps is provided in Supplementary

Section S2.2.

3.2 DINGO application
Applying our DINGO method, we obtain differential scores for all

pairs of genes. The resulting differential networks with jd12
ab j > 2

from mRNA expression, DNA copy number and methylation are

displayed in Figure 3. The differential network for microRNA ex-

pression is displayed in Supplementary Figure S15 for jd12j > 3:5.

The corresponding list of hub genes that have degrees greater than 4

in the differential networks is presented in Table 1.

3.2.1 Biological interpretations

The MYC oncogene, which contributes to cancer cell metabolism, en-

codes a transcription factor, c-Myc (Dang et al., 2009). The factor

c-Myc has a central role in regulating the proliferation and survival

of glioblastoma stem cells (Wang et al., 2008). For the indirect effects

of the c-Myc gene, our data did not explicitly include the c-Myc gene;

rather we found that most of the hub genes detected using our meth-

ods had c-Myc connections [Fig. 7F in Masui et al. (2013)]. PDPK1

had the highest degree in the network from DNA copy number data.

Velpula et al. (2013) established PDPK1 as a key driver and candi-

date therapeutic target in GBM. Moreover, their study indicated that

PDPK1 may promote EGFR activation, which results in malignant

progression in GBM: we found an edge between PDPK1 and EGFR

(Fig. 3b). EGFR activates PI3K and mTORC2 genes (Masui et al.,

2013; McLendon et al., 2008). PI3K genes (PIK3CD, PIK3CB,

PIK3C2A and PIK3CG) are present in all the differential networks

from mRNA expression, DNA copy number and methylation.

PIK3CA and PIK3C2A, which are PI3K genes, had strong differen-

tial relation in the methylation network (Fig. 3c). The PI3K pathway

is frequently dysregulated in GBM and a promising therapeutic target

for the disease (Wen et al., 2012). Both PI3K and mTORC2, which

are regulated by EGFR, independently inhibit FOXO activity, which

is associated with c-Myc levels (Masui et al., 2013). The network

from methylation data shows that the FOXO1A gene had the highest

degree (Fig. 3c and Table 1). The gene had connection to MLLT7

(FOXO) and PIK3CA (PI3K). The regulatory networks that include

mTORC2, FOXO and c-Myc are highly intercorrelated with shorter

survival of GBM patients (Masui et al., 2013). For assessing the dir-

ect effects of the c-Myc gene, the comprehensive analysis of pathways

in KEGG, BIOCARTA and REACTOME (Supplementary Section

S2.3) included the MYC gene, and the differential networks for

neighbors of the MYC gene are shown in Supplementary Figure S3.

Table 1 shows that hsa-miR-103 and hsa-miR-107 have the highest

degrees. CDK5 is overexpressed and plays an important role in glio-

blastoma (Liu et al., 2008). The hubs, hsa-miR-103 and hsa-miR-

107, regulate CDK5R1, which is a specific activator of CDK5

(Moncini et al., 2011).

3.2.2 Role of hub genes

We evaluated the effects of these hub genes on GBM progression. We

took the top hub genes and assessed their direct effects on the patient

survival times. We fitted univariate Cox-proportional hazards models

for survival times with the hub genes as covariates/predictors.

We found that FOXO3A (through DNA copy number changes),
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ERBB2 and MLLT7 (through methylation changes) and microRNA

hsa-miR-623 were significantly associated with survival times (p-

value<0.05). Additional comparisons of the estimated group-specific

and differential networks with other methods in the literature are

described in Supplementary Section S4.

4 Simulation studies

To evaluate the accuracy and operating characteristics of the

DINGO model, we conducted several simulation studies. In Case I

of our simulation study, we generated the data by setting the param-

eters in the DINGO model (such as G; Q and W). In Case II

(Supplementary Section S3.2), the group-specific data are generated

from two separate GGMs. In this section, we display the results of

Case I. We compared the performance of our method with those of

a variety of separate estimation methods. As a basic method for esti-

mating the precision matrix, we chose maximum likelihood estima-

tion (MLE), which offers desirable statistical properties. However, it

is invalid when the sample size is less than the number of variables.

For high-dimensional settings (n<p), we use GLasso because the L1

penalized MLE performs well in detecting hub genes regardless of

the dimension of the data (Allen et al., 2012). We assumed a sample

size of 150 (n), with 75 samples in each of the two groups. In each

of the datasets corresponding to the groups, we applied MLE and

GLasso and compared their performance with the estimation from

DINGO. For the fixed sample size, we considered two simulation

settings, n>p and n<p.

Simulation setting, n>p
We simulate datasets that reflect the mRNA expression data studied

in the application data example in Section 3, which includes 49 genes

in the pathways (p¼49). The global component, G ¼ fGabg49�49, is

determined by the GBM pathways used in Section 3. We consider

the four different simulation settings described in Supplementary

Section S3.1 according to the effect sizes Q and noise level specified

by the diagonal elements of W.

Simulation setting, n<p
With p ¼ 100 and 500, we determine the structure of G by generat-

ing a scale-free network using the Barabasi–Albert algorithm

(Barabási and Albert, 1999). The scale-free networks are likely to be

organized into hub genes with many edges. A hub gene within a

regulatory network is a gene that acts to influence the activity of a

large number of genes or transcription factors (Flintoft, 2004). We

specified Q and W as the high effect, high noise setting (A4) in

Supplementary Section S3.1.

For each replication, we generate the true group-specific condi-

tional dependencies and the data, and we base the results on 100

replications. We examine the sum of squared error (SSE), the re-

ceiver operating characteristic (ROC) curves and the precision recall

(PR) curves, which are defined in Supplementary Section S3.1.

Figure 4 displays the boxplots of log(SSE), ROC curves and PR

curves for the MLE, GLasso and DINGO methods under the setting,

n>p and (A4). We combined the log(SSE) from both groups in a

boxplot for each method and the ROC and PR curves are averaged

over 100 replications and groups. Our method provides more accur-

ate estimates of the conditional dependencies than the MLE and

Fig. 3. Differential networks between LTSs and STSs of glioblastoma estimated from three platforms: (a) mRNA expression; (b) DNA copy number and (c) methy-

lation. The vertices are ordered by degrees (number of connections). The blue (red) edges indicate a positive (negative) score. The solid (dashed) lines represent

conserved (differential) signs in the dependencies between the LTSs and STSs. The thickness of the edges corresponds to the strength of the associations, with

stronger scores having greater thickness

Table 1. List (degree of connectivity) of hubs detected by differential networks

Networks Hubs (degree of connectivity)

mRNA expression PIK3CD (12), GAB1 (8), PIK3CB (7), IGF1R (6), NF1 (5)

DNA copy number PDPK1 (13), ERRFI1 (8), HRAS (8), PIK3C2A (7), CDK6 (6), GRB2 (6), PIK3CG (6), BRAF (5), FGFR1 (5),

FOXO3A (5)

methylation FOXO1A (10), ERBB2 (10), ARAF (9), MLLT7 (9), PIK3C2A (9), SRC (8), TP53 (8), HRAS (6), MET (6),

PDPK1 (6), FGFR1 (5)

microRNA expression hsa-miR-103 (30), hsa-miR-107 (22), hsa-miR-608 (19), hsa-miR-623 (9), hsa-miR-526c (7), hsa-miR-188 (6),

hsa-miR-30e-3p (5), hsa-miR-575 (5), hsa-miR-622 (5), hsa-miR-648 (5), hsa-miR-652 (5)

3418 M.J.Ha et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/21/3413/195238 by guest on 21 August 2022

),
 < 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv406/-/DC1
S
,
).
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv406/-/DC1
 < 
maximum likelihood estimation
 > 
 < 
<italic> > </italic>
: 
 &equals; 
4
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv406/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv406/-/DC1
. 
 < 
: 
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv406/-/DC1
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv406/-/DC1
(
 > 
(


GLasso methods (Fig. 4a). The ROC curve and the PR curve for our

method uniformly dominate those for the MLE and GLasso meth-

ods (Fig. 4b and c). Supplementary Figures S11–S14 separately dis-

play the results for n>p settings from both groups. When the effect

size is high and the noise level is low, we observe that the GLasso

method performs better than the DINGO method for the group 2

network because the simulation data for the two groups are well

separated (Supplementary Fig. S13). We compare GLasso and

DINGO for the setting when p>n. Figure 5a and b displays box-

plots of log(SSE) from 100 replications for p ¼ 100 and 500. For

p¼100, GLasso uses 75 samples for the separate estimation, while

DINGO uses all 150 observations for our joint estimation. Thus, the

performances of GLasso and DINGO differed most for p¼100.

When p ¼ 500, DINGO provided more accurate estimates than

GLasso. Overall, DINGO performed better than MLE and GLasso

when the noise level was high compared to the effect size, and

DINGO consistently performed better than GLasso as p increased.

5 Discussion

We propose a joint modeling approach, DINGO, for estimating dif-

ferential networks in various genomic data in the presence of group

information. DINGO estimates separate conditional dependencies

for each group and allows for global dependencies; thus, it borrows

strength more efficiently between groups. We applied our DINGO

method to TCGA glioblastoma data from four platforms, mRNA

expression, DNA copy number, methylation and microRNA expres-

sion and we found hub genes based on the differential networks,

many of which were in the regulatory network related to the c-Myc

gene that contributes to the regulation of GBM proliferation and

shorter survival times in GBM patients.

While pathways used in our analysis (Section 3) have been impli-

cated in GBM in prior studies, the exact nature of the pathway com-

ponents has not been studied with respect to differential patterns of

activation/inactivation related to the patient prognostic groups. Our

re-analysis focuses on the exact pathway breakages using data from

multiple platforms, which sheds a completely different light on the

various biological processes involved in GBM progression. The es-

tablished pathways include up to 600 genes (Supplementary Fig.

S17). For 50 and 600 genes, Steps 1 and 2 of DINGO take around

20 s and 57 min, respectively, which makes it feasible to conduct

pathway-based differential network analysis. A more detailed dis-

cussion of the computation time is provided in Supplementary

Section S7.

Although our DINGO method was applied to a two-group set-

ting, the model can be generalized to incorporate multiple categories

(such as multiple stages of disease and multiple subtypes) as well as

continuous covariates (such as age and time). For three groups with

an intercept term, we can apply x ¼ ð1;�1;�1ÞT; x ¼ ð1; 1;0ÞT and

x ¼ ð1; 0; 1ÞT for group 1, group 2 and group 3, respectively, in the

Equation (1). We can also add age as a continuous covariate by

defining the covariate vectors x ¼ ð1; 1; ageiÞT for i in LTSs and

x ¼ ð1;�1; ageiÞT for i in STSs. This would require additional gener-

alizations of our estimation and computational algorithms; tasks

that we leave for future consideration.

6 Software

The R package and the manual for DINGO are available at http://odi-

n.mdacc.tmc.edu/�vbaladan/Veera_Home_Page/Software.html.
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