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ABSTRACT

Motivation: Mining the hereditary disease-genes from human

genome is one of the most important tasks in bioinformatics research.

A variety of sequence features and functional similarities between

known human hereditary disease-genes and those not known to be

involved in disease have been systematically examined and efficient

classifiers have been constructed based on the identified common

patterns. The availability of human genome-wide protein–protein

interactions (PPIs) provides us with new opportunity for discovering

hereditary disease-genes by topological features in PPIs network.

Results: This analysis reveals that the hereditary disease-genes

ascertained from OMIM in the literature-curated (LC) PPIs network

are characterized by a larger degree, tendency to interact with other

disease-genes, more common neighbors and quick communication to

each other whereas those properties could not be detected from

the network identified from high-throughput yeast two-hybrid mapping

approach (EXP) and predicted interactions (PDT) PPIs network. KNN

classifier based on those features was created and on average gained

overall prediction accuracy of 0.76 in cross-validation test. Then the

classifier was applied to 5262 genes on human genome and predicted

178 novel disease-genes. Some of the predictions have been validated

by biological experiments.

Contact: jianzxu@hotmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Hunting genes likely to be involved in human genetic disease is

of vital importance for both understanding disease pathogenic

mechanism and improving clinical practice. Traditional linkage

and association studies have been applied to complex disease,

but success has been limited due to variable disease penetrance

(Botstein and Risch, 2003). Additionally, large number of genes

among large family datasets often needed to be analyzed which is a

labor-intensive task. Therefore there is an open space for develop-

ment of timely and relevant computational algorithms to speed the

identification of disease-genes.

A long-held and partially proved assumption shared by biologists

is that genes related to similar disease phenotypes are likely to

be functionally related, for example, participating in a common

pathway or signal transduction mechanism (Badano and

Katsanis, 2002; Brunner and van Driel, 2004; Gandhi et al.,
2006). Based on this assumption (observation), some scoring sys-

tems that match automatically the possible functional relations of

human genes to hereditary diseases are developed which greatly

facilitate the disease-gene discovery (Perez-Iratxeta et al., 2002;
Turner et al., 2003). Other groups aim at exploiting sequence-

based features and found that for many of them there are significant

differences between genes underlying human hereditary disease and

those not known to be involved in disease (Adie et al., 2005; Lopez-
Bigas and Ouzounis, 2004). Since protein plays its function in a

modular and interactive fashion and mutations in interacting pro-

teins may lead to similar phenotypes, a more direct and robust

manifestations of a functional relationship between genes is through

protein–protein interactions (PPIs) network. As found from a recent

analysis of the human interaction map, that the genes ascertained,

from the Online Mendelian Inheritance in Man (OMIM) database

(Hamosh et al., 2005), to be associated with a human disease pref-

erentially interacted with other disease-causing genes significantly

indicating heritable disease-genes might share some topological

features in the PPIs network, whereas the non-disease-genes do

not (Gandhi et al., 2006).
The rapid identification of genome-wide human PPIs network

provided us with new avenues for elucidating the disease-gene

directly from PPIs network. In this paper, five topological features,

which describe a gene (i.e. a protein) in the PPIs network, were

compared between known heritable disease-genes and those not

known to be involved in disease were made. By using a machine

learning algorithm we created an automatic classifier capable of

identifying genes more likely to be involved in hereditary disease

based on the topological patterns.

2 METHODS

2.1 Human interaction datasets

Human PPIs datasets were downloaded from Online Predicted Human

Interaction Database (OPID) (Brown and Jurisica, 2005). It collected the

identified human PPIs from: (1) literature-curated (LC) interactions from

BIND (Bader et al., 2003), HPRD (Peri et al., 2003) and MINT (Zanzoni

et al., 2002); (2) interactions identified from high-throughput yeast two-

hybrid mapping approach (EXP) (Rual et al., 2005; Stelzl et al., 2005);

(3) predicted interactions(PDT) made from Saccharomyces cerevisiae,

Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus by

‘interologs’ (i.e. potential interactions predicted from interactome data

available for model organisms given evolutionary conservation of two

known partners). Total number of PPIs and number of unique proteins in
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the largest connected network component (main component) for each of

above PPIs network are listed in Table 1.

To be as comprehensive and unbiased as possible we evaluated the

classifier on all the three datasets.

2.2 Building training samples

List of known hereditary disease-genes were obtained from the ‘morbid

map’ table in the OMIM database. In each of the three PPI datasets, we

mapped such genes to the main component networks, the corresponding

genes were called the ‘disease-gene set’ and total number of such genes

are listed in Table 1.

Compiling a list of genes that are known not to be involved in hereditary

disease is difficult or even impossible currently. A recent study (Tu et al.,
2006) showed that the human genome may contain thousands of essential

genes having features which differ significantly from both disease-genes

and the other genes. They proposed to classify them as a unique group

for comparisons of disease-genes with non-disease-genes. In the absence

of a set of well-defined human essential genes, they compiled a list of

ubiquitously expressed human genes (UEHGs) as an approximation of

essential genes. Thus in contrast to previous analysis (Adie et al., 2005;

Lopez-Bigas and Ouzounis, 2004) which regarding that all the gene set were

not listed in OMIM as control set, we (1) excluded UEHGs from the gene

population that was not listed in OMIM, the remaining genes were called

‘control-gene set’; (2) then we randomly selected, from the control-gene set,

genes with a size equal to that of the disease-gene that was detected in the

corresponding network as negative training samples. Our final training data

consisted of the sampled negative representative data and the fixed positive

disease data.

2.3 Defining features set

For each node i in the PPI network we defined five measures for assessing

its topological property (listed in Table 2). Briefly, degree defined as the

number of links to node i. 1N designates the neighbors of node i and 2N

designates the neighbors’ neighbor of node i. 1N index and 2N index are

defined as the proportion of the number of links to other node which listed in

‘disease-gene set’ among all links for 1N and 2N, respectively. The measure

of average distance to disease-genes is used to assess the communication

efficiency of node i to overall ‘disease-gene set’ in PPIs network. The lower
this measure it corresponds to a quicker transduction between node i and

‘disease-gene set’. The positive topological coefficient is essentially a vari-

ant of the classical topological coefficient (Goldberg and Roth, 2003). It is a

measure for the extent to which a protein in the network shares interaction

partners with other disease-genes.

The above measures were computed for each node in the main component

of the network. To assess the statistical significance of the measures between

the disease-gene set and control-gene set, Wilcoxon rank sum test for equal

medians was applied to the populations. The medians and P-values of the

features are listed in Table 3.

2.4 Classification algorithm and validation

We choose the k-nearest neighbors (KNN) as classification algorithm. The

KNN algorithm is a simple yet powerful non-parametric classification algo-

rithm (Duda et al., 2000). It is widely used in bioinformatics fields. Despite

its simplicity, it can give competitive performance compared with many

other methods. The topological measures were computed for each node in

the PPIs network and each feature vector was then normalized to have a zero

mean and unit variance so that the ranges of the features used in the classifier

are comparable. Euclidean distance was used as the distance measure to find

the nearest neighbors. The number of nearest neighbors (K) is a critical

parameter for KNN algorithm. Tests have been done with various values

of K (K ¼ 1, 3, 5, 7 and 9). For a fixed K, each sample is classified based on

simple majority of class membership of its KNN in the training data.

We used the 10-fold cross-validation test to get an estimate of how our

classifier might perform on unseen data. During the test process a fraction of

the data (in this case, 10% of the whole, with the same balance of disease-

genes and negative genes) is singled out in turn as a test sample, the

remaining genes are used as the training set to calculate the test sample’s

membership and predict the class. The prediction quality was evaluated by

the overall prediction accuracy, prediction sensitivity and precision.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
‚ Sensitivity ¼ TP

TPþ FN
‚

and

Precision ¼ TP

TPþ FP
‚

where TP, TN, FP and FN denote true positive, true negative, false positive

and false negative, respectively.

KNN classification and validation procedures were implemented using

SPIDER package (http://www.kyb.tuebingen.mpg.de/bs/people/spider/

main.html), all the other computations were carried out by custom written

MATLAB R13 (Mathworks, Natick, MA) scripts (available on request).

3 RESULTS

3.1 Disease-genes are clustered in LC PPIs network

but not in EXP and PDT PPIs networks

In the LC PPIs network, our results demonstrate, that the degree of

disease-genes is significantly higher than that of genes in the control

dataset. This confirms previous findings that disease-genes have

larger degree (Tu et al., 2006). We also found among all the neigh-

bors of a disease node (gene) the proportion of being another disease

node is significantly larger than that of a node in control set (P <
2.22 · 10�16) which is consistent with recent observation that

human disease-gene preferentially interacted with other disease-

causing genes significantly (Gandhi et al., 2006). Similarly, we

observed that the neighbors of a disease-gene, more likely to be

another disease-gene, preferentially interacted with other disease-

genes too (P < 2.22 · 10�16). Compared with the control-gene set,

we found that the measure of average shortest path to disease-gene

set is significantly lower in the known disease-genes set (P < 0.004),

indicating that the disease-genes communicated with each other

quickly in LC PPIs network. Intuitively, if a gene shares more

neighbors with known hereditary disease-genes in the PPIs network,

it should more likely be a disease-gene too. So we adopted positive

topological coefficient to assess the level of a gene that shares

neighbors with known hereditary disease-genes. Indeed our empiri-

cal results show this measure is significantly larger for known

hereditary disease-genes (P < 0.003). Proteins seldom function indi-

vidually, but rather in a modular fashion. All our measures, except

the degree measure, assess such modularity of proteins from dif-

ferent but related facets. The above results suggested that the

disease-genes are heavily clustered into modules in the LC dataset.

For EXP datasets, we found the differences between the control-

gene set and disease-genes set measured by 1N index, 2N index and

Table 1. PPI datasets

Datasets PPIs Proteins Disease-genes

LC 17183 5955 1269

EXP 6273 3025 485

PDT 25170 4313 560
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positive topological coefficient are statistically significant. However

we could not find a difference on the degree measure between the

two gene populations (Table 3). Surprisingly, compared with that

of the control-gene set, we found the measure of average shortest

path to disease-gene set is even slightly higher for the known

disease-genes set. In PDT datasets, we only found statistically

significant difference for 2N index between the control-gene set

and disease-genes set. These results indicate the structures of PPI

network in EXP and PDT datasets are different from that of LC

datasets and currently there is not enough evidences for suggesting

that the disease-genes are clustered in EXP or PDT datasets.

We think the disparity of PPIs network topology could be

explained by the fact that due to the priority interests of disease-

genes in current literature LC dataset is expected to be biased

toward known disease-genes. Thus lots of heavily connected

disease-genes (as they are the center of study) lay in the LC dataset.

On the other hand, genes tested in the EXP/PDT datasets were not

intentionally selected thus strong bias should not exist. Considering

the estimated 25 000 human genes and 15 interactions per protein,

there would be <375 000 interactions in the complete human

protein interaction network (Ramani et al., 2005), the known

human PPIs currently is rather small, a similar but more com-

prehensive investigation on topological features is warranted

when more PPIs are available.

3.2 Satisfactory performance of KNN classifier on all

the three PPIs networks

Despite the distinct topologies of the three PPIs networks, KNN

classifiers work equally well. On the LC dataset, KNN classifier

(K ¼ 3) correctly recovered 75% of known hereditary disease-

genes with a precision of 77% during 10-fold cross-validation.

On average, overall accuracy is 0.76 which outperforms previous

predictions significantly (Adie et al., 2005; Lopez-Bigas and

Ouzounis, 2004). Comparable classifier performances could be

obtained on both EXP and PDT datasets (Table 4). In the practice

of machine learning, it is common to see two individually irrelevant

features for classification as judged by univariate methods, which

may become relevant when used in combination because of the

underlying feature of independent assumptions made by univariate

Table 2. Topological feature set

Feature Function Description

Degree ki the number of links to node i

1N index kpi /ki kpi is the number of links between node i and disease-genes

2N index
P

j2Ni
kpj /

P
j2Ni

kj Ni denotes the set of indices of the neighbors of node i

Average distance to disease-genes
P

j2M dij/jMj M denotes the set of indices corresponding to disease-genes;

dij denotes length of the shortest path between node i and node j

Positive topology coefficient
P

j2Mi

Cij

min ðki‚kjÞ
.
jMij Cij denotes the number of nodes to which both i and j are linked;

Mi is the set of indices of the disease-genes sharing neighbors with node i

Table 4. More detailed classifier performance statistics

LC EXP PDT

Accuracy Sensitivity Precision Accuracy Sensitivity Precision Accuracy Sensitivity Precision

K ¼ 1 0.76 0.75 0.76 0.82 0.85 0.81 0.77 0.79 0.76

K ¼ 3 0.76 0.75 0.77 0.80 0.82 0.79 0.78 0.80 0.77

K ¼ 5 0.75 0.74 0.76 0.78 0.79 0.77 0.78 0.77 0.78

K ¼ 7 0.74 0.74 0.75 0.77 0.78 0.76 0.78 0.78 0.78

K ¼ 9 0.74 0.74 0.75 0.76 0.77 0.75 0.78 0.79 0.77

Table 3. Medians of the topological features between the control-genes set and disease-genes set

LC EXP PDT

Disease Control P-value Disease Control P-value Disease Control P-value

Degree 3.000 2.000 2.22E�16 3.000 3.000 7.36E�01 2.000 2.000 5.17E�01

1N index 0.313 0.077 2.22E�16 0.049 0.000 8.74E�03 0.000 0.000 3.86E�01

2N index 0.333 0.211 2.22E�16 0.181 0.111 2.22E�16 0.217 0.136 2.22E�16

Average distance to disease-genes 4.476 4.515 3.70E�03 4.484 4.446 2.56E�01 4.684 4.635 3.18E�01

Positive topology coefficient 0.095 0.094 2.87E�03 0.037 0.033 3.48E�02 0.088 0.088 6.51E�01

Significances between the two gene populations were also listed (calculated by the Ranksum test).
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methods (Guyon et al., 2006). In our case, most measures were

designed to assess modularity of proteins from different but related

facets. It is not surprising that a complex web of relatively weak

correlations could be found among those measures. For example,

1N and 2N index is positively correlated with Spearman correlation

coefficient of 0.34. The feature of independent assumption is obvi-

ously violated, so those features appear to be useful in the prediction

of disease-genes collectively. Indeed, none of the five topological

features could accurately predict disease-genes individually as

evaluated by 10-fold cross-validation (Supplementry Table S1).

It can also be seen that the prediction accuracy does not change

significantly when K is set differently. Thus we demonstrated that

the KNN based classifier is robust to the setting of a number of

nearest neighbor under current scenario. To further avoid sampling

bias of negative training data, we repeated the sampling procedure

1000 times and in each time a classifier was trained and evaluated.

The prediction performance of classifiers were essentially invariant

indicating that the result was largely free of sampling bias

(Supplementry Table S2–4). The results reported in the following

sections were obtained using K ¼ 3 on LC datasets.

3.3 KNN classifier is robust to the changing of disease

training sample

As new disease-genes are continually being discovered, it would

therefore be interesting to see how the KNN classifier would per-

form companying with the novel disease-genes discovery process.

On the LC network we imitated the circumstance as follows: first

only a proportion of disease-genes were random sampled from the

original disease-gene set (from 60 to 90%) and used as positive

training samples for KNN classifier learning. The remaining true

disease-genes were regarded as ‘unknown novel disease-genes’ and

pooled with the ‘control-gene set’ from which the negative samples

were randomly picked out (thus some true disease-genes could be

sampled and deemed as negative non-disease-genes in training).

Then the trained classifier was used to predict the whole unknown

genes except for the genes used for training. At each percentage,

the sampling was repeated 1000 times and the average performance

are shown in Figure 1. From the result we can see that the KNN

classifier works considerably well even as the positive training

sample was reduced to 60% of the original one and negative sample

was mixed with some positive disease samples. As the size of the

training samples increased there is no doubt that the performance

increases towards the highest, where all the disease-genes are used

for training. Thus we can expect the performance to improve even

further when new disease-genes are continually discovered and

added into the training samples in the future.

At each percentage, the leave-out disease-genes mixed with other

unknown genes were used to assess the ability of novel disease

prediction for classifiers. For instance when 90% of the disease-

genes were sampled as training data and the other 127 disease-genes

(10%) used as test data, we noted that, on average, 754 genes were

predicted to be disease-genes based on simple majority of the class

of the K ¼ 3 nearest neighbors in the training data. Of these

predicted disease-genes, 66 genes (8.8%) are already listed in the

10% leave-out genes. Used as baseline, in the 2978 genes for pre-

diction, 127 genes (4.3%) were known disease-genes. Thus this

represents in percentage a 8:8/4:3 i.e.�2.0-fold enrichment relative

to random prediction directly. If we require a gene was predicted to

be disease-gene only if all of the K ¼ 3 nearest neighbors are

disease-genes, the disease-gene pool could be further enriched.

Of the 184 disease-gene predictions, 35 (�19%) are already listed

in 10% leave-out disease-genes. This represents in percentage a

19/4:3 i.e.�4.4-fold enrichment. Similar results at other percentages

are shown in Supplementry Table S5.

It should be noted that although the positive disease-genes

obtained from OMIM can generally be trusted, the randomly

selected negative examples were from the gene population that

were not listed in OMIM and presumably were not known to be

involved in disease. However, some of these genes may well be

involved in disease, although they have not been identified yet.

In the above case, as the positive training sample was reduced

to 60% of the original one, there should be more disease-genes

sampled as negative non-disease-genes. The stable performance

suggested KNN classifier, at least to some degree, is insensitive

to negative sample impurity.

3.4 Prediction novel disease-genes from

human PPIs network

Finally, the trained classifier from LC when K¼ 3 was applied to all

the other 5262 genes except the UEHGs in the LC network. Genes

(1872) were predicted to be hereditary disease-genes based on

simple majority of the class of the K ¼ 3 nearest neighbors in

the training data of which 1087 genes are already known disease-

genes. If we require a gene was predicted to be disease-gene only

if all of the K ¼ 3 nearest neighbors are disease-genes, 970 disease-

gene were identified of which 792 genes were already listed in

‘morbid map’ table in the OMIM. In the novel 178 putative disease-

genes (listed in Supplementry Table S6), some have shown experi-

mental evidences. For example, TGF-beta-activated kinase 1

(TAK1, Swissprot ID O43318), a member of the serine/threonine

protein kinase, mediates the signaling transduction induced by TGF

beta and morphogenetic protein (BMP), and controls a variety of

cell functions including transcription regulation and apoptosis.

It has been shown hypohidrotic/anhidrotic ectodermal dysplasia

(ED), a disorder characterized by sparse hair, lack of sweat glands

and malformation of teeth, was caused by dysfunction of Edar

(Ectodysplasin receptor) signaling. The Edar signaling pathway

Fig. 1. Performance of KNN classifier with adding new disease-genes.
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stimulates NF-kappa B transcription factors via an activation of the

IkappaB kinase (IKK). Dominant negative forms of TAK1, TAB2

(TAK1-binding protein 2) and TRAF6 (TNF-receptor-associated

factor 6) blocked the NF-kappa B activation induced by Edaradd

(Edar-associated death domain). These results support the involve-

ment of the TAK1/TAB2/TRAF6 signaling complex in the Edar

signal transduction pathway and implied TAK1 as a new disease-

gene candidate for ED (Morlon et al., 2005)
Another example comes from adenylate cyclase 5 (ADCY5,

Swissprot ID: O95622). Okumura et al. (2003) examined the effects

of pressure overload, induced by thoracic aortic banding in type 5

adenylyl cyclase disrupted mice. They showed disruption of type 5

adenylyl cyclase gene preserves cardiac function against pressure

overload and seemed to involve Bcl-2, which was up-regulated

significantly more in mutated mice with pressure overload. Other

research also demonstrated expression of ADCY5 mRNA and

protein is up-regulated in cyanotic infant human myocardium

(Zhao et al., 2002). These lines of evidences agree with our pre-

diction that ADCY5 as a potential disease candidate gene.

Finally we looked for experimental knowledge support for

our prediction of basic charge, Y-linked 2 (BPY2, Swissprot

ID:O14599). Interestingly, this gene is located in the non-

recombining portion of the Y-chromosome and expressed specif-

ically in testis. To determine the possible relationship of BPY2 with

the pathogenesis of male infertility, Tse et al. (2003) examined a

group of infertile men with and without Y-chromosome microdele-

tions and with known testicular pathology using BPY2 antibody.

The impaired expression of BPY2 in infertile men suggests its

involvement in the pathogenesis of male infertility. Other study

that analyzed the deletion of six Y-chromosome-specific genes in

prostate cancer samples also shows BPY2 gene was lost in 42% of

tested cases. Especially the loss of BPY2 genes was more frequent

in higher stages and grades of prostate cancer, suggesting its role

in pathogenesis of this disease (Perinchery et al., 2000).

4 DISCUSSION

We report here that the disease-genes from OMIM (most are

Mendelian disease-genes) follow a specific topological property

pattern in human LC PPIs network. In addition to the previous

observed features such as a disease node has more links and pref-

erentially interacted with other disease node, we found the neighbor

of a disease node, more likely to be another disease protein, which

also preferentially interacted with other disease nodes. Similarly, we

demonstrated disease nodes which share more neighbors with other

disease nodes and communicate with each other quickly. However

those patterns could not be detected from high-throughput yeast

EXP and PDT PPIs networks, which perhaps suggested that the

LC PPIs network is biased towards known disease-genes due to

the priority interests of disease-genes in current literatures. We have

trained an efficient KNN classifier based on these topological fea-

tures in PPI network to predict which of the genes in the human

genome are more likely to be involved in disease.

Our classifier was trained using all disease-genes from OMIM

and provide the insights into the general nature of humanMendelian

diseases genes in the PPIs network. A further exploration is to study

whether the classifier could work equally efficiently when users

are interested in a particular disease, for example sudden cardiac

death (SCD; Arking et al., 2004). Alternatively, one may use our

prediction result as an evidence when searching for the candidate

gene in a predefined disease loci for later bench identification. If in a

disease loci there are several genes picked out by our classifier to be

disease-genes from many others, those genes are highly possible to

play a role in the pathogenic mechanism of disease and have a high

priority for further evaluation. Recently Oti et al. (2006) took a

heuristic approach to search for candidate disease-genes that inter-

act with a known disease-gene and were located within one of these

predefined disease loci. Some promising results were reported.

In previous studies a variety of sequence features such as cDNA

and protein sizes, the evolutionary conservation rates, number of

exons (Adie et al., 2005; Lopez-Bigas and Ouzounis, 2004) were

extensively investigated between the sets of genes known to be

involved in human hereditary disease and those not known. Deci-

sion tree classifiers were constructed based on common sequence

patterns. Computational algorithms for prediction of disease-genes

based on shared functional annotation to known disease-genes

have also been reported (Perez-Iratxeta et al., 2002; Turner

et al., 2003). We proposed a KNN based classifier to explicitly

and directly exploit the recent PPIs data. Each method has its

pros and cons. For example, due to the incompleteness of functional

knowledge, although successful cases has been reported, algorithms

relying on functional annotation system are inherently biased

towards a particular well-studied subset of genes. Our PPIs

based prediction achieved higher accuracy while the genome cov-

erage needed further improvement when more human PPIs are

available. A promising approach for disease-gene discovery is to

integrate all source of genomic evidences such as PPIs, transcrip-

tional expression, sequence, function annotation and linkage data to

make the final prediction through, for instance, Bayesian network

learning framework as demonstrated recently for mitochondrial

disease-genes mining (Calvo et al., 2006) and others for more

general applications (Aerts et al., 2006; Franke et al., 2006).
To our knowledge, this is the first time topological properties in

three different human PPI networks were systematically compared

between the sets of genes known to be involved in human hereditary

disease and those not known. Based on those features, KNN

classifier was constructed and applied to 5262 genes and predicted

178 putative disease-genes. With increasing quantity and quality

of human interaction and phenotypic data, the performance and

utility of this approach in facilitating biologists to detect novel

disease-genes should improve even further.
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