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Abstract

DIRAC (Distributed Infrastructure with Remote Agent Control) has been developed by the CERN
LHCb physics experiment to facilitate large scale simulation and user analysis tasks spread across
both grid and non-grid computing resources. It consists of a small set of distributed stateless
Core Services, which are centrally managed, and Agents which are managed by each computing
site. DIRAC utilizes concepts from existing distributed computing models to provide a light-
weight, robust, and flexible system. This paper will discuss the architecture, performance, and
implementation of the DIRAC system which has recently been used for an intensive physics sim-
ulation involving more than forty sites, 90 TB of data, and in excess of one thousand 1 GHz
processor-years.
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1.1 Introduction

The LHCb experiment is one of four particle physics experiments currently in development at
CERN, the European Particle Physics Laboratory. Once operational, the LHCb detector will
produce data at a rate of 4 Gb/s [24], representing observations of collisions of sub-atomic particles.
This massive quantity of data then needs to be distributed around the world for the 500 physicists
at 100 sites to be able to carry out analysis. Even before this analysis of real physics data can begin
a large number of parameter sweep [5] simulations are required to verify aspects of the detector
design, algorithms, and theory.

While the four Large Hadron Collider (LHC) experiments have coordinated with CERN to produce
the LHC Computing Grid (LCG) [6], there is still a requirement within LHCb to manage and track
computing tasks, provide a set of common services specific to LHCb, and to be able to make use
of hardware and software resources not incorporated into LCG.

This system needed to be quickly and easily deployed across fourty or more sites, with little effort
from local site administrators, either for installation or maintenance. Figure 1.1 illustrates the
computing sites currently contributing to LHCb. Similarly, users needed to be able to access the
system from anywhere, with a minimal set of tools. The need to support intense computational
load also required the system to be responsive and scalable, supporting over 10,000 simultaneous
executing jobs, and 100,000 queued jobs.

This paper discusses the DIRAC architecture (Distributed Infrastructure with Remote Agent
Control) which has been developed to meet these requirements and provide a generic, robust
grid computing environment. DIRAC incorporates aspects of grid, global, and cluster computing
paradigms. It is organized into a Service Oriented Architecture (SOA), with several lightweight
independent services, following the decomposition found in the CERN ARDA project [22]. As a
meta-cluster management system, DIRAC abstracts interfaces to a wide range of heterogeneous
computing and storage resources and provides simple APIs and tools for users and developers. For
scalability, simplicity, and efficiency a pull scheduling model has been implemented which favors
high throughput, versus high performance, job handling [23].

The paper is organized as follows: section 2 presents the background which led to the devel-
opment of the latest version of DIRAC, while section 3 discusses the DIRAC architecture and
main components in detail. Section 4 presents the implementation choices and highlights features
important for robustness including the use of instant messaging technology. Section 5 discusses
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Figure 1.1: Sites running DIRAC

working experience. Section 6 outlines plans for future development, and section 7 finishes with
conclusions.
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Chapter 2

2.1 Background

Many modern cluster configurations, and all global computing models, focus on high throughput,
which attempts to maximize the number of jobs completed, on a daily, or longer, basis. This is
typical of situations where the supply of computational jobs greatly exceeds the available com-
puting resources, and the jobs are generally not time critical. This strongly favors a pull model,
where computing resources request jobs from a large job pool. In contrast, a push model attempts
to centrally optimize the allocation of jobs to resources, and can be overwhelmed by the scale of
this problem. A pull model only needs to find one job to match one resource, and only when a
resource makes a job request.

In 2002 the first version of DIRAC [29] was developed to enable distributed physics simulation,
using such a high throughput pull based Agent/Service model which could handle the extremely
large number of jobs which would be generated. The success of this system validated the broad
design principles of active, lightweight Agents which pulled jobs from stateless Services, however the
system was only useful for a very limited class of uniform, centrally generated, simulations. The
latest version of DIRAC sought to expand on these principles and incorporate the best features of
several different computational paradigms. We categorize large scale computational systems into
four groups:

Super Computer Specialist machines primarily designed for massive parallel processing with
low latency, high bandwidth connections between a large number of co-located processors.
Typically used for long runs of a single algorithm by a single user. Examples include the
Earth Simulator (NEC), ASCI Q (HP), ASCI White (IBM), and Cray X1.

Cluster Centrally administered high performance commodity hardware, software, and network-
ing designed to provide the most economic computing power for a large number of users at
a single site. Resource allocation to users and computation tasks handled through batch
queuing software such as PBS [16], Condor [7] or LSF [17].

Grid Federated computing resources which use common interfaces typically to link together
computing clusters. The aim is to allow Virtual Organizations (VOs) [14] of users who
span institutional boundaries to share computing resources. Examples include the Globus
Toolkit [15] used in NorduGrid [11], LCG [6], and EDG [4].

Global Computing Ad hoc networks of individual computers, typically desktop machines, which
act as slaves for a central job server which usually supports a single parameter sweep applica-
tion. These operate in a cycle-scavenging mode, using idle CPU power, and pull jobs from the
server. Some examples of this include SETI@Home [26], BOINC [3], and distributed.net [9].

Of these, the Super Computer category is not applicable to LHCb. In a similar manner to grid
computing, DIRAC aims to join disparate computing clusters, however without the overhead of
significant grid infrastructure being required at each site. By utilizing aspects used in global
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computing systems, and designing Agents to run at the user-level, it was possible to streamline
the deployment process. DIRAC aims to achieve the same objectives as existing grid and cluster
computational systems, which is to present users and developers with a simple, uniform, interface
to distributed, heterogeneous computing resources.
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Chapter 3

3.1 Architecture

DIRAC can be decomposed into four sections: Services, Agents, Resources, and User Interface,
as illustrated in figure 3.1. The core of the system is a set of independent, stateless, distributed
services. The services are meant to be administered centrally and deployed on a set of high avail-
ability machines. Resources refer to the distributed storage and computing resources available at
remote sites, beyond the control of central administration. Access to these resources is abstracted
via a common interface. Each computing resource is managed autonomously by an Agent, which
is configured with details of the site and site usage policy by a local administrator. The Agent
runs on the remote site, and manages the resources there, job monitoring, and job submission.
The User Interface allows access to the Central Services, for control, retrieval, and monitoring of
jobs and files.

Job Monitor Job Submission File Catalog
User Interface

Job Management
Service

Services

Resources

Job Monitoring
Service

Job Accounting
Service

Configuration
Service

Service
File catalog

Agent

Storage Grid system

Element
ComputingStorage Storage

Element Element

Agent

Element
Computing

Sites

browser

Agent Agent

Figure 3.1: Architecture overview

Jobs are created by users who interact with the system via the Client components. All jobs are
specified using the ClassAd language, as are resource descriptions. These are passed from the
Client to the Job Management Services (JMS), allocated to the Agents on-demand, submitted to
Computing Elements (CE), executed on a Worker Node (WN), returned back to the JMS and
finally retrieved by the user.

An idea borrowed from global computing systems is the cycle-stealing paradigm, where jobs are
only run when resources are not in use by the local users. This is similar to common batch system
backfill algorithms [27], except that it operates only when there are completely free slots, rather
than fitting in short jobs ahead of future job reservations.

DIRAC has started to explore potentials for distributed computing from instant messaging sys-
tems. High public demand for such systems has led to highly optimized packages which utilize
well defined standards, and are proven to support thousands to tens-of-thousands of simultaneous
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users. While these have primarily been utilized for person-to-person communication, it is clear
that machine-to-machine and person-to-machine applications are possible.

The following sub-sections discuss in greater detail the key aspects of DIRAC.

3.1.1 Job Management Services

The JMS consists of the following services, as illustrated in figure 3.2:

Job Receiver Accepts job submissions from clients, registers them to the Job Database and
notifies the Optimizer Service

Job Database Contains all the information about the job parameters and dynamic job state

Optimizers Sorts jobs into global job queues and continuously reshuffles them depending on
queue states, job load, and resources availability

Matchmaker Allocates jobs to resources by selecting from the global job queues and using
Condor Matchmaking

Job Receiver

Submission

Service

Job
Database

Optimiser Queue
Queue

Queue

Optimiser

Service
Matchmaker

Notification

Agent Agent Agent

Computing Resources

Job

Figure 3.2: Job Management Services

Most of the work in the JMS is performed by the Optimizers. They prioritize jobs in queues
using a range of techniques, and utilizing information from job parameters, resource status, file
locations, and system state. As a result of this, jobs can be assigned to a particular computing
resource which meets the job requirements, such as replicas of input data files.

Optimizers are designed to be customizable, and simply need to implement a standard interface
for interacting with the queues they manage. Multiple Optimizers can exist in the system at the
same time, and can be dynamically inserted, removed, started, and stopped at run-time. This
allows new algorithms or heuristics for job prioritization to be rapidly inserted into the system.

There are three phases in a typical push grid scheduling system:

1. Scheduler collects resource status for entire grid

2. Scheduler selects job allocation to resources

3. Scheduler submits jobs to resources

For phase one, all the information concerning the system needs to be made available at one place
at one time. In a large, federated grid environment, this is often impractical, and information will
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often be unavailable, incorrect, or out of date. In the second phase, the choice of the best pairs
of jobs and resources is an NP-complete problem and the size of this problem increases with the
number of jobs and resources. This approach is often centralized, as in EDG [4], and does not
scale well.

In contrast, the DIRAC pull strategy has the following phases:

1. Agent detects free computing resources

2. Agent requests job from Matchmaker

3. Matchmaker checks queues for appropriate match

4. Matchmaker returns best matching job to Agent

The previously difficult task of determining where free computing resources exist is now distrib-
uted to the local Agents (see section 3.1.2) which have an up to date view of the local system
state. In phase 3, Condor Matchmaking is used. [23] The Matchmaker only compares one-on-one
requirements, with a round-robin on each of the job queues until it finds a job which can run on
that resource. This is an O(n) operation, with the worst case being all n jobs queued in the system
are checked once against the resource characteristics defined in the job request.

Typically it is found that job requirements do not vary significantly within a system, therefore it
is likely that a match will be made early on (that is, in less than n comparisons), even if jobs are
randomly distributed among the queues. Both long matching time and the risk of job starvation
can be avoided through the use of an appropriate Optimizer to move “best fit”, “starving”, or
“high-priority” jobs to the front of the appropriate queue. This frees the match operation from
necessarily considering all the jobs within the system. As reported elsewhere [12], this allows a
mixture of standard and custom scheduling algorithms.

3.1.2 Agent

The Agent is deployed on a computing resource and interacts directly with it. This Agent is
completely under the control of the local site administrators and can be run and configured to
operate in a variety of different ways, dependent upon site policy and capabilities. The Agent is
easily deployable on a site and only needs outbound Internet connectivity in order to contact the
DIRAC Services.

The Agent design includes a module container and a set of pluggable modules. The modules are
executed in sequence. Typically a site runs several agents each having its own set of modules,
for example job management modules or data management modules. This feature makes the
DIRAC Agent very flexible, since new functionality can be added easily, and sites can choose
which modules they wish to have running.

The most important of these Agent modules is the Job Request module, which monitors the state
of the local computing resource and fetches jobs from the Matchmaker Service when it detects free
slots. Upon job submission to the local batch system, it stores job parameters in a local database.
This allows it to verify the status of the job and spot job failures. This information can also be
checked by a lightweight service interface in the agent, provided by instant messaging technology
(see section 4.1.4). This interface also allows users to interact directly with the agent.

3.1.3 Computing Element

The Computing Element is the abstracted view of a computing resource, providing a standard
API for job execution and monitoring. Using this, an Agent can easily deal with heterogeneous
computing resources. A Computing Element is modeled as a Head Node which manages a cluster
of Worker Nodes. Such a system is assumed to have its own local scheduler and local queues.
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At present, DIRAC provides CE interfaces to LSF, PBS, NQS, BQS, Sun Grid Engine, Condor,
Globus, LCG, and stand-alone systems. Each implementation deals with translating the DIRAC
job requirements to locally understood settings.

3.1.4 Data Management System

There is a great deal of complexity in the DIRAC Data Management System which allows fault
tolerant transfers, replication, registration, and meta-data access of data between computing sites
and long term storage sites. The description here provides a brief outline of the three main
components of this system.

Storage Element (SE) This is defined entirely by a host, a protocol, and a path. This definition
is stored in the Configuration Service (see section 3.1.5), and can be used by any Agent or Job,
either for retrieving files or uploading generated files/results. Protocols currently supported
by the SE include: gridftp, bbftp, sftp, ftp, http, rfio or local disk access. The SE access
API is similar to the Replica Manager interface of the EDG project. [20]

File Catalogs DIRAC defines a simple interface for locating physical files from aliases and
universal file identifiers. This has made it possible to utilize two independent File Catalogs,
one from the already existing LHCb File Database, and another using the AliEn File Catalog
from the Alice project [1]. Catalogs can be used interchangeably. In the recent LHCb Data
Challenge they were both filled with replica information in order to provide redundancy to
this vital component of the data management system.

Reliable Data Transfer Service Within a running job, all outgoing data transfers are regis-
tered as Transfer Requests in a transfer database local to each Agent. The requests contain
all the necessary instructions to move a set of files in between the local storage and any of
the SEs defined in the DIRAC system. Different replication, retry, and fail-over mechanisms
exist to maximize the possibility of successfully transferring the data.

3.1.5 Configuration Service

It is a common challenge of distributed systems and Service Oriented Architectures to share
information across the system. There is a network of Services, each of which need to configure
themselves, and find out configuration information about the other Services. Users then need
to know how to access those Services and work with them. When considering a Configuration
and Information Service for DIRAC, it was felt that the existing mechanisms, such as UDDI [18],
MDS [13], and R-GMA [8,28], were powerful, yet complex, and required significant infrastructure
to utilize.

In keeping with the principles of simplicity and lightweight implementation, a network-enabled
categorized name/value pair system was implemented. Components which use the Configuration
Service do so via a Local Configuration Service (LCS). This can get all information from a local
file, from a remote service, or via a combination of the two.

It is possible to cache remote information and have alternate remote services, in the event one
Configuration Service is not available. The semantics dictate that local values are always taken
in preference to remote values. If a value is not found locally, the LCS will round-robin through
the alternate Configuration Service sources.
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Chapter 4

4.1 Implementation Details

The current implementation has been written largely in Python, due to the rich set of library
modules available, its object oriented nature, and the ability to rapidly prototype design ideas.
All Client/Service and Agent/Service communication is done via XML-RPC calls, which are light-
weight and fast. Furthermore, instantiating and exposing the API of a Service as a multi-threaded
XML-RPC server in Python is extremely straight forward and robust. For all Service and Job
state persistence, a MySQL database is used.

By keeping the implementation in Python, Clients and Agents only require a Python interpreter for
installation. These components which are distributed to the users and computing centers are also
very small — less than one megabyte compressed — which further facilitates a rapid installation
or update of the software. Software required for jobs is installed in a paratrooper approach, which
is to say that each job installs all software it requires, if it is not already available. This software
is cached and made available for future jobs run by the same Agent.

The following expands on key implementation decisions which have contributed to the successful
operation of DIRAC, such as failure tolerance, a robust and simple configuration service, and the
use of instant messaging.

4.1.1 Configuration Service Redundancy

The Configuration Service is the backbone for coordinated access to information regarding the
various DIRAC Services. Every component within DIRAC utilizes a Local Configuration Ser-
vice. The duality of the file based information and the XML-RPC remote API allows an LCS to
transparently use one or the other to acquire necessary information. Three strategies have been
implemented to make this system robust:

Duplication The central Configuration Service duplicates its information to a secondary server
which hosts a backup service.

Fail-Over The Local Configuration Service will fail-over once to the backup service if it fails
to contact the primary service, and fail-over a second time to a file containing a saved (but
possibly out of date) copy of the Configuration Service data. This second fail-over is essential
in the case of network outages so the job may, for a time, proceed without contacting any
remote services.

Caching Value pairs and sections are cached locally on the first request, speeding up subsequent
operations, and reducing the load on the Configuration Service.

While both the caching and file-based fail-over have the risk of utilizing incorrect, out of date
information, this was considered preferable to outright job failure due to inability to access the
service.
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4.1.2 Service and Agent Watchdogs

All Services and Agents are run under the runit daemon watchdog [25]. This provides numerous
advantages over cron jobs or sysv style init scripts. It ensures that the component will be restarted
if it fails, or if the machine reboots. It also has advanced process management features which
limit memory consumption and file handles, so one service cannot incapacitate an entire system.
Automatic time-stamping and rotation of log files facilitates debugging, and components can be
paused, restarted, or temporarily disabled. Furthermore, none of this requires root access.

4.1.3 Job Watchdog and Wrapper

For each job, a wrapper script prepares the execution environment, downloads the necessary data
and reports to the Job Monitoring Service the Worker Node parameters. It then spawns a watchdog
process. This process periodically checks the state of the job and sends a heart beat signal to the
Monitoring Service. It can also provide a control channel to the job via an instant messaging
interface (see section 4.1.4). At the end of the job, the watchdog process reports the job execution
information, for example CPU time and memory consumed, to the Monitoring Service. Finally, it
catches failed jobs and reports them appropriately.

4.1.4 Instant Messaging in Grid Computing

In order to provide asynchronous reliable messaging, DIRAC has incorporated an instant mes-
saging protocol into all components of the system. While the DIRAC Services expose their APIs
via XML-RPC, due to the simplicity, maturity, and robustness of this protocol, there is a need to
expose a monitoring and control channel to the transient Agents and Jobs. No a priori informa-
tion is available about where or when an Agent or Job will run, and local networks often will not
allow Agents or Jobs to start an XML-RPC server that is externally accessible. This suggests a
client-initiated dynamic and asynchronous communications framework should be used.

The Extensible Messaging and Presence Protocol (XMPP), now an IETF Internet Draft [19], is
used in all four areas of DIRAC: User Interface, Jobs, Agents, and Services. XMPP provides
standard instant messaging functionality, such as chat, group chat, broadcast message, and one-
to-one messaging. Furthermore, an RPC-like mechanism exists called Information/Query, (IQ)
which can be used to expose an API of any XMPP entity. Finally, the roster mechanism facilitates
automatic, real-time monitoring of XMPP entities via their presence.

The Services use XMPP in certain places where fault tolerant, asynchronous messaging is impor-
tant. For example, the Job Receiver Service uses XMPP to notify the Optimizer Service when it
receives a new job. When the Optimizer gets this message, it will then sort the new job into the
appropriate queues, The IQ functionality has the potential to allow users to retrieve live informa-
tion about running jobs, something which is critical for interactive tasks, or for job steering. It
also greatly facilitates debugging and possible recovery of stuck jobs.
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Chapter 5

5.1 Working Experience

The DIRAC system is being used for the LHCb Data Challenge 2004 (DC04), held from May
to July 2004. The goal of DC04 is to validate the LHCb distributed computing model based on
the combined use of the LCG and conventional computing centers. A large number of simulation
jobs will be run, producing terabytes of data which will need to be redistributed to a network of
computing centers for both organized (i.e. planned and predictable) and chaotic analysis of the
results.

The system has operated smoothly with a sustained level of over 3000 simultaneously running jobs,
and 1 terabyte of data generated and replicated daily. Figure 1.1 shows the participating sites,
and figure 5.1 shows a snapshot of the running job distribution. Using the runsv daemon control
tools, discussed in section 4.1.2, once a site has installed DIRAC the Agents run autonomously,
and restart after failures or reboots. The monitoring system allows the performance of various
sites and the behavior of Agents and Jobs to be monitored by anyone, which in practice falls to a
central team who can alert site administrators if problems are detected.

29 Cracow.pl
29 Oxford.uk

37 ITEP−Moscow.ru
40 IHEP2−Moscow.ru

40 Manchester

41 Lyon−Dirac.fr

47 Santiago.es

61 Imperial−LCG.uk

64 Legnaro.it

69 ScotGrid.uk

74 Budapest.hu

90 Barcelona−LCG.es

197 CERN−DIRAC

213 Amsterdam.nl
238 Bologna.it

404 RAL.uk

494 CERN−LCG

Figure 5.1: Snapshot of site distribution for 2455 running jobs at 1pm 6 August 2004 during DC04

At the time of writing the DIRAC system is managing tasks running directly at 20 computing
centers, and at another 20 sites via the LCG network. These 40 sites provide a total of more than
3000 worker nodes. At this time, with 5000 jobs in the global queues, the Matchmaker responds
to Agent job requests in 0.4 seconds, on average. More than 200,000 jobs have been completed in
the months of May-July with an average duration of 23 hours. In terms of storage capacity, during
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DC04 the system has produced, stored and transfered 60 terabytes of data. Each job produces
about 300-400 megabytes, which is immediately replicated to several sites for redundancy and to
facilitate later data analysis.

5.1.1 Interoperability with LCG

DIRAC is able to make use of LCG by wrapping it in the standard DIRAC Computing Element
interface. The task flow is similar to the one described in section 3.1, with the key difference that
the job submitted to LCG is a generic DIRAC Agent installation script, rather than a specific
DIRAC job. When the LCG job starts, the DIRAC Agent performs an auto-install and configure,
then operates in a run-once mode where it fetches and executes a single job. This is very similar
to the Condor Glide-In concept.

Given the small size of the DIRAC Agent the overhead to do this is minimal, and it provides the
advantage that any failure of the LCG job before the DIRAC job is fetched will have no consequence
on the DIRAC job pool. The disadvantage is that it adds another layer to the processing chain,
and prevents targeted submission of DIRAC jobs to LCG sites. While other approaches are still
under investigation and development, this approach has been the most successful and allowed
substantial use of the LCG resources with a low rate of failed jobs.

5.1.2 Challenges

The two greatest challenges with DIRAC have been monitoring job status for a large number of
jobs, and managing data transfers. With tens of thousands of active jobs, spread across 40 or more
sites, there are inevitable problems with network failures, power outages, incorrect configuration,
and software crashes. In the early release of DIRAC this led to a build up of stalled jobs which
claimed to be running but never completed. Tracking these jobs down and resubmitting them,
as well as managing failed jobs and confirming that “successful” jobs really had completed all
their steps, required the implementation of cross-checks and additional job monitoring, such as
the heart beat mechanism, mentioned above.

Managing data transfers for such large quantities of data also proved challenging. In many cases
network connections became backlogged, hung, or aborted transfers part way through. These prob-
lems occurred on both the client (sending) and server (receiving) side. Initially the bbftp protocol
appeared to be the most reliable, but this shifted in favor of gridftp [2], although gridftp was much
more difficult to install and use. The queued Transfer Request system with independent DIRAC
Agents dedicated just to managing transfers (via the TransferAgent module) proved invaluable
in providing reliable data transfers, possibly time delayed from the end of the job completion by
several days.
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Chapter 6

6.1 Future Plans

The service oriented architecture of DIRAC proved that the flexibility offered by this approach
allows faster development of an integrated distributed system. The pull paradigm Agent/Service
model has scaled well with a large and varying set of computing resources, therefore we see the
future evolution of DIRAC along the lines of the services based architecture proposed by the
ARDA working group at CERN [22] and broadly followed by the EGEE middle-ware development
group [21]. This should allow DIRAC to be integrated seamlessly into the ARDA compliant third
party services, possibly filling functionality gaps, or providing alternative service implementations.
The use of two different File Catalogs in the DIRAC system is a good example of leveraging the
developments of other projects, and being able to “swap” services, provided they implement a
standard interface.

DIRAC currently operates in a trusted environment, and therefore has had only a minimal em-
phasis on security issues. A more comprehensive strategy is required for managing authentication
and authorization of Agents, Users, Jobs, and Services. It is hoped that a TLS based mechanism
can be put in place with encrypted and authenticated XML-RPC calls using some combination
of the GridSite project [10], and the Clarens Grid Enabled Web Services Framework, from the
CERN CMS project.

While the pull model works well for parameter sweep tasks, such as the physics simulations con-
ducted during DC04, it remains to be seen if individual analysis tasks, which are more chaotic
by nature, and require good response time guarantees, will operate effectively. A new class of
Optimizer is planned which will allocate time-critical jobs to high priority global queues in order
that they be run in a timely fashion.

Expanded use of the XMPP instant messaging framework should allow both Jobs and Agents
to expose a Service interface, via the XMPP IQ mechanisms. This has great promise for user
interactivity, and real-time monitoring and control of Agents and Jobs.

Furthermore, with this Service interface to Agents, a peer-to-peer network of directly interacting
Agents is envisioned. This would reduce, and possibly even eventually eliminate, the reliance
on the Central Services, as Agents could dynamically load-balance by taking extra jobs from
overloaded sites.
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Chapter 7

7.1 Conclusions

The latest version of DIRAC has proven to be robust, and easy to use and deploy. The pull
paradigm has meant large job queues and large numbers of running jobs do not degrade system
performance, and job allocation to resources takes under a second per job. The service oriented
architecture and Agent/Service model has allowed flexible inclusion of new modules and rapid
development of the entire DIRAC framework.

As the “go-live” date for the LHC approaches, greater integration with the LCG and ARDA
projects is planned. It is expected that DIRAC will form the basis of the distributed computing
infrastructure for the LHCb experiment, and be able to utilize Services developed by ARDA and
the underlying LCG network.
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Chapter 8
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