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A method is presented for direct trajectory optimization and costate estimation using
global collocation at Legendre-Gauss-Radau (LGR) points. The method is formulated first
by casting the dynamics in integral form and computing the integral from the initial point to
the interior LGR points and the terminal point. The resulting integration matrix is nonsin-
gular and thus can be inverted so as to express the dynamics in inverse integral form. Then,
by appropriate choice of the approximation for the state, a pseudospectral (i.e., differential)
form that is equivalent to the inverse integral form is derived. As a result, the method pre-
sented in this paper can be thought of as either a global implicit integration method or a
pseudospectral method. Moreover, the formulation derived in this paper enables solving
general finite-horizon problems using global collocation at the LGR points. A key feature
of the method is that it provides an accurate way to map the KKT multipliers of the non-
linear programming problem (NLP) to the costates of the optimal control problem. Finally,
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it is shown that a previously developed Radau collocation method, which is restricted to
infinite-horizon problems, is subsumed by the method presented in this paper. The results
of this paper show that the use of LGR collocation as described in this paper leads to the
ability to determine accurate primal and dual solutions to general finite-horizon optimal
control problems.

I. Introduction

Over the last decade, pseudospectral methods have risen to prominence in the numerical solu-
tion of optimal control problems.1–18 Pseudospectral methods are a class of direct collocation where
the optimal control problem is transcribed to a nonlinear programming problem (NLP) by param-
eterizing the state and control using global polynomials and collocating the differential-algebraic
equations using nodes obtained from a Gaussian quadrature. It is noted that some researchers
prefer the term orthogonal collocation,19–21 but the terms pseudospectral and orthogonal collocation
are the same.

The three most commonly used set of collocation points are Legendre-Gauss (LG), Legendre-
Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. These three sets of points are ob-
tained from the roots of a Legendre polynomial and/or linear combinations of a Legendre poly-
nomial and its derivatives. All three sets of points are defined on the domain [−1, 1], but differ
significantly in that the LG points include neither of the endpoints, the LGR points include one of
the endpoints, and the LGL points include both of the endpoints. In addition, the LGR points are
asymmetric relative to the origin and are not unique in that they can be defined using either the
initial point or the terminal point. In recent years, the two most well documented pseudospectral
methods are the Legendre pseudospectral method1, 3–5, 10, 11, 13, 14 (LPM) and the Gauss pseudospectral
method.15–17, 22, 23 With regard to collocation at LGR points, a local collocation method has been de-
veloped in Ref. 18 while an LGR method for solving infinite-horizon problems has been developed
in Ref. 12 While some work has been done on the topic of collocation at LGR points, LGR colloca-
tion still remains the least studied of the pseudospectral methods. In particular, one question that
remains about LGR collocation is whether or not it can be used as a global collocation method for
solving general finite-horizon problems. A second, somewhat related, question is whether accurate
costates can be determined from the KKT multipliers of the NLP that arises from a finite-horizon
formulation of LGR collocation.

The purpose of this paper is to describe a method for direct trajectory optimization and costate
estimation for general finite-horizon optimal control problems using global collocation at LGR
points. In the method presented here, the dynamics are first cast in integral form and the inte-
gration points are chosen to be the interior LGR points plus the terminal point. Using the fact
that the resulting integration matrix is nonsingular, the problem can be written in inverse integral
form. It is then shown that the inverse integral form is equivalent to a pseudospectral form where
the state approximation is made using the LGR points plus the terminal point. Thus, the Radau
method derived in this paper can be treated equivalently as either a global implicit integration
method or a pseudospectral method and can be used to solve problem with general two-point
boundary conditions. Furthermore, the method derived here leads to the ability to accurately
estimate costates at both the LGR points and the missing endpoint. Finally, the formulation con-
sidered in this paper is compared to a previously developed method for solving infinite-horizon
optimal control problems using LGR collocation12 where it is found that the current formulation
subsumes the formulation of Ref. 12. The method presented in this paper is found to be a viable
approach for determining accurate primal and dual solutions to general finite-horizon optimal
control problems.
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II. LG, LGR, and LGL Collocation Points

The LG, LGR, and LGL collocation points lie on the open interval τ ∈ (−1, 1), the half open
interval τ ∈ [−1, 1) or τ ∈ (−1, 1], and the closed interval τ ∈ [−1, 1], respectively. A depiction of
these three sets of collocation points is shown in Fig. 1 where it is seen that the LG points contain
neither -1 or 1, the LGR points contain only one of the points -1 or 1 (in this case, the point -1), and
the LGL points contain both -1 and 1. Denoting K as the number of collocation points and PK(τ)
as the kth-degree Legendre polynomial, the LG points are the roots of PK(τ), the LGR points are
the roots of PK−1(τ)+PK(τ), and the LGL points are the roots of ṖK−1(τ) together with the points
-1 and 1. The polynomials whose roots are the respective points are summarized as follows:

LG: Roots obtained from PK(τ)

LGR: Roots obtained from PK−1(τ) + PK(τ)

LGL: Roots obtained from Ṗk−1(τ) together with the points -1 and 1

It is seen from Fig. 1 that the LG and LGL points are symmetric about the origin whereas the LGR
points are asymmetric. In addition, the LGR points are not unique in that two sets of points exist
(one including the point -1 and the other including the point 1). The LGR points that include
the terminal endpoint are often called the flipped LGR points. In this paper, however, we use the
standard set of LGR points as defined above and consistent with the usage given in Ref. 13.

III. Continuous Bolza Problem

Without loss of generality, consider the following optimal control problem in Bolza form. De-
termine the state, x(τ) ∈ R

n, control, u(τ) ∈ R
m, initial time, t0, and final time, tf , that minimize

the cost functional

J = Φ(x(τ1), t0,x(τN ), tf ) +
tf − t0

2

∫ 1

−1
g(x(τ),u(τ), τ ; t0 , tf )dτ (1)

subject to the constraints

dx

dτ
=

tf − t0
2

f(x(τ),u(τ), τ ; t0 , tf ) ∈ R
n (2)

φ(x(τ1), t0,x(τN ), tf ) = 0 ∈ R
q (3)

C(x(τ),u(τ), τ ; t0 , tf ) ≤ 0 ∈ R
c (4)

The optimal control problem of Eqs. (1)–(4) will be referred to as the continuous Bolza problem. It is
noted that the optimal control problem of Eqs. (1)–(4) can be transformed from the time interval
τ ∈ [−1, 1] to the time interval t ∈ [t0, tf ] via the affine transformation

t =
tf − t0

2
τ +

tf + t0
2

(5)

A. Radau Pseudospectral Discretized Form of Continuous Bolza Problem

The direct approach for solving the continuous Bolza optimal control problem is given as follows.
First, the state is approximated as

N
∑

i=1

XiLi(τ) (6)
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Figure 1: Schematic Showing the Differences Between LGL, LGR, and LG Collocation Points.
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where

Li(τ) =
N
∏

j=1

j 6=i

τ − τj

τi − τj

, (i = 1, . . . , N)

The time derivative of the state approximation of Eq. (6) is then given as

N
∑

i=1

XiL̇i(τ) (7)

The dynamic constraint is then collocated at the N − 1 LGR points as

N
∑

i=1

DkiXi −
tf − t0

2
f(Xk, Uk, τk; t0, tf ) = 0, (k = 1, . . . , N − 1) (8)

where Dki = L̇k(τi), (k = 1, . . . , N − 1), (i = 1, . . . , N) is the (N − 1) × N Radau pseudospectral
differentiation matrix, Xk ≡ X(τk), and Uk ≡ U(τk). Note that the dynamic constraint is
collocated only at the LGR points whereas the state is approximated at the N − 1 LGR points plus
the terminal point, τN = 1. Next, the continuous-time cost functional of Eq. (1) is approximated
using a Gauss-Radau quadrature as

J = Φ(X1, t0, XN , tf ) +
tf − t0

2

N−1
∑

k=1

wkg(Xk, Uk, τk; t0, tf ) (9)

where wk, (k = 1, . . . , N − 1) are the LGR weights. Furthermore, similar to the way that the end-
point cost is applied at the boundary points, the continuous-time boundary conditions of Eq. (3)
are also approximated at the boundary points as

φ(X1, t0, XN , tf ) = 0 (10)

Lastly, the path constraint of Eq. (4) is evaluated at the LGR points as

C(Xk, Uk, τk; t0, tf ) ≤ 0, (k = 1, . . . , N − 1) (11)

The cost function of Eq. (9) along with the algebraic constraints of Eqs. (8),(10) and (11) define an
NLP whose solution is an approximate solution to the continuous Bolza problem of Section III.

B. KKT Conditions of the NLP

The KKT conditions or the first-order optimality conditions of the NLP are obtained as follows.
First, the augmented cost function is formed using Lagrange multipliers Λ̃k ∈ R

n, µ̃k ∈ R
c (k =

1, ..., N − 1) and ν̃ ∈ R
q as

Ja = Φ(X1, t0, XN , tf ) +
tf − t0

2

N−1
∑

k=1

wkg(Xk, Uk, τk; t0, tf )

− ν̃T φ(X1, t0, XN , tf ) −
N−1
∑

k=1

µ̃T
k C(Xk, Uk, τk; t0, tf )

−
N−1
∑

k=1

Λ̃
T

k

(

N
∑

i=1

DkiXi −
tf − t0

2
f(Xk, Uk, τk; t0, tf )

)

(12)
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The KKT conditions of the NLP are then obtained by setting equal to zero the derivatives of the
Lagrangian taken with respect to : X1, XN , Xk, Uk, Λ̃k, ν̃, µ̃k, t0, and tf , resulting in the following
conditions:

φ(X1, t0, XN , tf ) = 0 (13)

∂gk

∂Uk

+

(

Λ̃k

wk

)T
∂fk

∂Uk

− 2

tf − t0

(

µ̃k

wk

)T ∂Ck

∂Uk

= 0, (k = 1, . . . , N − 1) (14)

N
∑

i=1

DkiXi −
(

tf − t0
2

)

f(Xk, Uk, τk; t0, tf ) = 0, (k = 1, . . . , N − 1) (15)

∂Φ

∂t0
− ν̃T ∂φ

∂t0
= − tf − t0

2

N−1
∑

k=1

wk





∂gk

∂t0
+

(

Λ̃k

wk

)T
∂fk

∂t0
− 2

tf − t0

(

µ̃k

wk

)T ∂Ck

∂t0





+
1

2

N−1
∑

i=1

wk



gk +

(

Λ̃k

wk

)T

fk − 2

tf − t0

(

µ̃k

wk

)T

Ck





(16)

− ∂Φ

∂tf
+ ν̃T ∂φ

∂tf
=

tf − t0
2

N−1
∑

k=1

wk





∂gk

∂tf
+

(

Λ̃k

wk

)T
∂fk

∂tf
− 2

tf − t0

(

µ̃k

wk

)T ∂Ck

∂tf





+
1

2

N−1
∑

i=1

wk



gk +

(

Λ̃k

wk

)T

fk − 2

tf − t0

(

µ̃k

wk

)T

Ck





(17)

C(Xk, Uk, τk; t0, tf ) ≤ 0, (k = 1, . . . , N − 1) (18)

µ̃jk = 0 when Cjk < 0, (j = 1, .., c; k = 1, .., N − 1) (19)

µ̃jk ≤ 0 when Cjk = 0, (j = 1, .., c; k = 1, .., N − 1) (20)

tf − t0
2





∂g1

∂X1
+

(

Λ̃1

w1

)T
∂f1

∂X1
− 2

tf − t0

(

µ̃1

w1

)T ∂C1

∂U1





T

+

N−1
∑

i=1

Λ̃i

wi

D†
1i = − 1

w1

[

Λ̃1

w1
+

(

∂Φ

∂X1
− ν̃T ∂φ

∂X1

)T
]

(21)

tf − t0
2





∂gk

∂Xk

+

(

Λ̃k

wk

)T
∂fk

∂Xk

− 2

tf − t0

(

µ̃k

wk

)T ∂Ck

∂Xk





T

+

N−1
∑

i=1

(

Λ̃i

wi

)

D†
ki = 0, (k = 2, . . . , N−1)

(22)
(

∂Φ

∂XN

− ν̃T ∂φ

∂XN

)T

−
N−1
∑

i=1

Λ̃iDiN = 0 (23)

Now, defining the quantity Λ̃N as

Λ̃N =

N−1
∑

i=1

Λ̃iDiN (24)

Eq. (23) can be re-written as
(

∂Φ

∂XN

− ν̃T ∂φ

∂XN

)T

− Λ̃N = 0 (25)
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Using the relationships given by Eq. (45)-(47), Eq. (24) can be expressed in an alternate manner as
follows:

Λ̃N =
N−1
∑

i=1

Λ̃iDiN

= −
N−1
∑

i=1

Λ̃i

N−1
∑

k=1

Dik = −
N−1
∑

i=1

N−1
∑

k=1

Λ̃iDik

= −
N−1
∑

i=1

(

Λ̃iDi1 +

N−1
∑

k=2

Λ̃iDik

)

= −
N−1
∑

i=1

Λ̃iDi1 −
N−1
∑

i=1

N−1
∑

k=2

Λ̃iDik

= −Λ̃1D11 −
N−1
∑

i=2

Λ̃iDi1 −
N−1
∑

k=2

N−1
∑

i=1

Λ̃iDik

= −Λ̃1

(

−D†
11 −

1

w1

)

+

N−1
∑

i=2

Λ̃i

w1

wi

D†
1i +

N−1
∑

k=2

wk

N−1
∑

i=1

Λ̃i

wi

D†
ki

=
Λ̃1

w1
+ Λ̃1D

†
11 +

N−1
∑

i=2

Λ̃i

w1

wi

D†
1i +

N−1
∑

k=2

wk

N−1
∑

i=1

Λ̃i

wi

D†
ki

=
Λ̃1

w1
+ w1

N−1
∑

i=1

Λ̃i

wi

D†
1i +

N−1
∑

k=2

wk

N−1
∑

i=1

Λ̃i

wi

D†
ki =

Λ̃1

w1
+

N−1
∑

k=1

wk

N−1
∑

i=1

Λ̃i

wi

D†
ki

=
Λ̃1

w1
+

tf − t0
2

N−1
∑

k=1

wk



− ∂gk

∂Xk

−
(

Λ̃k

wk

)T
∂fk

∂Xk

+
2

tf − t0

(

µ̃k

wk

)T ∂Ck

∂Xk





T

(26)

Equation (26) will be used in Section C to derive a mapping between the KKT multipliers and the
costates.

IV. Radau Pseudospectral Method for Discretizing Continuous Bolza Problem

We now derive a pseudospectral method for solving general optimal control problems using
global collocation at Legendre-Gauss-Radau points. The derivation of described below will be di-
vided into four parts: (i) the first-order optimality condtions of the continuous Bolza problem; (ii)
the Radau pseudospectral discretization of the continuous-time first-order optimality conditions
of the continuous Bolza problem; (iii) the Radau pseudospectral discretization of the continuous-
time optimal control problem, resulting in a discrete NLP; (iv) the KKT conditions of the NLP; (v)
a costate estimation obtained from the results of (iii) and (iv).

A. First-Order Necessary Conditions of the Continuous Bolza Problem

The indirect approach for solving the continuous Bolza optimal control problem of Eqs. (1)–(4)
given in Section III is to apply the calculus of variation and Pontryagin’s maximum principle to
obtain first-order necessary conditions for optimality. First, the augmented Hamiltonian is defined
as

H(x,λ,u,µ, τ ; t0, tf ) = g(x,u, τ ; t0, tf ) + λT (τ)f(x,u, τ ; t0, tf ) − µT (τ)C(x,u, τ ; t0, tf ) (27)

7 of 29

American Institute of Aeronautics and Astronautics



where λ(τ) ∈ R
n is the costate and µ(τ) ∈ R

c is the Lagrange multiplier associated with the path
constraint. The continuous-time first-order optimality conditions are then given as24

∂H

∂u
=

∂g

∂u
+ λT ∂f

∂u
− µT ∂C

∂u
= 0 (28)

dx

dτ
=

tf − t0
2

∂H

∂λ

T

=
tf − t0

2
f(x,u, τ ; t0, tf ) (29)

dλ

dτ
= − tf − t0

2

(

∂H

∂x

)T

= − tf − t0
2

(

∂g

∂x
+ λT ∂f

∂x
− µT ∂C

∂x

)T

(30)

φ(x(t0), t0,x(tf ), tf ) = 0 (31)

λT (τ1) = − ∂Φ

∂x(τ0)
+ νT ∂φ

∂x(τ0)
, λT (τN ) =

∂Φ

∂x(τN )
− νT ∂φ

∂x(τN )
(32)

H(τ1) =
∂Φ

∂t0
− νT ∂φ

∂t0
, H(τN ) = − ∂Φ

∂tf
+ νT ∂φ

∂tf
(33)

where ν ∈ R
q is the Lagrange multiplier associated with the boundary condition φ. It can be

shown that the augmented Hamiltonian at the initial and final times can be written, respectively,
as

H(τ1) = − tf − t0
2

∫ 1

−1

∂H

∂t0
dτ +

1

2

∫ 1

−1
Hdτ (34)

H(τN ) =
tf − t0

2

∫ 1

−1

∂H

∂tf
dτ +

1

2

∫ 1

−1
Hdτ (35)

B. Radau Pseudospectral Discretized First-Order Necessary Conditions of Continuous Bolza

Problem

The first-order conditions for optimality are discretized using the Radau pseudospectral method
as follows. First, the state is approximated in a manner consistent with Eq. (6) using the N − 1
LGR points plus the terminal point, τN = 1, as

x(τ) ≈ X(τ) =

N
∑

i=1

X(τi)L̃i(τ) (36)

where the Lagrange polynomials L̃i(τ) (i = 1, . . . , N) are defined as

L̃i(τ) =
N
∏

j=1

j 6=i

τ − τj

τi − τj

(37)

The time derivative of the state approximation given in Eq. (36) is then obtained as

ẋ(τ) ≈ Ẋ(τ) =

N
∑

i=1

˙̃Li(τ)X(τi) (38)

Applying the time derivative of Eq. (38) at the N − 1 LGR points (τ1, . . . , τN−1) gives

ẋ(τk) ≈ Ẋ(τk) =

N
∑

i=1

˙̃Li(τk)X(τi) =

N
∑

i=1

DkiX(τi), (k = 1, . . . , N − 1) (39)
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where Dki, (k = 1, . . . , N − 1; i = 1, . . . , N) is the (N − 1)×N RPM differentiation matrix. Next, the
costate is approximated as

λ(τ) ≈ Λ(τ) =
N−1
∑

i=1

L†
i (τ)Λ(τi) (40)

where the Lagrange polynomials L†
i (τ) (i = 1, . . . , N − 1) are defined as

L†
i (τ) =

N−1
∏

j=1

j 6=i

τ − τj

τi − τj

(41)

It is noted here that the costate approximation differs from the state approximation in that the
costate approximation does not include the terminal point τN = 1. As a result, the interpolation
points for the costate are only the values of the costate at the LGR points and do not include the
value of the costate at the terminal time. The time derivative of the costate is then given as

λ̇(τ) ≈ Λ̇(τ) =

N−1
∑

i=1

L̇†
i (τ)Λ(τi) (42)

The approximation to the time derivative of the costate is then applied at the N−1 LGR collocation
points (τ1, . . . , τN−1) as

λ̇(τk) ≈ Λ̇(τk) =

N−1
∑

i=1

L̇†
i (τk)Λ(τi) =

N−1
∑

i=1

D†
kiΛ(τi), (k = 1, . . . , N − 1) (43)

where D†
ki, (k = 1, . . . , N − 1; i = 1, . . . , N − 1) is the (N − 1)× (N − 1) adjoint RPM differentiation

matrix. The matrices D and D† are related to one another by the following result:

Theorem 1 The matrices Dki and D†
ik defined in Eqs. (39) and (43), respectively, are related to one another

as

D11 = −D†
11 −

1

w1
(44)

Dik = −wk

wi

D†
ki, (i, k = 1, .., N − 1; i 6= k) (45)

Dii = −D†
ii, (i = 2, . . . , N − 1) (46)

DiN = −
N−1
∑

k=1

Dik, (i = 1, . . . , N − 1) (47)

where wk, (k = 1, . . . , N − 1) are the LGR weights.

Proof of Theorem 1 Consider the integration by parts formula

∫ 1

−1
ṗ(τ)q(τ)dτ = [p(τ)q(τ)]1−1 −

∫ 1

−1
p(τ)q̇(τ)dτ (48)
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Approximating the integrals in Eq. (48) using a Gauss-Radau quadrature, we have

w1q(−1)
N
∑

l=1

D1lq(τl) +
N−1
∑

j=2

N
∑

l=1

Djlp(τl)q(τj)wj

= p(1)q(1) − p(−1)q(−1) − w1p(−1)

N−1
∑

l=1

D†
1lq(τl) −

N−1
∑

j=2

N−1
∑

l=1

D†
jlq(τl)p(τj)wj

(49)

Equation (49) must hold for all polynomials p(τ) of degree N −1 or less and all polynomials q(τ) of degrees
N − 2 or less. Consequently, Eq. (49) must hold for for the set of (N − 1)th-degree Lagrange polyno-
mials L̃k(τ), (k = 1, . . . , N) defined in Eq. (37) and the set of (N − 2)th-degree Lagrange polynomials
L̃k(τ), (k = 1, . . . , N − 1) defined in Eq. (41). Substituting these Lagrange polynomials into Eq. (49), we
obtain

w1L
†
i (−1)

N
∑

l=1

D1lL̃k(τl) +

N−1
∑

j=2

N
∑

l=1

DjlL̃k(τl)L
†
i (τj)wj

= L̃k(1)L
†
i (1) − L̃k(−1)L†

i (−1) − w1L̃k(−1)
N−1
∑

l=1

D†
1lL

†
i (τl) −

N−1
∑

j=2

N−1
∑

l=1

D†
jlL̃k(τj)L

†
i (τl)wj

(50)

For i = 1 we have
L†

1(−1) = 1

L†
1(τj) = 0, (j = 2, . . . , N − 1)

(51)

Eq. (50) then reduces to

w1

N
∑

l=1

D1lL̃k(τl) = L̃k(1)L
†
i (1) − L̃k(−1) − w1D

†
11L̃k(−1) −

N−1
∑

j=2

D†
j1L̃k(τj)wj (52)

Now for k = 1 we have

L̃1(−1) = 1

L̃1(τj) = 0, (j = 2, . . . , N)
(53)

Equation (52) then reduces to

w1D11 = −1 − w1D
†
11 (54)

which implies that

D11 = −D†
11 −

1

w1
(55)

Next, for i = 1 and k = 2, . . . , N − 1 we have from Eq. (52) that

w1D1kL̃k(τk) = −wkD
†
k1L̃k(τk) (56)

Then, knowing that L̃k(τk) = 1, (k = 2, . . . , N − 1), we obtain

w1D1k = −wkD
†
k1 (57)

from which we obtain

D1k = −wk

w1
D†

k1 (58)
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Next, substituting i = 2, . . . , N − 1 ane k = 2, . . . , N − 1 into Eq. (50) gives

N−1
∑

j=2

N
∑

l=1

DjlL̃k(τl)L
†
i (τj)wj = −

N−1
∑

j=2

N−1
∑

l=1

D†
jlL̃k(τj)L

†
i (τl)wj (59)

Now we know that
L̃k(τl)L

†
i (τj) = 0 , (l 6= k; j 6= 1)

L̃k(τj)L
†
i (τl) = 0 , (j 6= k; l 6= i)

(60)

Therefore,

Dikwi = −D†
kiwk (61)

which implies that

Dik = −wk

wi

D†
ki (62)

Combining Eqs. (58) and (62) gives

Dik = −wk

wi

D†
ki, (i, k = 1, . . . , N − 1; i 6= k)

Dii = −D†
ii, (i = 2, . . . , N − 1)

(63)

Lastly, suppose that f(τ) = c where c is a constant. Then we have

ḟ(τi) =
N−1
∑

k=1

Dikf(τi) + DiNf(τN ) =
N−1
∑

k=1

Dikc + DiN c = 0 (64)

Therefore,

DiN = −
N−1
∑

k=1

Dik (65)

Using the state and costate approximation as given in Eqs. (36) and (40), the first-order nec-
essary conditions of the continuous Bolza problem in Section A are discretized as follows. The
continuous-time first-order optimality conditions of Section A are discretized using the variables
Xk ≡ X(τk) ∈ R

n and XN ≡ X(τN ) for the state, Uk ≡ U(τk) ∈ R
m for the control, Λk ≡ Λ(τk) ∈ R

n

and ΛN ≡ Λ(τN ) for the costate and µk ≡ µ(τk) ∈ R
c for the Lagrange multiplier associated with

the path constraints at the LGR points k = 1, 2, .., N −1. The other unknown variables in the prob-
lem are the initial time, t0 ∈ R, the final time, tf ∈ R and the Lagrange multiplier ν ∈ R

q. These
variables are used to discretize the continuous necessary conditions of Section A via the Radau
pseudospectral discretization. The resulting algebraic equations that approximate the continuous
necessary conditions at the LGR points are given as

N
∑

i=1

DkiXi −
(

tf − t0
2

)

f(Xk, Uk, τk; t0, tf ) = 0, (k = 1, . . . , N − 1) (66)

N−1
∑

i=1

D†
kiΛi =

tf − t0
2

[

− ∂gk

∂Xk

− ΛT
k

∂fk

∂Xk

+ µT
k

∂Ck

∂Xk

]T

, (k = 1, . . . , N − 1) (67)

∂gk

∂Uk

+ ΛT
k

∂fk

∂Uk

− µT
k

∂Ck

∂Uk

= 0, (k = 1, . . . , N − 1) (68)
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φ(X1, t0, XN , tf ) = 0 (69)

ΛT
1 = −

(

∂Φ

∂X1
− νT ∂φ

∂X1

)

(70)

ΛT
N =

∂Φ

∂XN

− νT ∂φ

∂XN

(71)

∂Φ

∂t0
− ν̃T ∂φ

∂t0
= − tf − t0

2

N−1
∑

k=1

wk

[

∂gk

∂t0
+ ΛT

k

∂fk

∂t0
− µT

k

∂Ck

∂t0

]

+
1

2

N−1
∑

i=1

wk

[

gk + ΛT
k fk − µT

k Ck

]

(72)

− ∂Φ

∂tf
+ ν̃T ∂φ

∂tf
=

tf − t0
2

N−1
∑

k=1

wk

[

∂gk

∂t0
+ ΛT

k

∂fk

∂t0
− µT

k

∂Ck

∂t0

]

+
1

2

N−1
∑

i=1

wk

[

gk + ΛT
k fk − µT

k Ck

]

(73)

C(Xk, Uk, τk; t0, tf ) ≤ 0, (k = 1, . . . , N − 1) (74)

µ̃jk = 0 when Cjk < 0, (j = 1, .., c; k = 1, .., N − 1) (75)

µ̃jk ≤ 0 when Cjk = 0, (j = 1, .., c; k = 1, .., N − 1) (76)

Finally, Gauss-Radau quadrature is used to write an equation relating the initial and final costate
as

ΛN = Λ1 +

(

tf − t0
2

)N−1
∑

k=1

wk

[

− ∂gk

∂Xk

− ΛT
k

∂fk

∂Xk

+ µT
k

∂Ck

∂Xk

]T

(77)

The total number of variables in this system of equations are 2Nn+(m+c)(N −1)+q+2 whereas
the total number of equations in this system are (2N + 1)n + (m + c)(N − 1) + q + 2. Clearly,
we have an over-determined system of equations here with more number of equations than the
number of variables to be solved for.

C. Costate and Lagrange Multipliers Estimate

Using the results of Sections B and B, a costate estimate at the LGR points and the boundary points
and a Lagrange multipliers estimate associated with the boundary condition and path constraints
for the continuous Bolza problem is now obtained. A costate estimate at the final time and the
LGR points can be found from the KKT multipliers Λ̃k, Λ̃N , µ̃k and ν̃,

Λk =
Λ̃k

wk

, (k = 1, . . . , N − 1) (78)

ΛN = Λ̃N (79)

ν = ν̃ (80)

µk =
2

tf − t0

µ̃k

wk

, (k = 1, . . . , N − 1) (81)
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It is seen that Eqs. (13)-(26) are identical to Eqs. (66)-(77), with the one exception of Eq. (21) where
the transversality condition at the initial time is mixed with the costate dynamics collocated at the
initial time. Comparing the KKT conditions with the Radau Pseudospectral discretized necessary
conditions of Section B, it is seen that, with the exception of the KKT multiplier at the initial time,
all of the remaining KKT conditions are equivalent to the discretized form of the continuous first-
order necessary conditions of the continuous Bolza problem when using the Radau pseudospec-
tral discretization. The left hand side of Eq. (21) is the costate dynamic constraint collocated at
the initial point while the right hand side of Eq. (21) is the transversality condition obtained from
first-order necessary conditions for optimality of the continuous Bolza problem. It is seen that the
initial costate does not exactly match with that obtained from the initial transversality condition,
but the final costate is the same as obtained from the transversality condition.

V. Radau Pseudospectral Discretization of Infinite-Horizon Problems

Consider the following optimal control problem. Minimize the infinite-horizon cost functional

J =

∫ ∞

0
g(x(t),u(t), t)dt (82)

subject to the dynamic constraint
ẋ = f(x(t),u(t), t) (83)

with the initial condition
x(0) = x0. (84)

Consider further the following transformation of time found in Ref. 12:

t =
1 + τ

1 − τ
(85)

This transformation maps the interval t ∈ [0,∞) to the closed interval τ ∈ [−1, 1]. Using (85),
the infinite-horizon optimal control problem (82)–(84) can be written in terms of τ as follows.
Minimize the cost functional

J =

∫ 1

−1

2

(1 − τ)2
g(x(τ),u(τ), τ)dτ (86)

subject to the dynamic constraint

dx

dτ
=

2

(1 − τ)2
f(x(τ),u(τ), τ) (87)

with the initial condition
x(−1) = x0 (88)

The transformed infinite-horizon optimal control problem (86)–(88) can be solved using the
following modification of the Radau pseudospectral discretization. Minimize the cost function

J =
N
∑

k=1

2wk

(1 − τk)2
g(Xk,Uk, τk) (89)
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subject to the constraints

N
∑

i=1

DkiXi =
2

(1 − τi)2
f(Xi, Ui, τi; t0, tf ), (k = 1, . . . , N) (90)

X1 = x0 (91)

It is noted in the NLP of (89)–(V) that the state is approximated at the LGR points plus the terminal
point (at τ = 1). Hence we obtain an approximation of the state at the horizon t = ∞. Moreover,
the NLP avoids the singularity at τ = +1 in the factor 2/(1 − τ)2 because τk = +1 is not a quadra-
ture point. As is discussed in Section VII below, the solution obtained using the Radau pseu-
dospectral method of this paper differs fundamentally from the infinite-horizon method given in
Ref. 12 because in the method of Ref. 12 the state is obtained only at the LGR points whereas in
the method presented here the state is obtained at the LGR points and the terminal point τ = +1.

VI. Examples

In this section we consider two examples using the aforementioned Radau pseudospectral
method. The first example is a nonlinear one-dimensional finite-horizon optimal control problem
taken from Ref. 15 while the second example is an infinite-horizon linear quadratic problem taken
from Ref. 12. It is noted that these two examples utilize the finite-horizon and infinite-horizon
forms of the Radau pseudospectral method, respectively.

Example 1: Nonlinear One-Dimensional Finite-Horizon Problem

Consider the following optimal control problem. Minimize the cost functional

J =
1

2

∫ tf

0
(y + u2)dt (92)

subject to the dynamic constraint
ẏ = 2y + 2u

√
y, (93)

and the boundary conditions

y(0) = 2,

y(tf ) = 1,

tf = 5.

(94)

It is noted that the exact solution to the optimal control problem of (92)–(94) is given as

y∗(t) = x2(t)

λ∗
y(t) =

λx

2
√

y

(95)

where x(t) and λx(t) are given as

[

x(t)

λx(t)

]

= exp(At)

[

x0

λx0

]

(96)
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where

A =

[

1 −1

−1 −1

]

x0 =
√

2

xf = 1

λx0 =
xf − B11x0

B12

(97)

and

B =

[

B11 B12

B21 B22

]

= exp(Atf ) (98)

Example 1 was solved using the Radau pseudospectral method (RPM) with the software Opti-
malPrime26 and the NLP solver SNOPT27 for N = 4 to N = 99 LGR points. The SNOPT optimality
and feasibility tolerances were 10−10. A typical solution for N = 39 LGR points (i.e., N + 1 = 40
discretization points) is shown in Fig. 2 alongside the exact solution. Suppose now that we define
the following maximum absolute errors between the RPM solution and the exact solution:

ey = max
k∈[1,...,N+1]

log10 |y(τk) − y∗(τk)|

eλy
= max

k∈[1,...,N+1]
log10

∣

∣λy(τk) − λ∗
y(τk)

∣

∣

eu = max
k∈[1,...,N ]

log10 |u(τk) − u∗(τk)|

(99)

Figs. 3–4 show ey , eu, and eλy
as a function of N + 1. It is seen that ey, eu, and eλy

decrease in a
linear manner from N = 4 to 49. Moreover, for N ≥ 50 all three errors remain essentially constant,
ey and eu being constant at approximately 10−10 and eu being constant at approximately 10−9.
The rate of decrease of e for the lower number of nodes is most revealing because it shows that e
decreases linearly, demonstrating a spectral convergence rate.

Example 2: Infinite-Horizon LQR Problem

Consider the following optimal control problem taken from Ref. 12. Denoting x(t) = [x1(t)x2(t)]
T ∈

R
2 as the state and u(t) ∈ R as the control, minimize the cost functional

J =
1

2

∫ ∞

0

(

xTQx + uTRu
)

dt, (100)

subject to the dynamic constraint
ẋ = Ax + Bu, (101)

and the initial condition

x(0) =

[

−4

4

]

. (102)

The matrices A, B, Q, and R for this problem are given as

A =

[

0 1

2 −1

]

, B =

[

0

1

]

, Q =

[

2 0

0 1

]

, R =
1

2
. (103)
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Figure 2: Solution to Example 1 Using 39 LGR Points Alongside Exact Solution.
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The exact solution to this problem is

x(t) = exp([A− BK] t)x(0)

u(t) = −Kx(t)

λ(t) = Sx(t)

(104)

where K is the optimal feedback gain and S is the solution to the algebraic Riccati equation. In
this case K and S are given, respectively, as

K =
[

4.828427124746193 2.557647291327851
]

S =

[

6.031273049535752 2.414213562373097

2.414213562373097 1.278823645663925

]

(105)

The optimal control problem of Eqs. (100)–(102) was solved using the infinite-horizon version
of the Radau pseudospectral method (as given in Section V) using the software OptimalPrime26 and
the NLP solver SNOPT27 with default optimality and feasibility tolerances of 10−6 and 2 × 10−6,
respectively, for N = 5 to N = 35 by steps of 5. The infinite-horizon RPM solution for N = 35 is
shown in Figs 6–7 as a function of τ alongside the exact solution. It is seen that the RPM solution
and the exact solution are indistinguishable for all three quantities (state, control, and costate). In
particular, it is seen that the infinite horizon version of the RPM solves the problem at all of the
LGR points plus the point τ = +1 (i.e., t = ∞), thus computing the solution on the infinite horizon.
Suppose now that we define the following maximum absolute errors between the RPM solution
and the exact solution:

ex = max
k∈[1,...,N+1]

log10 |x(τk) − x∗(τk)|

eu = max
k∈[1,...,N ]

log10 |u(τk) − u∗(τk)|

eλ = max
k∈[1,...,N+1]

log10 |λ(τk) − λ∗(τk)|

(106)

The values of ex, eλy
, and eu are shown in Figs. 9–11. It is seen that all errors decrease linearly

until approximately N = 35, again demonstrating a spectral convergence rate.

VII. Comparison with Previous Work on LGR Collocation

It is noted that two earlier LGR collocation methods have been derived. The first of these
methods is given in Ref. 18 and focuses on local collocation using LGR points. The second method
is that given in Ref. 12 and describes a global method for solving infinite-horizon problems. In
this section we comment briefly on how the method derived in this paper relates to each of these
previously derived methods.

A. Comparison with Local LGR Collocation Method of Ref. 18

The method derived in this paper shares similarities with the method of Ref. 18 in that the approx-
imation of the state uses the same basis of Lagrange polynomials. It is noted, however, that the
method of Ref. 18 uses local collocation, favoring a small number of collocation points and many
subintervals (called finite elements in Ref. 18) whereas the current method uses a large number of
collocation points and a single interval (i.e., global collocation). As a result, the method of Ref. 18
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has both a larger number of variables (i.e., additional variables at the endpoints of the intervals)
and a larger number of constraints (i.e., constraints required to connect the subintervals). More-
over, the method of Ref. 18 is implemented more in the form of an implicit Runge-Kutta method
(due to the fact that the time interval is divided into many subintervals) whereas the method
derived in this paper is implemented in the form of a pseudospectral method. It is noted that
both approaches are valid, but the current approach is consistent with the manner in which pseu-
dospectral methods have been implemented over the past several years in the aerospace control
literature.

B. Comparison with Global Infinite-Horizon LGR Collocation Method of Ref. 12

While the Radau pseudospectral method derived in this paper has some similarities with the
method of Ref. 12, it is important to point out that these two methods are much more different
that they are alike. First, in the method presented here, the differentiation matrix is full-rank be-
cause the state is approximated using a polynomial of degree N − 1, thereby resulting in N − 1
independent equations for the time derivative of the state. Moreover, because the Radau differ-
entiation matrix is full-rank, it is equivalent to the Radau integration matrix, thereby enabling the
approach of this paper to be thought of as either a global implicit integration method or a pseu-
dospectral method. Second, because all of the points (i.e., the LGR points plus the terminal point)
are used to approximate the state, the method derived in this paper enables solving either finite-
horizon or infinite-horizon optimal control problems. On the other hand, in the method of Ref. 12,
the Radau differentiation matrix is singular.

If one wants to include boundary conditions and both ends and use the correct points at which
to enforce the boundary conditions, the time derivative of the state must be a polynomial of degree
N − 1. Because Ref. 12 uses an approximation for the state that is one degree lower than is used in
the method derived in this paper, Ref. 12 is limited to infinite-horizon problems (or problems that
have boundary conditions at only one endpoint). Moreover, because the method of Ref. 12 does
not incorporate the actual terminal point (i.e., the final point in the method of Ref. 12 is the last
LGR point which is strictly less than unity), any terminal boundary condition would be applied
at the incorrect point. Second, a by-product of our method using a polynomial of degree N − 1
to approximate the state leads to the ability to construct a complete (i.e., the LGR points plus the
terminal point) mapping between the indirect and direct forms. Furthermore, it was derived that
the indirect and direct forms are nearly identical, the only discrepancy being the mixture of the
initial transversality condition and the collocation of the dynamic constraint at the initial time as
given in Eq. (21). Finally, it was shown by example that the discrepancy of Eq. (21) is small, thereby
still providing a highly accurate costate approximation. Thus, while the differences between our
method and the method of Ref. 12 appear to be small, the mathematical basis of our formulation is
quite different from that of Ref. 12. As a result, it is important to not look just at what may appear
to be subtle differences between our method and that of Ref. 12, but to see that the two forms lead
to significantly different results where our method is capable of solving a wider range of problems
than the method of Ref. 12.

VIII. Conclusions

A method has been presented for direct trajectory optimization and costate estimation us-
ing global collocation at Legendre-Gauss-Radau (LGR) points. A theoretical foundation for the
method has been provided where the method can be constructed either as a global implicit in-
tegration method or a pseudospectral method. Using the pseudospectral (i.e., differential) form,
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it is possible to solve general finite-horizon optimal control problems and construct a complete
mapping between the indirect and direct forms. In particular, the KKT multipliers of the nonlin-
ear programming problem (NLP) can be mapped to the costates of the optimal control problem.
While not exact, the costate mapping is found to be highly accurate due to the fact that the discrep-
ancy between the indirect and direct forms is small. The method presented in this paper has been
demonstrated on both a finite-horizon and infinite-horizon, thereby demonstrating the range of
its utility. The results of this paper show that the Radau pseudospectral method described in this
paper leads to the ability to determine accurate primal and dual solutions to general finite-horizon
optimal control problems.
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