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I. Introduction

N UMERICALmethods for solving optimal control problems fall
into two general categories: indirect methods and direct

methods [1]. In an indirect method, first-order necessary conditions
for optimality are derived from the optimal control problem via the
calculus of variations. These necessary conditions form a
Hamiltonian boundary-value problem (HBVP), which is then
solved (often numerically) for extremal trajectories [2]. The optimal
solution is then found by choosing the extremal trajectory with the
lowest cost. The primary advantages of indirect methods are their
high accuracy in the solution and the assurance that the solution
satisfies the first-order optimality conditions. However, indirect
methods have several disadvantages, including small radii of
convergence, the need to analytically derive the HBVP, a (generally
nonintuitive) initial guess for the costate, and if path constraints are
present, a priori knowledge of the constrained and unconstrained
arcs.

In a direct method, the continuous-time optimal control problem is
transcribed to a nonlinear programming problem (NLP). The
resulting NLP can be solved numerically by well-developed
algorithms, which attempt to satisfy a set of conditions [called
Karush–Kuhn–Tucker (KKT) conditions] associated with the NLP.
Although direct methods do not suffer from the disadvantages of the
indirect approach, many provide either an inaccurate costate or no
costate information whatsoever. There are several methods to
transcribe an optimal control problem into anNLP: examples include
direct shooting methods [3], state and control parameterization
methods [4–6], and pseudospectral methods [7–10]. In a direct
shooting method, the control alone is parameterized and explicit
numerical integration is used to satisfy the differential constraints. In

a state and control parameterization method, piecewise polynomials
are used to approximate the differential equations at collocation
points. State and control parameterization methods have the
advantage that they avoid the numerically expensive explicit
integration of control parameterization methods. In a pseudospectral
method, the state and control are parameterized using global
polynomials, and the differential-algebraic equations are approxi-
mated via orthogonal collocation. Pseudospectral methods are based
on spectral methods which were traditionally used to solve fluid
dynamics problems and typically have faster convergence rates than
other methods [11,12]. Pseudospectral methods have been applied to
optimal control problems in the 1980s usingChebyshev polynomials
[7,8]. Within the aerospace community, two well-known
pseudospectral methods for solving optimal control problems are
the Legendre pseudospectral method [9] and the Chebyshev
pseudospectral method [10]. Additionally, a costate estimation
procedure that uses the Legendre pseudospectral method was
developed in [13,14].

Interestingly, a significant amount of work in pseudospectral
methods has also been done in the chemical engineering community
thatmakes the distinction between state and control parameterization
methods and pseudospectral methods less clear. A groundbreaking
work by Reddien [15] approximated the state with splines and
performed collocation at the Legendre–Gauss (LG) (also referred to
as Gauss) points as early as 1979. This paper also analytically proved
convergence of the method and showed the equivalence between the
KKT conditions and the first-order optimality conditions for a simple
problem. Cuthrell and Biegler [16] extended the method by using
Lagrange polynomials instead of splines to approximate the state. In
Cuthrell’smethod, the trajectory is divided intofinite elementswhere
global approximations are applied to each element individually. The
state is then linked across elements, akin to state and control
parameterization methods. Cuthrell and Biegler [16] also discussed
equivalence, but did not focus on costate estimation, and hence did
not explicitly formulate a mapping between the KKT multipliers of
the NLP and the costate.

In this paper we develop a method for direct trajectory
optimization and costate estimation called theGauss pseudospectral
method (GPM). It is noted that the Gauss pseudospectral method is
based largely on [17], with extensions developed in [18], and has
similarities with [16]. In the Gauss pseudospectral method,
orthogonal collocation of the dynamics is performed at the LG
points. The Gauss pseudospectral method differs from several other
pseudospectral methods in that the dynamics are not collocated at the
boundary points. This collocation, in conjunction with the proper
approximation to the costate, leads to a set of KKT conditions that is
identical to the discretized form of the first-order optimality
conditions at the LG points. This equivalence between the KKT
conditions and the discretized first-order necessary conditions leads
to an accurate costate estimate using theKKTmultipliers of theNLP.
An example problem demonstrates the method’s ability to obtain
accurate estimates of the state, costate, and control for continuous-
time optimal control problems. In particular, it is shown through the
example that the errors in the state, costate, and control decrease
rapidly as the number of discretization points increases. In addition,
the Gauss pseudospectral method has been successfully
implemented in multivehicle, multiphase trajectory optimization
problems [18–20].

Received 11 October 2005; revision received 7 March 2006; accepted for
publication 9 March 2006. Copyright © 2006 by the Charles Stark Draper
Laboratory, Inc.. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code $10.00 in correspondence with the CCC.

∗Draper Laboratory Fellow; bensonda@alum.mit.edu.
†Draper Laboratory Fellow, Ph.D. Candidate, Department of Aeronautics

and Astronautics, MIT; ghuntington@draper.com.
‡Distinguished Member of the Technical Staff, Tactical ISR Division;

tomt@draper.com.
xSeniorMember of the Technical Staff, Guidance, Navigation, andControl

Systems Division; anilvrao@ufl.edu (corresponding author).

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 29, No. 6, November–December 2006

1435



II. Continuous Bolza Problem

Without loss of generality, consider the following optimal control
problem. Determine the state x��� 2 Rn, control u��� 2 Rm, initial
time t0, and final time tf that minimize the cost functional

J ���x��1�; t0;x�1�; tf � �
tf � t0

2

Z

1

�1
g�x���;u���; �; t0; tf � d�

(1)

subject to the constraints

dx

d�
�

tf � t0

2
f�x���;u���; �; t0; tf � (2)

� �x��1�; t0;x�1�; tf� � 0 2 Rq (3)

C �x���;u���; �; t0; tf� � 0 2 Rc (4)

The optimal control problem of Eqs. (1–4) will be referred to as the
continuous Bolza problem. It is noted that the optimal control
problem of Eqs. (1–4) can be transformed from the time interval
� 2 ��1; 1� to the time interval t 2 �t0; tf� via the affine
transformation

t�
tf � t0

2
��

tf � t0

2
(5)

III. Gauss Pseudospectral Discretization
of Continuous Bolza Problem

The direct approach to solving the continuous Bolza optimal
control problem of Sec. II is to discretize and transcribe Eqs. (1–4) to
a NLP. The Gauss pseudospectral method, like Legendre and
Chebyshev methods, is based on approximating the state and control
trajectories using interpolating polynomials. The state is
approximated using a basis of N � 1 Lagrange interpolating
polynomials [21] L,

x ��� 	X��� �
X

N

i�0

X��i�Li��� (6)

where Li��� �i� 0; . . . ; N� are defined as

Li��� �
Y

N

j�0;j≠i

� � �j

�i � �j
(7)

Additionally, the control is approximated using a basis of N
Lagrange interpolating polynomials L


i ���, �i� 1; . . . ; N� as

u ��� 	 U��� �
X

N

i�1

U��i�L

i ��� (8)

where

L

i ��� �

Y

N

j�1;j≠i

� � �j

�i � �j
(9)

It can be seen from Eqs. (7) and (9) that Li��� �i� 0; . . . ; N� and
L

i ��� �i� 1; . . . ; N� satisfy the properties

Li��j� �
�

1; i� j

0; i ≠ j
(10)

L

i ��j� �

�

1; i� j

0; i ≠ j
(11)

Differentiating the expression in Eq. (6), we obtain

_x��� 	 _X��� �
X

N

i�0

x��i� _Li��� (12)

The derivative of each Lagrange polynomial at the LG points can be
represented in a differential approximationmatrix,D 2 RN�N�1. The
elements of the differential approximation matrix are determined
offline as follows:

Dki � _Li��k� �
X

N

l�0

Q

N
j�0;j≠i;l��k � �j�

Q

N
j�0;j≠i��i � �j�

(13)

where k� 1; . . . ; N and i� 0; . . . ; N. The dynamic constraint is
transcribed into algebraic constraints via the differential
approximation matrix as follows:

X

N

i�0

DkiXi �
tf � t0

2
f�Xk;Uk; �k; t0; tf� � 0 �k� 1; . . . ; N�

(14)

where Xk � X��k� 2 Rn and Uk � U��k� 2 Rm �k� 1; . . . ; N).
Note that the dynamic constraint is collocated only at the LG points
and not at the boundary points (this form of collocation differs from
other well-known pseudospectral methods such as those found in
[9,10]). Additional variables in the discretization are defined as
follows:X0 � X��1�, andXf, whereXf is defined in terms ofXk,
�k� 0; . . . ; N� andUk �k� 1; . . . ; N� via the Gauss quadrature [22]

X f � X0 �
tf � t0

2

X

N

k�1

wkf�Xk;Uk; �k; t0; tf� (15)

where wk are the Gauss weights. The continuous cost function of
Eq. (1) is approximated using a Gauss quadrature as

J ���X0; t0;Xf; tf� �
tf � t0

2

X

N

k�1

wkg�Xk;Uk; �k; t0; tf� (16)

Next, the boundary constraint of Eq. (3) is expressed as

� �X0; t0;Xf; tf� � 0 (17)

Furthermore, the path constraint of Eq. (4) is evaluated at the LG
points as

C �Xk;Uk; �k; t0; tf� � 0 �k� 1; . . . ; N� (18)

The cost function of Eq. (16) and the algebraic constraints of
Eqs. (14), (15), (17), and (18) define an NLP whose solution is an
approximate solution to the continuous Bolza problem. Finally, it is
noted that discontinuities in the state or control can be handled
efficiently by dividing the trajectory into phases, where the dynamics
are transcribed within each phase and then connected together by
additional phase interface (also known as linkage) constraints. This
procedure has been used in many applications [17,19,20].

IV. KKT Conditions of the NLP

The first-order optimality conditions (i.e., the KKT conditions) of
the NLP can be obtained using the augmented cost function or
Lagrangian [23]. The augmented cost function is formed using the

Lagrange multipliers ~�k 2 Rn, ~�k 2 Rc, k� 1; . . . ; N, ~�F 2 Rn,
and ~� 2 Rq as
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Ja ���X0; t0;Xf; tf� �
tf � t0

2

X

N

k�1

wkg�Xk;Uk; �k; t0; tf�

� ~�T��X0; t0;Xf; tf� �
X

N

k�1

~�T
kC�Xk;Uk; �k; t0; tf�

�
X

N

k�1

~�
T
k

�

X

N

i�0

DkiXi �
tf � t0

2
f�Xk;Uk; �k; t0; tf�

�

� ~�
T
F

�

Xf �X0 �
tf � t0

2

X

N

k�1

wkf�Xk;Uk; �k; t0; tf�
�

(19)

The KKT conditions are found by setting equal to zero the

derivatives of the Lagrangianwith respect toX0,Xk,Xf,Uk, ~�k, ~�k,
~�F, ~�, t0, and tf. The solution to the NLP of Sec. III must satisfy the
following KKT conditions:

X

N

i�0

XiDki �
tf � t0

2
fk (20)

�
X

N

i�1

�

~�
T
i

wi

� ~�
T
F

�

wi

wk

Dik � ~�
T
F

X

N

i�1

wi

wk

Dik �
tf � t0

2

�

� @gk

@Xk

�
�

~�
T
k

wk

� ~�
T
F

�

@fk

@Xk

� 2

tf � t0

~�T
k

wk

@Ck

@Xk

�

(21)

0 � @gk

@Uk

�
�

~�
T
k

wk

� ~�
T
F

�

@fk

@Uk

� 2

tf � t0

~�T
k

wk

@Ck

@Uk

(22)

� �X0; t0;Xf; tf� � 0 (23)

~� T
0 �� @�

@X0

� ~�T
@�

@X0

(24)

~� T
F � @�

@Xf

� ~�T
@�

@Xf

(25)

�
tf � t0

2

X

N

k�1

wk

@ ~Hk

@t0
� 1

2

X

N

k�1

wk
~Hk �

@�

@t0
� ~�T

@�

@t0
(26)

tf � t0

2

X

N

k�1

wk

@ ~Hk

@tf
� 1

2

X

N

k�1

wk
~Hk �� @�

@tf
� ~�T

@�

@tf
(27)

C k � 0 (28)

~� jk � 0; when Cjk < 0 (29)

~� jk � 0; when Cjk � 0 (30)

X f �X0 �
�tf � t0�

2

X

N

k�1

wkfk (31)

~� F � ~�0 �
tf � t0

2

X

N

k�1

wk

�

� @gk

@Xk

�
�

~�
T
k

wk

� ~�
T
F

�

@fk

@Xk

� 2

tf � t0

~�T
k

wk

@Ck

@Xk

�

(32)

where the shorthand notation gk � g�Xk;Uk; �k; t0; tf�,

fk � f�Xk;Uk; �k; t0; tf�, ~Hk � ~H�Xk;
~�k;

~�F; ~�k;Uk; �k; t0; tf�,
andCjk � Cj�Xk;Uk; �k; t0; tf� is used and ~�jk is the jth component

of the ~�k. Note that the augmented Hamiltonian ~Hk is defined as

~H k � gk �
�

~�
T
k

wk

� ~�
T
F

�

fk �
2

tf � t0

~�T
k

wk

Ck (33)

and ~�0 is defined as

~� T
0 � � @�

@X0

� ~�T
@�

@X0

(34)

V. First-Order Necessary Conditions
of the Continuous Bolza Problem

The indirect approach to solving the continuous Bolza problem of
Eqs. (1–4) in Sec. II is to apply the calculus of variations and
Pontryagin’s maximum principle [24] to obtain first-order necessary
conditions for optimality [2]. These variational conditions are
typically derived using the augmented Hamiltonian H defined as

H�x;�;�;u; �; t0; tf� � g�x;u; �; t0; tf� � �T���f�x;u; �; t0; tf�
��T���C�x;u; �; t0; tf� (35)

where ���� 2 Rn is the costate and ���� 2 Rc is the Lagrange
multiplier associated with the path constraint. The continuous-time
first-order optimality conditions can be shown to be

dx

d�
�

tf � t0

2
f�x;u; �; t0; tf� �

tf � t0

2

@H

@�

d�

d�
�

tf � t0

2

�

� @g

@x
� �T

@f

@x
� �T

@C

@x

�

��
tf � t0

2

@H

@x

0 � @g

@u
� �T

@f

@u
� �T

@C

@u
� @H

@u

� �x��0�; t0;x��f�; tf� � 0 (36)

� ��0� � � @�

@x��0�
� �T

@�

@x��0�
; ���f� �

@�

@x��f�
� �T

@�

@x��f�

H �t0� �
@�

@t0
� �T

@�

@t0
; H�tf� � � @�

@tf
� �T

@�

@tf

�j��� � 0; when Cj�x;u; �; t0; tf�< 0; j� 1; . . . ; c

�j��� � 0; when Cj�x;u; �; t0; tf� � 0; j� 1; . . . ; c

where � 2 Rq is the Lagrange multiplier associated with the
boundary condition �. It can be shown that the augmented
Hamiltonian at the initial and final times can be written, respectively,
as

H �t0� � �
tf � t0

2

Z

1

�1

@H

@t0
d� � 1

2

Z

1

�1
H d� (37)

H �tf� �
tf � t0

2

Z

1

�1

@H

@tf
d�� 1

2

Z

1

�1
H d� (38)
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VI. Gauss Pseudospectral Discretized
Necessary Conditions

To discretize the variational conditions of Sec. V using the Gauss
pseudospectral discretization, it is necessary to form an appropriate
approximation for the costate. In this method, the costate ���� is
approximated as follows:

� ��� 	���� �
X

N�1

i�1

���i�L†

i ��� (39)

where L†

i ��� �i� 1; . . . ; N � 1� are defined as

L†
i ��� �

Y

N�1

j�1;j≠i

� � �j

�i � �j
(40)

It is emphasized that the costate approximation is different from the
state approximation. In particular, the basis of N � 1 Lagrange

interpolating polynomials L†
i ��� �i� 1; . . . ; N � 1� includes the

costate at the final time (as opposed to the initial timewhich is used in
the state approximation). This (nonintuitive) costate approximation
is necessary to provide a complete mapping between the KKT
conditions and the variational conditions. Some other useful
relationships involve the derivative of the costate approximation as
follows [17]:

_L†
i ��k� �D†

ki �� wi

wk

Dik; i; k� 1; . . . ; N

_L†

N�1��k� �D†

k;N�1 �
X

N

i�1

wi

wk

Dik; k� 1; . . . ; N

(41)

Using the costate approximation of Eq. (39), the first-order necessary
conditions of the continuous Bolza problem in Eq. (36) are
discretized as follows. First, the state and control are approximated
usingEqs. (6) and (8), respectively.Next, the costate is approximated
using the basis of N � 1 Lagrange interpolating polynomials as
defined in Eq. (39). The continuous-time first-order optimality
conditions of Eq. (36) are discretized using the variables
X0 � X��1�, Xk � X��k� 2 Rn, and Xf � X�1� for the state,
Uk � U��k� 2 Rm for the control,�0 � ���1�,�k � ���k� 2 Rn,
and �f � ��1� for the costate, and �k � ���k� 2 Rc for the
Lagrange multiplier associated with the path constraints at the LG
points k� 1; . . . ; N. The other unknown variables in the problem are
the initial andfinal times, t0 2 R, tf 2 R, and the Lagrangemultiplier
� 2 Rq. The total number of variables is then given as
�2n�m� c�N � 4n� q� 2. These variables are used to
discretize the continuous necessary conditions of Eq. (36) via the
Gauss pseudospectral discretization. Note that the derivative of the
state is approximated using Lagrange polynomials based on N � 1

points consisting of the N LG points and the initial time �0, whereas
the derivative of the costate is approximated using Lagrange
polynomials based on N � 1 points consisting of the N LG points
and the final time �f. The resulting algebraic equations that
approximate the continuous necessary conditions at the LG points
are given as

X

N

i�0

XiDki �
tf � t0

2
fk (42)

X

N

i�1

�iD
†

ki ��fD
†

k;N�1 �
tf � t0

2

�

� @gk

@Xk

��T
k

@fk

@Xk

� �T
k

@Ck

@Xk

�

(43)

0 � @gk

@Uk

��T
k

@fk

@Uk

� �T
k

@Ck

@Uk

(44)

� �X0; t0;Xf; tf� � 0 (45)

� T
0 �� @�

@X0

� �T
@�

@X0

(46)

� T
f �

@�

@Xf

� �T
@�

@Xf

(47)

�
tf � t0

2

X

N

k�1

wk

@Hk

@t0
� 1

2

X

N

k�1

wkHk �
@�

@t0
� �T

@�

@t0
(48)

tf � t0

2

X

N

k�1

wk

@Hk

@tf
� 1

2

X

N

k�1

wkHk �� @�

@tf
� �T

@�

@tf
(49)

�jk � 0; when Cjk < 0 (50)

�jk � 0; when Cjk � 0 (51)

for k� 1; . . . ; N and j� 1; . . . ; c. The final two equations that are
required (to link the initial and final state and costate, respectively)
are

X f �X0 �
tf � t0

2

X

N

k�1

wkfk (52)

� f ��0 �
tf � t0

2

X

N

k�1

wk

�

� @gk

@Xk

��T
k

@fk

@Xk

� �T
k

@Ck

@Xk

�

(53)

The total number of equations in the set of discrete necessary
conditions of Eqs. (42–53) is �2n�m� c�N � 4n� q� 2 (the
same number of unknown variables). Solving these nonlinear
algebraic equations would be an indirect solution to the optimal
control problem.

VII. Costate Estimate

Using the results of Secs. IV and VI, a costate estimate for the
continuous Bolza problem can be obtained at the LG points and the
boundary points. This costate estimate is summarized via the
following theorem:

Theorem 1 (Gauss pseudospectral costate mapping theorem): The
KKT conditions of the NLP are exactly equivalent to the discretized
form of the continuous first-order necessary conditions of the
continuous Bolza problem when using the Gauss pseudospectral
discretization. Furthermore, a costate estimate at the initial time, final
time, and the Legendre–Gauss points can be found from the KKT

multipliers, ~�k, ~�k, ~�F, and ~�,

�k �
~�k

wk

� ~�F; �k �
2

tf � t0

~�k

wk

; �� ~�

��t0� � ~�0; ��tf� � ~�F

(54)

Proof of Theorem 1: Using the substitution of Eq. (54), it is seen
that Eqs. (20–32) are exactly the same as Eqs. (42–53).

Theorem 1 indicates that solving the NLP derived from the Gauss
pseudospectral transcription of the optimal control problem is
equivalent to applying the Gauss pseudospectral discretization to the
continuous-time variational conditions. Figure 1 shows the solution
path for both the direct and indirect methods.

VIII. Application of Gauss Pseudospectral Method

Consider the following optimal control problem. Minimize the
cost functional

J � 1

2

Z

tf

0

�y� u2� dt (55)
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subject to the dynamic constraint

_y� 2y� 2u
���

y
p

(56)

and the boundary conditions

y�0� � a; y�tf� � b (57)

where y�t� 2 R� and u�t� 2 R are the state and control, respectively,
and tf is fixed. It is noted that the optimal control problem of
Eqs. (55–57) was derived from a standard linear quadratic (LQ)
optimal control problem via a monotonic transformation y�t� �
x2�t� [where x�t� is the state of the LQ problem] and, thus, has an
analytic solution.

The optimal control problem of Eqs. (55–57) was transcribed to an
NLP using the Gauss pseudospectral discretization of Sec. III. The
NLP was solved using the TOMLABTM version of the NLP solver
SNOPT [25,26] using default optimality and feasibility tolerances
and using the following number of LG points: N � �5; 6; . . . ; 40�.
The GPM solutions for the state, control, and costate for N � 40 are
shown in Fig. 2 alongside the exact solution. It is noted that the
maximum absolute errors in the state, costate, and control (over all
nodes �0; . . . ; �N�1) are approximately 9 � 10�7, 1:23 � 10�5, and
4:2 � 10�6, respectively. Next, let �Y and �� be the maximum
absolute errors between the GPM and exact solutions over all nodes
�0; . . . ; �N�1, and let ��0

be absolute error in the initial costate.
Figure 3 shows the errors in the state, costate, and initial costate for
N 2 �5; . . . ; 40�. It is seen from Fig. 3 that the error in the state
decreases to near the level of the feasibility and optimality tolerances

specified in the NLP solver (	10�6). It is interesting to observe that,
for this problem, the GPM appears to exhibit spectral convergence
[27] (i.e., the error decreases faster than any power of 1=N) until the
value N � 20 (where the optimality and feasibility tolerances are
reached), and that the initial costate converges faster than either the
state or costate at the LG points.

IX. Conclusions

A pseudospectral method, called the Gauss pseudospectral
method, has been described for solving optimal control problems
numerically. In this method the dynamics are collocated at a set of
Legendre–Gauss points. It was shown that the KKT conditions from
the NLP obtained via the Gauss pseudospectral discretization are
identical to the variational conditions of the continuous-time optimal
control problemdiscretized via theGauss pseudospectralmethod.As
a result, the KKT multipliers of the NLP can be used to obtain an
accurate estimate of the costate at both the Legendre–Gauss points
and the boundary points. The method was demonstrated on an
example problem. It is shown that the errors in the state, costate, and
control decrease rapidly as the number of collocation points
increases. The results obtained in this paper demonstrate the viability
of theGauss pseudospectral method as ameans of obtaining accurate
solutions to continuous-time optimal control problems.
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