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Abstract

A method is presented for direct trajectory optimization and costate estimation of
finite-horizon and infinite-horizon optimal control problems using global collocation at
Legendre-Gauss-Radau (LGR) points. A key feature of the method is that it provides
an accurate way to map the KKT multipliers of the nonlinear programming problem
to the costates of the optimal control problem. More precisely, it is shown that the
dual multipliers for the discrete scheme correspond to a pseudospectral approximation
of the adjoint equation using polynomials one degree smaller than that used for the
state equation. The relationship between the coefficients of the pseudospectral scheme
for the state equation and for the adjoint equation is established. Also, it is shown that
the inverse of the pseudospectral LGR differentiation matrix is precisely the matrix
associated with an implicit LGR integration scheme. Hence, the method presented
in this paper can be thought of as either a global implicit integration method or a
pseudospectral method. Numerical results show that the use of LGR collocation as
described in this paper leads to the ability to determine accurate primal and dual
solutions for both finite and infinite-horizon optimal control problems.

1 Introduction

Over the last decade, pseudospectral methods have increased in popularity in the numeri-

cal solution of optimal control problems.1–16 Pseudospectral methods are a class of direct

collocation where the optimal control problem is transcribed to a nonlinear programming

problem (NLP) by parameterizing the state and control using global polynomials and collo-

cating the differential-algebraic equations using nodes obtained from a Gaussian quadrature.

It is noted that some researchers prefer the term orthogonal collocation,17–19 but the terms

pseudospectral and orthogonal collocation have the same meaning.

The three most commonly used set of collocation points are Legendre-Gauss (LG), Legendre-

Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. These three sets of points

are obtained from the roots of a Legendre polynomial and/or linear combinations of a Legen-

dre polynomial and its derivatives. All three sets of points are defined on the domain [−1, 1],

but differ significantly in that the LG points include neither of the endpoints, the LGR points

include one of the endpoints, and the LGL points include both of the endpoints. In addi-

tion, the LGR points are asymmetric relative to the origin and are not unique in that they

can be defined using either the initial point or the terminal point. In recent years, the two

most well documented pseudospectral methods are the Legendre-Gauss-Lobatto pseudospec-

tral method1,3–5, 10, 11, 20, 21 (LPM) and the Legendre-Gauss pseudospectral method.13–15,22, 23 A

local collocation method based on LGR points is developed in Ref. 16 while an LGR method
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for solving infinite-horizon problems is in Ref. 12. Nonetheless, Legendre-Gauss-Radau col-

location still remains the least studied of the pseudospectral methods. The purpose of this

paper is to describe a method for direct trajectory optimization and costate estimation for

general finite-horizon and infinite-horizon optimal control problems using global collocation

at LGR points.

The pseudospectral LGR scheme presented in this paper is related to the scheme of

Kameswaran and Biegler in Ref. 16, however, the focus of our paper is quite different. In

Ref 16, the authors partition the time interval into a mesh and use the LGR scheme on

each mesh interval. Convergence is achieved by increasing the number of mesh intervals.

Here we focus on a global LGR scheme where convergence is achieved by increasing the

degree of the polynomials. In Ref. 12 Fahroo and Ross apply an LGR scheme to infinite

horizon control problems. This is done by using a change of variables to map the infinite

time interval into a finite time interval, and then applying an LGR scheme to the finite time

interval problem. Since the change of variables is singular at the final time, an LGR scheme

avoided collocation at the singularity. As explained in Section 8, the LGR scheme introduced

in Ref. 12 is fundamentally different from the LGR scheme presented here because in the

method presented here the state is discretized at the LGR points plus the terminal point, thus

allowing for the solution of both finite-horizon and infinite-horizon optimal control problems.

The approach developed in this paper is well-suited to problems that are sufficiently

smooth; that is, problems that have neither discontinuities in the control nor large derivatives

in the state. More generally, when approximating the solution to a control problem, a high

quality approximation in a low dimensional space might be achieved by using piecewise

polynomials with a high degree in time intervals where the solution is smooth, and with a

low degree in time intervals where the solution lacks smoothness. In time intervals where the

solution undergoes rapid change, the mesh could be refined to improve the accuracy of the

approximation. As a first step towards developing a convergence theory for this framework

where the degree of the piecewise polynomials is allowed to vary, we need to understand

the convergence properties of discrete approximations generated by polynomials on a single

interval, as the degree of the polynomials increase. As can be seen in Refs. 24 or 25, the key

step in analyzing the conference of discrete approximations is to reformulate the first-order

optimality conditions in such a way that they become an approximation to the optimality

conditions for the continuous control problem. In this paper, we develop and analyze these
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reformulated optimality conditions by exploiting a transformed adjoint variable.26

The paper is organized as follows: In Section 2 we discuss the choices for collocation

points and our notation. Section 3 introduces our Radau pseudospectral scheme for an un-

constrained control problem. In Section 4 we show that the first-order optimality conditions

associated with the pseudospectral scheme can be written as a pseudospectral scheme for

the adjoint equation. The polynomials associated with the transformed adjoint equation

have degree one smaller than that of the polynomials associated with the state equation

discretization. In Section 5 we show that our pseudospectral scheme is equivalent to an

integrated system of equations. A modification of the method for infinite-horizon problems

is then discussed in Section 6. Section 8 compares our scheme to the methods presented in

Ref. 12 and 16. Finally, Sections 7 and 9 give numerical examples and conclusions.

2 LG, LGR, and LGL Collocation Points

The LG, LGR, and LGL collocation points lie on the open interval τ ∈ (−1, 1), the half

open interval τ ∈ [−1, 1) or τ ∈ (−1, 1], and the closed interval τ ∈ [−1, 1], respectively. A

depiction of these three sets of collocation points is shown in Fig. 1 where it is seen that

the LG points contain neither -1 or 1, the LGR points contain only one of the points -1 or

1 (in this case, the point -1), and the LGL points contain both -1 and 1. Denoting K as

the number of collocation points and PK(τ) as the kth-degree Legendre polynomial, the LG

points are the roots of PK(τ), the LGR points are the roots of PK−1(τ) + PK(τ), and the

LGL points are the roots of ṖK−1(τ) together with the points -1 and 1:

LG: Roots obtained from PK(τ)

LGR: Roots obtained from PK−1(τ) + PK(τ)

LGL: Roots obtained from Ṗk−1(τ) together with the points -1 and 1

It is seen from Fig. 1 that the LG and LGL points are symmetric about the origin whereas

the LGR points are asymmetric. In addition, the LGR points are not unique in that two

sets of points exist (one including the point -1 and the other including the point 1). The

LGR points that include the terminal endpoint are often called the flipped LGR points. In

this paper, however, we use the standard set of LGR points as defined above and consistent

with the usage given in Ref. 20.
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Notation. Throughout the paper, we employ the following notation. AT denotes the

transpose of a matrix A. Given two matrices A and B of the same dimensions, 〈A,B〉 is

their dot product:

〈A,B〉 = trace ATB.

When A and B are vectors, this is the usual vector inner product. If f : R
n → R

m, then ∇f

is the m by n matrix whose i-th row is ∇fi. In particular, the gradient of a scalar-valued

function is a row vector. If φ : R
m×n → R and X is an m by n matrix, then ∇φ denotes the

m by n matrix whose (i, j) element is

(∇φ(X))ij =
∂φ(X)

∂Xij

.

3 Formulation of Pseudospectral Method Using LGR Points

To simplify the exposition, we initially focus on an unconstrained control problem on the

time interval τ ∈ [−1, +1] with terminal cost. Note that the time interval can be transformed

from [−1, 1] to the time interval [t0, tf ] via the affine transformation

t =
tf − t0

2
τ +

tf + t0
2

.

In this section, the goal is to determine the state x(τ) ∈ R
n and the control u(τ) ∈ R

m

which minimize the cost functional

Φ(x(1)) (1)

subject to the constraints

dx

dτ
= f(x(τ),u(τ)), x(−1) = x0, (2)

where f : R
n × R

m → R
n and x0 is the initial condition, which we assume is given.

Let us consider N LGR collocation points τ1, τ2, . . ., τN on the interval [−1, 1], with

τ1 = −1 and τN < +1. We introduce an additional noncollocated point τN+1 = 1 which is

used to describe the approximation to the state variable. Each component of the state x is

approximated by a polynomial of degree at most N . Let Li, i = 1, . . . , N + 1, be a basis of

Lagrange polynomials given by

Li(τ) =
N+1
∏

j=1

j 6=i

τ − τj

τi − τj

, i = 1, . . . , N + 1.

5



The j-th component of the state is approximated by a series of the form

xj(τ) ≈
N+1
∑

i=1

xijLi(τ). (3)

Differentiating the series and evaluating at the collocation point τk gives

ẋj(τk) ≈
N+1
∑

i=1

xijL̇i(τk) =

N+1
∑

i=1

Dkixij , Dki = L̇i(τk). (4)

The N by N + 1 matrix D is called the differentiation matrix. It has one row for each

collocation point; the elements in the ith column are the derivatives of the Lagrange polyno-

mials evaluated at each of the collocation points. Let X denote the matrix formed from the

coefficients xij in (3). With this notation, DX is an N by n matrix and (4) can be written

ẋj(τi) ≈ (DX)ij .

This approximation is exact if the components of x are polynomials of degree at most N .

Let U be an N by m matrix with uij denoting the discrete approximation to the j-th

component of the control evaluated at the i-th collocation point:

uij ≈ uj(τi).

For the matrices X and U, and later for the matrices of Lagrange multipliers, subscripts

are used to denote rows of the matrix. In other words, Xi is the i-th row of X. This row

contains the components of the discrete approximation to xT(τi). Let F(X,U) denote an N

by n matrix whose (i, j) element is given by

Fij(X,U) = fj(Xi,Ui), 1 ≤ i ≤ N, 1 ≤ j ≤ n. (5)

In the pseudospectral approach, it is required that the system dynamics is satisfied at each

of the N collocation points. With our notation, the discrete optimization problem takes the

form

minimize Φ(XN+1) subject to DX = F(X,U), X1 = x0, (6)

where x0 is treated as a row vector. The optimization problem in (6) is a nonlinear pro-

gramming problem.

We now develop the first-order optimality conditions for (6), also called as the KKT

conditions of the NLP. The system dynamics in (6) is composed of Nn equations. Let Λ
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denote the N by n matrix of Lagrange multipliers associated with the system dynamics, and

let µ be a 1 by n row vector of Lagrange multipliers associated with the initial condition.

The Lagrangian associated with (6) is

L(Λ,X,U) = Φ(XN+1) + 〈Λ,F(X,U) −DX〉 + 〈µ,x0 − X1〉.

The KKT conditions of the NLP are obtained by differentiating L with respect to each

component of X and U. Since i ranges between 1 and N in (5), F(X,U) is independent of

XN+1. Differentiating the Lagrangian with respect to XN+1 gives us the condition

∇Φ(XN+1) = DT

N+1Λ, (7)

where Dj denotes the j-th column of D. Differentiating the Lagrangian with respect to Xj

gives
N

∑

i=1

DijΛi = Λj∇Xf(Xj,Uj), 2 ≤ j ≤ N. (8)

Finally, differentiating with respect to X1 yield

N
∑

i=1

Di1Λi = Λ1∇Xf(X1,U1) − µ. (9)

Differentiating with respect to the control Uj , 1 ≤ j ≤ N , gives

Λj∇U f(Xj ,Uj) = 0. (10)

Let Dj:k denote the submatrix of D formed by columns j through k, and let Xj:k be

the submatrix of X corresponding to rows j through k. The system dynamics in (6) can be

rewritten

D2:N+1X2:N+1 = F(X,U) −D1x0 (11)

Similarly, the costate equations (8) and (9) can be rewritten

DT

1:NΛ = ∇X〈Λ,F(X,U)〉 − e1µ, (12)

where e1 is the first column of the identity matrix. We now observe that the N by N matrices

appearing on the left sides of these equation are invertible.

Proposition 1. The matrices D1:N and D2:N+1 obtained by deleting either the first or

the last column of D are invertible.
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Proof. Suppose that for some nonzero p ∈ R
N+1 with pN+1 = 0, we have Dp = 0. Let

p be the unique polynomial of degree N which satisfies p(τi) = pi, 1 ≤ i ≤ N + 1. Since the

components of Dp are the derivatives of p evaluated at the collocation points, we have

0 = (Dp)i = ṗ(τi), 1 ≤ i ≤ N.

Since ṗ is a polynomial of N − 1, it must be identically zero since it vanishes at N points.

Hence, p is constant. Since p(1) = 0 and p is constant, it follows that p is identically 0.

This shows that pi = p(τi) = 0 for each i. Since the equation Dp = 0 with pN+1 = 0 has

no nonzero solution, D1:N is nonsingular. The nonsingularity of D2:N+1 is established in a

similar way, but with p1 = 0 instead of pN+1 = 0.

4 Transformed Adjoint System

Analogous to Ref. 26, we now reformulate the KKT conditions of the NLP so that they

become a discretization of the first-order optimality conditions for the continuous control

problem (1)–(2). Let wi, 1 ≤ i ≤ N , be the quadrature weights associated with the LGR

points. These quadrature weights have the property that

∫ 1

−1

p(τ)dτ =

N
∑

i=1

wip(τi)

for all polynomials p of degree at most 2N − 2. Let W denote the N by N diagonal matrix

with i-th diagonal element wi and let λ be an N by n matrix defined by

λ = W−1Λ. (13)

We also define the row vector

λN+1 = DT

N+1Λ. (14)

In the formulas that follow, it is convenient to consider λ as an N by n matrix and to view

λN+1 as a distinct row vector, not the N +1-st row of λ. As we will see, the rows of λ as well

as λN+1 represent approximations to the continuous costate evaluated at τi, 1 ≤ i ≤ N + 1.

In order to connect the discrete costate equations to the continuous costate equations, we

employ an N by N matrix D†, which is a modified version of D, defined as follows:

D†
11 = −D11 −

1

w1
and D†

ij = −wj

wi

Dji otherwise. (15)
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According to the definition of λN+1, the adjoint boundary condition (7) is simply

∇Φ(XN+1) = λN+1. (16)

Utilizing (13) and (15), (8) reduces to

N
∑

j=1

D†
ijλj = −λi∇Xf(Xi,Ui), 2 ≤ i ≤ N. (17)

Similarly, (9) reduces to

N
∑

j=1

D†
1jλj = −λ1∇Xf(X1,U1) +

1

w1
(µ − λ1). (18)

Finally, dividing (10) by wj yields

λi∇U f(Xi,Ui) = 0, 1 ≤ i ≤ N. (19)

The equations (16)–(19) are incomplete since we introduced a new variable λN+1 without

adding a new equation. We now develop an equation for this new variable by manipulating

(14). Let 1 denote a vector whose components are all equal to 1. The components of the

vector D1 are the derivatives at the collocation points of the polynomial whose value is

1 at τi, 1 ≤ i ≤ N + 1. This polynomial is simply the constant 1, whose derivative is 0

everywhere. Hence, we have D1 = 0, which implies that

DN+1 = −
N

∑

j=1

Dj. (20)

Returning to the definition of λN+1 in (14), we obtain

λN+1 =

N
∑

i=1

ΛiDi,N+1 = −
N

∑

i=1

N
∑

j=1

ΛiDij (21)

=
Λ1

w1

+
N

∑

i=1

N
∑

j=1

ΛiD
†
ji

wj

wi

=
Λ1

w1

+
N

∑

i=1

N
∑

j=1

ΛjD
†
ij

wi

wj

(22)

= λ1 +

N
∑

i=1

N
∑

j=1

wiλjD
†
ij (23)

= µ −
N

∑

i=1

wiλi∇Xf(Xi,Ui), (24)
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where (21) follows from the identity (20), (22) is the definition (15) of D†, (23) is the definition

(13) of λi, and (24) is the first-order optimality condition (17). Together (16)–(19) and (24)

form the complete transformed KKT conditions. More compactly, the KKT conditions are

µ = ∇Φ(XN+1) +

N
∑

i=1

wiλi∇Xf(Xi,Ui), (25)

D†λ = −∇X〈λ,F(X,U)〉 +
1

w1
e1(µ − λ1), (26)

0 = ∇U〈λ,F(X,U)〉.

where (25) is obtained by combining (16) and (24).

We now compare the transformed KKT conditions for the discrete control problem (the

pseudospectral scheme) to the first-order optimality condition for the continuous control

problem (1)–(2):

λ(−1) = µ

λ(1) = ∇Φ(x(1))

λ̇(t) = −∇x〈λ(t), f(x(t),u(t))〉

0 = ∇u〈λ(t), f(x(t),u(t))〉

In the discrete problem, there is no multiplier corresponding to the final time τ = 1 since

the system dynamics are collocated at τi, 1 ≤ i ≤ N , which are all strictly less than 1.

In the discrete optimality system, the boundary conditions for the continuous optimality

system are replaced by the integrated version (25). ∇Φ(XN+1) in (25) corresponds to λ(1)

in the continuous problem; the summation in (25) approximates the integral of λ̇ over the

interval [−1, 1]. Hence, the right side of (25) approximates λ(−1), which corresponds to λ1.

Consequently, the condition (25) is a subtle way of enforcing the equality µ = λ1, in an

approximate sense. If µ = λ1, then last term in the discrete dynamics (26) vanishes. We

will now show that the system (26), with the last term dropped, is a pseudospectral scheme

for the costate equation.

Theorem 1. The matrix D† defined in (15) is the differentiation matrix for the space of

polynomials of degree N − 1 evaluated at τi, 1 ≤ i ≤ N . In other words, if p is a polynomial

of degree at most N − 1 and if p ∈ R
N is the vector with i-th component pi = p(τi), then

(D†p)i = ṗ(τi), 1 ≤ i ≤ N.
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Proof. Let D† denote the differentiation matrix defined in the statement of the theorem.

We will show that D† satisfies (15), which establishes the theorem. If p and q are smooth,

real-valued functions with p(1) = 0, then integration by parts gives

∫ 1

−1

ṗ(τ)q(τ)dτ = −p(−1)q(−1) −
∫ 1

−1

p(τ)q̇(τ)dτ. (27)

Suppose p is a polynomial of degree at most N and q is a polynomial of degree at most

N − 1 with N ≥ 1; in this case, ṗq and pq̇ are polynomials of degree at most 2N − 2. Since

Gauss-Radau quadrature is exact for polynomials of degree at most 2N − 2, the integrals in

(27) can be replaced by their quadrature equivalents to obtain

N
∑

j=1

wj ṗjqj = −p1q1 −
N

∑

j=1

wjpj q̇j ,

where pj = p(τj) and ṗj = ṗ(τj). More compactly, this can be expressed

(Wṗ)Tq = −p1q1 − (Wp)Tq̇.

Substituting ṗ = D1:Np and q̇ = D†q yields

pTDT

1:NWq = −p1q1 − pTWD†q.

This can be rearranged into the following form:

pT(DT

1:NW + WD† + e1e
T

1 )q = 0.

where e1 is the first column of the identity matrix. Since this identity must be satisfied for

all choices of p and q, we deduce that

DT

1:NW + WD† + e1e
T

1 = 0,

which implies (15). This completes the proof.

Thus we have shown that the transformed KKT conditions are related to a pseudospectral

discretization of the continuous costate equation. However, the differentiation matrix in the

costate discretization is based on the derivatives of polynomials of degree N − 1, while the

differentiation matrix in the state discretization is based on the derivatives of polynomials

of degree N .
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5 Integral Formulation

Next, we show that pseudospectral discretization of the state equation has an equivalent

integrated formulation. Similar to (20), the identity D1 = 0 implies that

D1 = −
N+1
∑

j=2

Dj = −D2:N+11. (28)

By Proposition 1 the matrix D2:N+1 is invertible. We multiply (28) by D−1
2:N+1 to obtain

D−1
2:N+1D1 = −1. (29)

Let p be any polynomial of degree at most N . By the construction of the N by N + 1

differentiation matrix D, we have Dp = ṗ where

pi = p(τi), 1 ≤ i ≤ N + 1 and ṗi = ṗ(τi), 1 ≤ i ≤ N. (30)

Multiply the identity ṗ = Dp = D1p1 + D2:N+1p2:N+1 by D−1
2:N+1 and utilize (29) to obtain

pi = p1 + (D−1
2:N+1ṗ)i, 2 ≤ i ≤ N + 1. (31)

Next, we obtain a different expression for pi−p1 based on the integration of the interpolant

of the derivative. Let L†
j be the Lagrange interpolation polynomial associated with the

collocation points:

L†
j(τ) =

N
∏

i=1

i6=j

τ − τi

τj − τi

, j = 1, . . . , N.

Given a polynomial p of degree at most N , its derivative ṗ is a polynomial of degree at most

N − 1. Hence, ṗ can be interpolated exactly by the Lagrange polynomials L†
j :

ṗ(τ) =

N
∑

j=1

ṗjL
†
j(τ)

We integrate from −1 to τi to obtain the relation

p(τi) = p(−1) +

N
∑

j=1

ṗjAij, Aij =

∫ τi

−1

L†
j(τ) dτ, 2 ≤ i ≤ N + 1. (32)

Utilizing the notation (30), we have

pi = p1 + (Aṗ)i, 2 ≤ i ≤ N + 1. (33)
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The relations (31) and (33) are satisfied for any polynomial of degree at most N . Choose

p1 = 0 and ṗ from the columns of the identity matrix to deduce that A = D−1
2:N . Multiply

(11) by A = D−1
2:N and utilize (29) to obtain

Xi = x0 + AiF(X,U), 2 ≤ i ≤ N + 1, (34)

where Ai is the ith row of A. Hence, the differential form of the state equation DX = F(X,U)

is equivalent to the integrated form (34), where the elements of A are integrals of the

Lagrange basis functions L†
j defined in (32) while the elements of D in the differential form

are the derivatives of the Lagrange basis function Li defined in (4).

To summarize, the approximation to the dynamics given in (34) is in the form of a global

implicit integration method while the differential approximation DX = F(X,U) is in the

form of a pseudospectral method. The fact that either the integral or the differential form

can be used shows that the Radau collocation method derived in this paper can be thought

of as either a global implicit integration method or a pseudospectral method. In particular,

using the pseudospectral form of LGR collocation results in a system of equations that has no

loss of information from the integral form (because the matrix D2:N is nonsingular). In the

next section, the differential form of LGR collocation, which we call the Radau pseudospectral

method, is applied to a general optimal control problem.

6 Radau Pseudospectral Discretization of Infinite-Horizon

Problems

Consider the following optimal control problem. Minimize the infinite-horizon cost functional

J =

∫ ∞

0

g(x(t),u(t), t)dt (35)

subject to the dynamic constraint

ẋ = f(x(t),u(t), t) (36)

with the initial condition

x(0) = x0. (37)

Consider further the following transformation of time found in Ref. 12:

t =
1 + τ

1 − τ
(38)
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This transformation maps the interval t ∈ [0,∞) to the closed interval τ ∈ [−1, 1]. Using

(38), the infinite-horizon optimal control problem (35)–(37) can be written in terms of τ as

follows. Minimize the cost functional

J =

∫ 1

−1

2

(1 − τ)2
g(x(τ),u(τ), τ)dτ (39)

subject to the dynamic constraint

dx

dτ
=

2

(1 − τ)2
f(x(τ),u(τ), τ) (40)

with the initial condition

x(−1) = x0 (41)

The transformed infinite-horizon optimal control problem (39)–(41) can be solved using

the following modification of the Radau pseudospectral discretization of Section 3. Minimize

the cost function

J =

N
∑

k=1

2wk

(1 − τk)2
g(Xk,Uk, τk) (42)

subject to the constraints

DX = TF(X,U)

X1 = x0

(43)

where T is a diagonal matrix whose kth diagonal element is

Tkk =
2

(1 − τk)2
, 1 ≤ k ≤ N. (44)

It is noted in the NLP of (42)–(43) that the state is approximated at the LGR points plus

the terminal point (at τ = 1). Hence we obtain an approximation of the state at the horizon

t = ∞. Moreover, the NLP avoids the singularity at τ = +1 in the factor 2/(1− τ)2 because

τk = +1 is not a quadrature point. As is discussed in Section 8 below, the solution obtained

using the Radau pseudospectral method of this paper differs fundamentally from the infinite-

horizon method given in Ref. 12 because in the method of Ref. 12 the state is obtained only

at the LGR points whereas in the method presented here the state is obtained at the LGR

points and the terminal point τ = +1.

7 Examples

In this section we consider two examples using the aforementioned Radau pseudospectral

method. The first example is a nonlinear one-dimensional finite-horizon optimal control

14



problem taken from Ref. 13 while the second example is an infinite-horizon linear quadratic

problem taken from Ref. 12. It is noted that these two examples utilize the finite-horizon

and infinite-horizon forms of the Radau pseudospectral method, respectively.

Example 1: Nonlinear One-Dimensional Finite-Horizon Problem

Consider the following optimal control problem. Minimize the cost functional

J =
1

2

∫ tf

0

(y + u2)dt (45)

subject to the dynamic constraint

ẏ = 2y + 2u
√

y, (46)

and the boundary conditions

y(0) = 2,

y(tf) = 1,

tf = 5.

(47)

It is noted that the exact solution to the optimal control problem of (45)–(47) is given as

y∗(t) = x2(t)

λ∗
y(t) =

λx

2
√

y

(48)

where x(t) and λx(t) are given as





x(t)

λx(t)



 = exp(At)





x0

λx0



 (49)

where

A =





1 −1

−1 −1





x0 =
√

2

xf = 1

λx0 =
xf − B11x0

B12

(50)
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and

B =





B11 B12

B21 B22



 = exp(Atf) (51)

Example 1 was solved using the Radau pseudospectral method (RPM) with the software

OptimalPrime27 and the NLP solver SNOPT28 for N = 4 to N = 99 LGR points. The

SNOPT optimality and feasibility tolerances were 10−10. A typical solution for N = 39

LGR points (i.e., N + 1 = 40 discretization points) is shown in Fig. 2 alongside the exact

solution. Suppose now that we define the following maximum absolute errors between the

RPM solution and the exact solution:

ey = max
k∈[1,...,N+1]

log10 |y(τk) − y∗(τk)|

eλy
= max

k∈[1,...,N+1]
log10

∣

∣λy(τk) − λ∗
y(τk)

∣

∣

eu = max
k∈[1,...,N ]

log10 |u(τk) − u∗(τk)|

(52)

Figs. 3–4 show ey, eu, and eλy
as a function of N + 1. It is seen that ey, eu, and eλy

decrease in a linear manner from N = 4 to 49. Moreover, for N ≥ 50 all three errors remain

essentially constant, ey and eu being constant at approximately 10−10 and eu being constant

at approximately 10−9, as expected from the SNOPT tolerances used. The rate of decrease of

e for the lower number of nodes is most revealing because it shows that e decreases linearly,

demonstrating a spectral convergence rate.

Example 2: Infinite-Horizon LQR Problem

Consider the following optimal control problem taken from Ref. 12. Denoting x(t) =

[x1(t) x2(t)]
T ∈ R

2 as the state and u(t) ∈ R as the control, minimize the cost functional

J =
1

2

∫ ∞

0

(

xTQx + uTRu
)

dt, (53)

subject to the dynamic constraint

ẋ = Ax + Bu, (54)

and the initial condition

x(0) =





−4

4



 . (55)
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The matrices A, B, Q, and R for this problem are given as

A =





0 1

2 −1



 , B =





0

1



 , Q =





2 0

0 1



 , R =
1

2
. (56)

The exact solution to this problem is

x(t) = exp([A − BK] t)x(0)

u(t) = −Kx(t)

λ(t) = Sx(t)

(57)

where K is the optimal feedback gain and S is the solution to the algebraic Riccati equation.

In this case K and S are given, respectively, as

K =
[

4.828427124746193 2.557647291327851
]

S =





6.031273049535752 2.414213562373097

2.414213562373097 1.278823645663925





(58)

The optimal control problem of Eqs. (53)–(55) was solved using the infinite-horizon ver-

sion of the Radau pseudospectral method (as given in Section 6) using the software Opti-

malPrime27 and the NLP solver SNOPT28 with default optimality and feasibility tolerances

of 10−6 and 2 × 10−6, respectively, for N = 4 to N = 34 (i.e., N + 1 = 5 to N + 1 = 35

points) by steps of 5. The infinite-horizon RPM solution for N +1 = 35 is shown in Figs 6–7

as a function of τ alongside the exact solution. It is seen that the RPM solution and the

exact solution are indistinguishable for all three quantities (state, control, and costate). In

particular, it is seen that the infinite horizon version of the RPM solves the problem at all

of the LGR points plus the point τ = +1 (i.e., t = ∞), thus computing the solution on the

infinite horizon. Suppose now that we define the following maximum absolute errors between

the RPM solution and the exact solution:

e
x

= max
k∈[1,...,N+1]

log10 ‖x(τk) − x∗(τk)‖

eu = max
k∈[1,...,N ]

log10 |u(τk) − u∗(τk)|

eλ = max
k∈[1,...,N+1]

log10 ‖λ(τk) − λ∗(τk)‖

(59)

The values of e
x
, eλy

, and eu are shown in Figs. 9–11. It is seen that all errors decrease

linearly until approximately N = 35, again demonstrating a spectral convergence rate.
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8 Comparison with Previous Work on LGR Collocation

It is noted that two earlier LGR collocation methods have been presented in Refs. 12 and 16.

The method of Kameswaran and Biegler in Ref. 16 focuses on local collocation using LGR

points. The method of Fahroo and Ross in Ref. 12 describes a global method for solving

infinite-horizon problems. In this section we comment briefly on how the method derived in

this paper relates to this previous work.

8.1 Comparison with Local LGR Collocation Method in Ref. 16

The method derived in this paper shares similarities with the method of Ref. 16 in that the

approximation of the state uses the same basis of Lagrange polynomials. It is noted, however,

that the method of Ref. 16 uses local collocation, favoring a small number of collocation points

and many subintervals (called finite elements in Ref. 16). The degree of the polynomials on

each subinterval is fixed and convergence is achieved by increasing the number of subintervals.

The current paper focuses on a global collocation method where there is a single interval and

convergence is achieved by increasing the degree of the polynomials. The method of Ref. 16

leads to a sparse optimization problem with a large number of variables and constraints

at the endpoints of each subinterval, while the global method in this paper leads to a low

dimensional, dense optimization problem. The method of Ref. 16 is implemented similar

to an implicit Runge-Kutta method (due to the fact that the time interval is divided into

many subintervals) whereas the method derived in this paper is implemented in the form of a

pseudospectral method. It is noted that both approaches are valid, but the current approach

is consistent with the manner in which pseudospectral methods have been implemented over

the past several years in the aerospace control literature.

8.2 Comparison with Global Infinite-Horizon LGR Method in Ref. 12

In the Lobatto pseudospectral approach as described in Ref. 1, the state is approximated

by polynomials of degree N − 1 and the system dynamics is collocated at the N Lobatto

quadrature points. For the infinite horizon control problem studied in Ref. 12, Fahroo and

Ross propose using a change of variables to map the infinite time interval onto the half-open

interval [−1, +1). This change of variables leads to a singularity in the transformed dynamics

at τ = +1. Hence, it is not possible to collocate at τ = +1. To handle this singularity, Fahroo
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and Ross propose to collocate and discretize at the Radau quadrature points for which τN < 1.

The fundamental difference between the pseudospectral scheme of Ref. 12 and the scheme

introduced in this paper is that in Ref. 12, the state is approximated by polynomials of

degree N − 1, while in this paper the state is approximated using polynomials of degree

N . This change in the degree of the polynomials leads to fundamental differences between

the two schemes. For example, since the Lagrange polynomials are of different degrees, the

differentiation matrices are completely different. The differentiation matrix used in Ref. 12 is

singular, while the matrices D2:N+1 in (11) and D1:N in (12) used in this paper are invertible.

If the control and the initial state x0 are given, then the collocated dynamics in Ref. 12

constitutes N equations in N − 1 unknowns X2:N , an overdetermined system. In contrast,

(11) constitutes N equations in N unknowns X2:N+1 where the coefficient matrix D2:N+1 is

invertible. In the approach of Ref. 12, XN+1, the estimate of the state at τ = +1, is removed

from the problem by using polynomials of degree N − 1 instead of polynomials of degree

N . In the approach presented here, the state is approximated at τi, 1 ≤ i ≤ N + 1. Hence,

XN+1, the estimate of the state at the horizon, is a variable included in the pseudospectral

scheme. In addition to the fact that for infinite-horizon problems the state is estimated at

the horizon, the ability to estimate the state at τ = +1 is useful in finite-horizon problems

when the objective function depends on the state at the terminal time or when there is an

endpoint constraint.

9 Conclusions

A method has been presented for direct trajectory optimization and costate estimation using

global collocation at Legendre-Gauss-Radau (LGR) points. A theoretical foundation for the

method has been provided. The method can be viewed either as a global implicit integration

method or a pseudospectral method. Using the pseudospectral (or differential) form, it

is possible to solve general optimal control problems and construct a complete mapping

between the continuous and discrete variables. The method presented in this paper has

been demonstrated on both a finite-horizon and infinite-horizon control problem, thereby

demonstrating the range of its utility. The results of this paper indicate that the Radau

pseudospectral method described in this paper leads to the ability to determine accurate

primal and dual solutions to general optimal control problems.
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