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Abstract

Background: The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering

the organization of natural populations in space and time. However, the size of the datasets generated also poses

some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics

models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of

data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly

appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently

available multivariate methods still lack some essential features needed to study the genetic structure of natural

populations.

Results: We introduce the Discriminant Analysis of Principal Components (DAPC), a multivariate method designed to

identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses

sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information

from genetic data, providing assignment of individuals to groups, a visual assessment of between-population

differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our

method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we

illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and

hemagglutinin gene sequence variation in seasonal influenza.

Conclusions: Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at

characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and

graphical representation of between-group structures allow to unravel complex population structures. Our

approach is also faster than Bayesian clustering algorithms by several orders of magnitude, and may be applicable

to a wider range of datasets.

Background
The study of the genetic structure of biological popula-

tions has attracted a growing interest from a wide array

of fields, such as population biology, molecular ecology,

and medical genetics. One of the most widely applied

approaches is the inference of population structuring

with Bayesian clustering methods such as STRUCTURE

[1,2] and BAPS [3,4]. These methods are particularly

appealing as they allow for identifying genetic clusters

under an explicit population genetics model. The popu-

larity of these approaches leaves no doubt about their

usefulness for extracting meaningful information from

genetic data.

Unfortunately, the reliance of Bayesian clustering

methods on explicit models also comes at a cost. Model-

based approaches rely on assumptions such as the type of

population subdivision, which are often difficult to verify

and can restrict their applicability. Furthermore, estima-

tion of a large number of parameters [5] can require con-

siderable computational time when analyzing large

datasets. To take full advantage of the increase in size
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and complexity of genetic datasets, fast and flexible

exploratory tools are equally needed.

Multivariate analyses have been used for decades to

extract various types of information from genetic data

and have attracted renewed interest in the field [6-12].

In particular, principal component analysis (PCA)

[13-15] has recently been suggested as an alternative to

Bayesian clustering algorithms [5,11,12,16]. The main

asset of PCA is its ability to identify genetic structures

in very large datasets within negligible computational

time, and the absence of any assumption about the

underlying population genetic model.

However, PCA lacks some essential features for inves-

tigating the genetic structure of biological populations.

First, it does not provide a group assessment, and would

require a priori definition of clusters to study population

structures. But even then, PCA would not be appropri-

ate to obtain a clear picture of between-population var-

iation (Figure 1). PCA aims to summarize the overall

variability among individuals, which includes both the

divergence between groups (i.e., structured genetic varia-

bility), and the variation occurring within groups (‘ran-

dom’ genetic variability). To assess the relationships

between different clusters, an adequate method should

focus on between-group variability, while neglecting

within-group variation.

This is precisely the rationale of Discriminant Analysis

(DA) [17,18]. This multivariate method defines a model

in which genetic variation is partitioned into a between-

group and a within-group component, and yields

synthetic variables which maximize the first while mini-

mizing the second (Figure 1). In other words, DA

attempts to summarize the genetic differentiation

between groups, while overlooking within-group varia-

tion. The method therefore achieves the best discrimina-

tion of individuals into pre-defined groups (Figure 1c).

Interestingly, this method also allows for a probabilistic

assignment of individuals to each group, as in Bayesian

clustering methods.

Unfortunately, DA suffers from considerable restric-

tions which often preclude its application to genetic

data. First, the method requires the number of variables

(alleles) to be less than the number of observations

(individuals). This condition is generally not fulfilled in

Single Nucleotide Polymorphism (SNP) or re-sequencing

datasets. Second, it is hampered by correlations between

variables, which necessarily occur in allele frequencies

due to the constant-row sum constraint [i.e., composi-

tional data, [19,20]]. Moreover, the violation of the

assumption of uncorrelated variables will be even more

blatant in the presence of linkage disequilibrium. There-

fore, the application of DA to genetic data has remained

very limited so far [8,21].

In this paper, we introduce the Discriminant Analysis

of Principal Components (DAPC), a new methodological

approach which retains all assets of DA without being

burdened by its limitations. DAPC relies on data trans-

formation using PCA as a prior step to DA, which

ensures that variables submitted to DA are perfectly

uncorrelated, and that their number is less than that of

analysed individuals. Without implying a necessary loss

of genetic information, this transformation allows DA to

be applied to any genetic data. Like PCA, our approach

can be applied to very large datasets, such as hundreds

of thousands of SNPs typed for thousands of individuals.

Moreover, the contributions of alleles to the structures

identified by DAPC can allow for identifying regions of

Figure 1 Fundamental difference between PCA and DA. (a) The

diagram shows the essential difference between Principal

Component Analysis (PCA) and Discriminant Analysis (DA).

Individuals (dots) and groups (colours and ellipses) are positioned

on the plane using their values for two variables. In this space, PCA

searches for the direction showing the largest total variance (doted

arrow), whereas DA maximizes the separation between groups

(plain arrow) while minimizing variation within group. As a result,

PCA fails to discriminate the groups (b), while DA adequately

displays group differences.
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the genome driving genetic divergence among groups.

Along with the assignment of individuals to clusters,

our method provides a visual assessment of between-

population genetic structures, permitting to infer com-

plex patterns such as hierarchical clustering or clines.

Whenever group priors are unknown, we use K-means

clustering of principal components to identify groups of

individuals [5,16]. K-means relies on the same model as

DA to partition genetic variation into a between-group

and a within-group component, and attempts to find

groups that minimize the latter. Like in STRUCTURE,

we run K-means clustering with different numbers of

clusters, each of which gives rise to a statistical model

and an associated likelihood. As advocated in previous

studies [5,22], we use Bayesian Information Criterion

(BIC) to assess the best supported model, and therefore

the number and nature of clusters.

We apply DAPC to both simulated and empirical

datasets. We use simulations to assess the ability of our

approach to infer the right genetic clusters, and com-

pare our results to those obtained with STRUCTURE

[1,2]. Then, we illustrate the type of information that

can be gathered by DAPC by applying the method to

two empirical datasets. First, we analyse worldwide

structuring of native human populations using the

HGDP-CEPH cell line panel typed for microsatellite

markers [23-25], enriched with additional populations of

Native Americans [26]. Second, we use DAPC to study

the temporal variation in seasonal influenza (H3N2)

hemagglutinin (HA) segments from viruses collected in

the northern hemisphere from 2001 to 2007. Both data-

sets, as well as the implementation of our methodology

are available in the adegenet package [6] for the free

software R [27].

Results
Analysis of simulated datasets

As a benchmark, we first compared the results of DAPC

to those obtained by STRUCTURE using simulations.

Data were simulated with EASYPOP [28] using four

population genetic models (Figure 2): an island model

(Figure 2a), a hierarchical islands model (Figure 2b), a

one-dimensional hierarchical stepping stone (Figure 2c),

and a standard one-dimensional stepping stone (Figure

2d). The number of populations varied from six for the

island and hierarchical island models to 24 for the step-

ping stone model. Parameters of the simulations are pro-

vided in Table 1. They were chosen to ensure moderate

genetic differentiation and realistic gene diversities

(Table 2), and to reflect typical population genetic data-

sets for non-model organisms. All simulations were

run for 3,000 generations. Inspection of summary statis-

tics confirmed equilibrium had been reached in all

simulations.

Ten independent replicates were obtained for each

model. Each dataset was analysed by both STRUCTURE

and DAPC. Accuracy of the results obtained with

STRUCTURE depended critically on the underlying

population genetic model behind the simulated data

(Table 3). For the island model, STRUCTURE identified

the true number of clusters in the majority of cases, and

proved very efficient in assigning individuals to their

actual group. In the hierarchical island model, STRUC-

TURE was less successful at identifying the actual num-

ber of subdivisions, while still providing accurate

assignments. The performance decreased drastically in

the two stepping stone models, where the method sys-

tematically failed to retrieve the true number of clusters.

Moreover, even when enforcing STRUCTURE to parti-

tion individuals into the actual number of populations,

the method largely failed to identify the existing groups.

The same datasets were analysed by DAPC using the

adegenet package [6] for the R software [27]. The number

of clusters was assessed using the function find.clusters,

which runs successive K-means clustering with increas-

ing number of clusters (k). We covered a wide range of

possible clusters from one to 2K, where K was the actual

number of demes in the simulations. Figure 3 illustrates

the procedure for selecting the ‘optimal’ number of clus-

ters. This choice was made on the basis of the lowest

associated BIC (Figure 3a-b). In cases where the optimal

number of clusters was ambiguous, k was increased as

long as it resulted in a noticeable improvement in BIC

(Figure 3c-d). Overall, this procedure recovered well the

actual number of populations (Table 3). The number of

clusters was always better inferred in island-based models

Figure 2 Diagram of migration models used in simulations. The

four panels represent in (a) an island model, (b) a hierarchical island

model, (c) hierarchical stepping stone, and in (d) a stepping stone

with 24 populations. Red disks represent random mating sub-

populations (demes) and arrows the interconnecting migration

routes (black arrows represent greater gene flow than grey ones).

Dotted lines indicate archipelagos (b) or a contact zone (c).
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(Figure 3a-b) than in more continuous population genet-

ics models (Figure 3c-d), where clusters tend to dissolve

into more clinal patterns of genetic differentiation. But

even when the actual K was not identified, the inferred

number of clusters generally remained relatively close to

the true value (Table 3). Interestingly, the estimation of K

by our method was markedly better than that achieved

by STRUCTURE for all the studied models, including the

classical island model for which our approach always

inferred the exact number of clusters (Table 3). This

result is consistent with previous studies which used K-

means on principal components [5,16].

Then, DAPC was performed (function dapc) using

clusters defined by K-means where we specified the

actual number of clusters (i.e., k = K). In all analyses, 50

principal components of PCA were retained in the data

transformation step. The comparison of the final assign-

ments of individuals to groups to the actual group

memberships revealed that DAPC performed remarkably

well. Assignment success varied depending on the popu-

lation genetics model assumed in the simulations but

remained high for all simulated datasets considered

(Table 3). The frequency of correct assignments was

highest in the island models, where DAPC performed

essentially as well as STRUCTURE (Table 3). However,

even in the stepping stone models (Figure 2c-d), suc-

cessful assignment rates remained very satisfying, with

correct assignment rates ranging from 80% to 97%

depending on the replicate.

Successful detection of the correct number of genetic

clusters is undoubtedly a desirable feature. However,

this information alone is not sufficient to describe the

apportionment of genetic diversity within a population.

What is additionally needed to gain real insights about

the system under study is a representation of the relat-

edness between clusters. DAPC is particularly well sui-

ted for this task, as it finds principal components which

best summarize the differences between clusters while

neglecting within-cluster variation (Figure 1). The first

principal components of DAPC can be plotted to obtain

scatterplots, which provide a direct visual assessment of

between-group structures (Figure 4). For instance, the

hierarchical structure is clearly visible on Figure 4b,

where three groups of genetically closer clusters can be

identified ({1}, {2, 4}, and {3, 5, 6}). Results for the step-

ping stone model (Figure 4d) can easily be distinguished

from the island model (Figure 4a) by the clinal arrange-

ment of the clusters. And this model can in turn be dis-

tinguished from the hierarchical stepping stone, for

which the scatterplot distinctly shows two separate

clines (Figure 4c).

Analysis of empirical data

Human microsatellite data

DAPC was applied to the microsatellite genotypes from

the Human Genome Diversity Project-Centre d’Etude

Table 1 Parameters of simulations

Island model Hierarchical island model Hierarchical stepping stone Stepping stone

Number of populations 6 6 (3, 2, 1) 12 (6, 6) 24

Population size 200 200 100 50

Sample size(1) 100 100 50 25

Migration rate 0.005 0.05/0.005(2) 0.01/0.001(2) 0.02

Mutation rate 10-4 10-4 10-4 10-4

Number of loci 30 30 30 30

Possible allelic states 50 50 50 50

This table indicates the parameters used to simulate data under four different models (see Figure 2). (1)Sample size refers to the number of individuals per

population retained in the analyses.
(2)The first migration rate refers to between-population migration, whereas the second refers to migration between the higher hierarchical levels.

Table 2 Summary statistics of the simulations

Median Quantile 5% Quantile 95%

Island model

FST 0.1 0.07 0.13

HS 0.42 0.36 0.46

number of alleles/locus 5 3 8

Hierarchical island model

FST 0.05 0.03 0.08

HS 0.41 0.33 0.49

number of alleles/locus 5 2 8

Hierarchical stepping stone

FST 0.37 0.09 0.56

HS 0.3 0.2 0.38

number of alleles/locus 6 3 9

Stepping stone

FST 0.42 0.12 0.64

HS 0.27 0.13 0.36

number of alleles/locus 6 4 9

This table reports usual genetic summary statistics computed on the

simulated datasets using adegenet. FST refers to the mean pairwise FST
computed using Nei’s estimator [62]. HS refers to the gene diversity (expected

heterozygosity under random mating).
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du Polymorphisme Humain (HGDP-CEPH) [23-25], an

extensive dataset of native human populations distribu-

ted worldwide. This dataset was extended by adding

genotypes from 24 Native American and Siberian popu-

lations [26]. The resulting dataset comprises 1350 indivi-

duals from 79 populations, genotyped for 678

microsatellite markers (8170 alleles).

Two analyses were run for this dataset. First, we used

DAPC to investigate the genetic structure of the 79

sampled populations. We retained 1,000 principal com-

ponents of PCA during the preliminary variable

transformation, which accounted for most (approxi-

mately 94%) of the total genetic variability. It is worth

noting that despite the respectable size of this dataset

(1350 individuals and 8170 alleles), DAPC was run in

less than a minute on a standard desktop computer.

The eigenvalues of the analysis (Figure 5, inset) showed

that the genetic structure was captured by the first three

principal components. These synthetic variables were

mapped using colour coding to unravel patterns in the

population structuring (Figure 5). The results obtained

are remarkably clear and consistent with previous find-

ings [25,26]. The first principal component (red channel,

Figure 5) clearly differentiates Sub Saharan African

populations from the rest of the world. The second

principal component (green channel, Figure 5) displays

a cline of genetic differentiation between Western Eur-

ope and East Asia. The third principal component (blue

channel, Figure 5) highlights the differentiation of

American populations from the rest of the world.

While largely consistent with previous well-established

findings, these results are based on the clustering of

individuals into geographically predefined populations.

This has the possible drawback that higher-level of

genetic clustering could be overlooked. To evaluate this

hypothesis, we looked for the best supported number of

clusters using our approach based on K-means algo-

rithm. Inspection of the BIC values ranging from one to

100 clusters clearly showed that a subdivision into four

clusters should be considered (Figure 6). We then used

DAPC to investigate the genetic structure of the four

newly inferred groups. The resulting colorplot (Figure 7)

defines clear-cut patterns which are strikingly similar to

results previously obtained under a four clusters popula-

tion genetics model with STRUCTURE [25,26,29].

Seasonal influenza (H3N2) hemagglutinin data

To illustrate the versatility of our approach, we selected

a radically different dataset for the second example. We

analysed the population structure of seasonal influenza

A/H3N2 viruses using hemagglutinin (HA) sequences.

Changes in the HA gene are largely responsible for

immune escape of the virus (antigenic shift), and allow

seasonal influenza to persist by mounting yearly

Table 3 Results of the analyses of simulated data

Island Model Hierarchical island model Hierarchical stepping stone Stepping stone

Number of populations (true K) 6 6 12 24

K inferred by DAPC 6 ([6,6]) 6 ([6,8]) 11 (8,12) 17.5 ([13,21])

K inferred by STRUCTURE 6 ([2,7]) 3 ([2,6]) 2 ([2,2]) 2 ([2,5])

% of correct assignment by DAPC 98.2% ([96.3%,99%]) 87.5% ([73.9%,91.2%]) 89.7% ([87.9%,97.2%]) 83.9% ([80%,88.7%])

% of correct assignment by STRUCTURE 98.6% ([98%,99.2%]) 93.1% ([89.2%,95.5%]) NA(1) NA(1)

This table reports the results of analyses of simulated data (see Figure 2) by DAPC and STRUCTURE. K refers to the number of clusters. Inferred numbers of

clusters are reported as medians computed from the 10 replicates, with the range of variation provided within parentheses. (1)NA is indicated when the

percentage of successful assignment could not be computed with STRUCTURE. In these cases, the ‘optimal’ K was very different from the true K, resulting in

meaningless assignments with numerous empty clusters and subsequently very low proportion of correct assignments.

Figure 3 Inference of the number of clusters in simulated data.

These four panel report examples of outputs from single

simulations of the function find.clusters used to identify the number

of clusters in data simulated according to for four different

population genetics models (a: island model; b: hierarchical island

model; c: hierarchical stepping stone and d: stepping stone; see

Figure 2). Bayesian information criterion (BIC) is provided for

different numbers of clusters. The chosen number of clusters is the

minimum number of clusters after which the BIC increases or

decreases by a negligible amount. The actual number of

populations (K) is indicated by the dotted line.
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epidemics peaking in winter [30-32]. These genetic

changes also force influenza vaccines to be updated on a

yearly basis. Influenza A virus genome is organized in

eight segments analogous to chromosomes in eukar-

yotes. While exchanges of segments (genomic reassort-

ment) occasionally happen during the replication of the

virus in multiply infected hosts [30,33,34], we are una-

ware of evidences for within-segment recombination.

Assessing the genetic evolution of a pathogen through

successive epidemics is of considerable epidemiological

interest. In the case of seasonal influenza, we would like

to ascertain how genetic changes accumulate among

strains from one winter epidemic to the next. For this

purpose, we retrieved all sequences of H3N2 hemagglu-

tinin (HA) collected between 2001 and 2007 available

from Genbank [35]. Only sequences for which a location

(country) and a date (year and month) were available

were retained, which allowed us to classify strains into

yearly winter epidemics. Because of the temporal lag

between influenza epidemics in the two hemispheres,

and given the fact that most available sequences were

sampled in the northern hemisphere, we restricted our

Figure 4 Scatterplots of DAPC of simulated data. These scatterplots show the first two principal components of the DAPC of data simulated

according to four different models (a: island model; b: hierarchical islands model; c: hierarchical stepping stone and d: stepping stone; see Figure 2).

Clusters are shown by different colours and inertia ellipses, while dots represent individuals.
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analysis to strains from the northern hemisphere (lati-

tudes above 23.4°north). DNA sequences and meta-

information were retrieved from Genbank using ad-hoc

R scripts. Alignments were obtained for a stretch of 990

bases using ClustalW [36] and further refined manually

using Jalview [37]. Aligned sequences were then

imported in R using the ape package [38], and SNPs

were extracted from the sequences using adegenet [6].

The final dataset included 1903 strains characterized by

125 SNPs which resulted in a total of 334 alleles. All

strains from 2001 to 2007 were classified into six winter

epidemics (2001-2006). This was done by assigning all

strains from the second half of the year with those from

the first half of the following year. For example, the

2005 winter epidemic comprises all strains collected

between the 1st of July 2005 and the 30th of June 2006.

DAPC was used to investigate the pattern of genetic

diversity in these data. We retained 150 principal com-

ponents of PCA in the preliminary data transformation

step, which altogether contained more that 90% of the

total genetic variation. The first two principal compo-

nents of DAPC were sufficient to summarize the tem-

poral evolution of the virus (Figure 8). Epidemics

appeared as clearly differentiated (Figure 8). Strains

were correctly assigned to their winter epidemic in 92%

of cases on average, with variation in correct assignment

probabilities among epidemics ranging from 85% (2002)

to 99% (2001). The first principal component of DAPC

revealed the accumulation of genetic changes across epi-

demics, from 2001 to 2006 (Figure 8, horizontal axis).

Interestingly, the 2006 epidemic was markedly isolated

from the other epidemics on the second principal com-

ponent (Figure 8, vertical axis), suggesting that more

genetic changes had accumulated during 2005-2006

than during previous epidemics.

It has recently been suggested that seasonal influenza

epidemics are seeded each year from a reservoir in

Southeast Asia [31], from only a limited number of

strains. This yearly seeding of epidemics leads to recur-

rent population bottlenecks and the marked differentia-

tion of the 2006 epidemic may point to an unusually

severe population bottleneck. Alternatively, this disconti-

nuity might lie in some selective event affecting 2006

strains. To get some insight into the underlying causes

of the differentiation of the 2006 epidemics, we

inspected the associated allele loadings (Figure 9). The

originality of the 2006 epidemics was largely driven by

two SNPs coding for residue 144 and 318 in the HA

Figure 5 Colorplot of the DAPC of extended HGDP-CEPH data. This colorplot represents the first three principal components (PC) of the

DAPC of extended HGDP-CEPH data, using populations as prior clusters. Each dot corresponds to a sampled population. Each principal

component is recoded as intensities of a given colour channel of the RGB system: red (first PC), green (second PC), and blue (third PC). These

channels are mixed to form colours representing the genetic similarity of populations. The inset indicates the eigenvalues of the analysis, with

colour channels used to represent PCs indicated on the corresponding eigenvalues.
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protein with respective frequencies of 32.1% and 61.6%

in 2006 but virtually absent in previous years. While

such shifts in allele frequencies might be suggestive of

natural selection, only one corresponded to a non-

synonymous mutation from Asparagine to Lysine at

position 144. Irrespective of the underlying mechanism

driving the genetic isolation of the epidemics, DAPC

dealt satisfyingly with the analysis of the influenza data-

set by recovering the evolution over time of seasonal

influenza strains, while also highlighting an interesting

discontinuity between the 2005 and 2006 epidemics.

Discussion and Conclusions
In this paper, we introduced a new multivariate method,

the Discriminant Analysis of Principal Components

(DAPC), for the analysis of the genetic structure of

populations. This approach can be used to define clus-

ters of individuals and to unravel possibly complex

structures existing among clusters, such as hierarchical

clustering and clinal differentiation, while being orders

of magnitude faster than existing Bayesian clustering

methods. For simulated data, DAPC proved as accurate

as STRUCTURE in detecting hidden population clusters

within simple island population models. Moreover,

DAPC was more suited to unravel the underlying struc-

turing in more complex population genetics models.

Another major advantage of DAPC over Bayesian clus-

tering approaches is the possibility to generate a graphi-

cal representation of the relatedness between the

inferred clusters. Applied to two highly contrasted

empirical datasets, our method was able to identify non-

trivial and meaningful biological patterns.

One of the main assets of DAPC is its great versatility.

Indeed, DAPC does not rely on a particular population

genetics model, and is thus free of assumptions about

Hardy-Weinberg equilibrium or linkage disequilibrium. As

such it should be useful for a variety of organisms, irre-

spective of their ploidy and rate of genetic recombination.

Also, contrary to Bayesian clustering methods, DAPC can

be applied to very large datasets within negligible compu-

tational time (all analyses presented in this paper took less

than minute to run on a standard computer). Moreover,

the method is not restrained to genetic data, and can be

applied to any quantitative data such as morphometric

data. This feature is particularly interesting as it allows for

partialling out the effects of undesirable covariates, such as

different sequencing protocols, or trivial genetic structures

that could obscure lesser, more interesting patterns. This

can be achieved by analyzing the residuals of a preliminary

model including the covariates as predictors instead of the

raw data.

A major concern pertaining to all clustering

approaches is the risk of inferring artefactual discrete

groups in populations where genetic diversity is distribu-

ted continuously. Such spurious clusters are particularly

likely to arise under spatially heterogeneous sampling of

populations [39,40]. DAPC is not immune to this bias,

and may indeed erroneously identify clusters within a

cline. However, scatterplots provided by the method

allow for a graphical assessment of the genetic struc-

tures between clusters (Figures 5 and 8), and provide

remarkable insights as to how the genetic variability is

organized. For instance, in our simulations based on

stepping stone models (Figure 2c-d), DAPC clearly

revealed the existence of clines (Figure 4c-d). Therefore,

our approach is by no means restricted to the study of

populations organised in discrete groups, and should be

able to reveal more complex genetic patterns.

We chose to analyse two contrasted datasets to illus-

trate the versatility our approach. The HGDP-CEPH

dataset has been repeatedly analysed using a variety of

methods [29,39,41-47]. The DAPC results support pre-

vious evidence for discontinuities above and beyond the

global clinal pattern in the apportionment of human

genetic variation [29,43,48]. The subdivision inferred by

DAPC is strikingly similar to the four clusters identified

by the STRUCTURE software [25,26,29]. Note however,

that the existence of large-scale clusters is not incompa-

tible with a clinal distribution of genetic diversity and/or

smaller-scale subdivisions [41,43]. These results

Figure 6 Inference of the number of clusters in the extended

HGDP-CEPH data. This graph shows the output of the function

find.clusters used to identify the number of clusters in extended

HGDP-CEPH data. Bayesian information criterion (BIC) is provided for

different numbers of clusters (from one to 100). The chosen number

of clusters (4) is circled in red. The inset indicates the global results

(up to 100 clusters), while the main figure shows the detail of the

results up to 30 clusters.
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illustrate that DAPC can be used as an efficient genetic

clustering tool.

In contrast, the seasonal influenza analysis highlights

features that go beyond simple genetic clustering. The

DAPC scatterplot reveals that the virus is genetically

structured into clusters which are arranged along a tem-

poral cline, and shows a marked discontinuity between

two successive years. Examination of allele loadings

further reveals that this abrupt change is due to the appa-

rition of new alleles in the global population, one of

which induced a change in the amino-acid sequence, and

may have therefore been subject to natural selection.

Although DAPC is a promising tool for the analysis

of genetic data, further methodological developments

should be considered to improve our approach. K-means

has proved very efficient here as in previous studies for

identifying genetic clusters [5], and is moreover consistent

with the variance partition model used in Discriminant

Analysis. However, this algorithm uses a very simple mea-

sure of group differentiation, and might struggle to iden-

tify the correct clusters in the most complex situations

[16]. Would that be the case, useful alternatives to

K-means could be found in more elaborated clustering

algorithms [49]. Another point of interest relates to the

selection of the number of principal components used in

the prior dimension-reduction step. So far, this procedure

is largely ad hoc, and relies on retaining most (more than

80%) of the genetic variance. Objective criteria would be

useful to achieve this task. Unfortunately, there is no con-

sensus on the best strategy for selecting interpretable prin-

cipal components in PCA [50]. In the context of DAPC,

we will have to evaluate a trade-off between the power of

discrimination and the stability of assignments. Retaining

more principal components provides more power for

unravelling genetics structures, but increases the risks of

obtaining ad hoc combinations of alleles which would dis-

criminate perfectly the sampled individuals, whilst per-

forming poorly on newly sampled individuals [51]. This

issue could be addressed using repeated cross-validation,

so that each individual would be assigned to a cluster

based on a model calibrated using other individuals.

Irrespective of these methodological adjustments, we

can see applications of DAPC beyond the mere study of

the genetic structure of populations. One field where

the method may be particularly relevant is association

studies. In this context, population structuring (’popula-

tion stratification’) creates spurious correlations between

genotypes and phenotypes. To circumvent this issue,

Figure 7 Colorplot of the DAPC of extended HGDP-CEPH data based on four inferred clusters. This colorplot represents the three

principal components (PC) of the DAPC of extended HGDP-CEPH data, using the four clusters inferred by find.clusters (see Figure 6). Each dot

corresponds to a sampled population. Each principal component is recoded as intensities of a given colour channel of the RGB system: red (first

PC), green (second PC), and blue (third PC). These channels are mixed to form colours representing the genetic similarity of populations.

Eigenvalues are not indicated, since there are only three PC in a DAPC based on four clusters.
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Price et al. [12] proposed to partial out population

structures by regressing data onto the first principal

components of a PCA. But as explained in the introduc-

tion, PCA focuses on the overall variability, which

includes variation between and within populations. In

this case it would be preferable to remove only

between-population structures from the data. Indeed,

regression onto the first principal components of a PCA

is likely to remove relevant within-population variation,

thereby resulting in a lack of power for detecting signifi-

cant associations. In contrast, DAPC yields principal

components which are meant to reflect between-popula-

tion variability only. Regressing data onto these synthetic

variables would therefore remove the effects of popula-

tion stratification, while preserving relevant variability.

Note that one could achieve the same result by regres-

sing data onto the groups identified by our approach.

Association studies aim at identifying genetic features

that differ between two or more groups of individuals. In

other words, the aim is to identify the alleles that best dis-

criminate a set of pre-defined clusters. DAPC seems

perfectly adapted to this task, as it finds linear combina-

tions of alleles (the discriminant functions) which best

separate the clusters. Alleles with the largest contributions

to this discrimination are therefore those which are the

most markedly different across groups, which could repre-

sent cases and controls. A simple plot of allele contribu-

tions (Figure 9) could therefore be used for a graphical

assessment of alleles of major interest. An additional rea-

son why DAPC may be well suited for this purpose is the

ease with which one can control for covariates, such as

age or sex.

To conclude, DAPC appears as a fast, powerful and

flexible tool to unravel the makeup of genetically

structured populations. However, we have no doubt

that the application of this method goes way beyond

the illustrations provided in this paper. We hope that

its implementation in the free software R [27], which

hosts an ever increasing number of tools for popula-

tion genetics and phylogenetics [38,52-54] will open

new and exciting perspectives for the statistical analy-

sis of genetic data.

Figure 8 Scatterplots of the DAPC of seasonal influenza (H3N2) data. This scatterplot shows the first two principal components of the

DAPC of seasonal influenza (H3N2) hemagglutinin data, using years of sampling as prior clusters. Groups are shown by different colours and

inertia ellipses, while dots represent individual strains.
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Methods
Measuring between-group differentiation

Discriminant Analysis (DA), DAPC, and K-means clus-

tering all rely on the same statistical model to quantify

between-group differentiation, which is in fact a classical

ANOVA model. Below, we introduce this general model

using concepts and notations further used in the specific

presentation of DAPC and K-means clustering.

Let y Î ℝ
n be the vector of a centred variable with n

observations (y1,...,yn) distributed into g groups, and D

be the diagonal matrix containing uniform weights for

the observations (i.e., all diagonal entries are 1/n, while

off-diagonal entries are 0). We denote H = [hij] the n ×

g matrix containing dummy vectors coding group mem-

bership, so that hij = 1 if observation i belongs to group

j, and hij = 0 otherwise. We define P = H(HTDH)-1HTD

as the projector onto the dummy vectors of H, which

can be used to replace each observation in yi by the

mean value of the group to which i belongs, y i

∧

. The

ANOVA model relies on the decomposition of y:

y Py I P y y y y= + − = + −
∧ ∧

( ) ( ) (1)

where I is the identity matrix of dimension n, y
∧

is

the vector of predictions, and ( )y y−
∧

is the vector of

residuals. Since y is centred, the vectors y
∧

and ( )y y−
∧

are also centred, and their squared norms ( y y
D

D

2
2

,
∧

,

and y y
D

−
∧

2

) equate their variances. Moreover, the

Pythagorean theorem ensures that the total variance

( var( )y y
D

=
2
) can be decomposed as:

var( ) ( ) ( )y y y= +b w (2)

where b( )y y
D

=
∧

2

is the variance between groups

and w( )y y y
D

= −
∧

2

is the variance within groups. To

measure the extent to which groups possess different

values of y, we use the ratio of between-group and

within-group variances, also known as the F statistic:

F( )
( )

( )
y

y

y
=

b

w
(3)

This quantity takes positive values only, with larger

values indicating stronger differences between groups.

Alternatively, one could use the proportion of variance

explained by the model, which is also known as the cor-

relation ratio of y, defined as:

 2( )
( )

var( )
y

y

y
=

b
(4)

In fact, both quantities can be used as a measure of

group separation in DA and DAPC, and would yield iden-

tical results (discriminant functions) up to a constant. In

the remaining, we shall refer to the F statistic only.

Discriminant Analysis of Principal Components

Let X be a n × p genetic data matrix with n individuals

in rows and p relative frequencies of alleles in columns.

For example, in the case of a locus with three alleles

(A1, A2, A3), a homozygote genotype A1/A1 is coded as

[1, 0, 0], while a heterozygote A2/A3 is coded as [0, 0.5,

0.5]. We denote Xj the jth allele-column of X. Missing

data are replaced with the mean frequency of the

Figure 9 Contributions of alleles to the second principal

component of the DAPC of seasonal (H3N2) influenza data. The

height of each bar is proportional to the contribution (Equation 10)

of the corresponding allele to the second principal component of

the analysis, which isolated the strains from the 2006 influenza

epidemic from all others (see Figure 8). Only alleles whose

contribution is above an arbitrary threshold (grey horizontal line) are

indicated for the sake of clarity. Alleles are labeled by their position in

the original alignment, and the corresponding nucleotide, separated

by a dot. Position 384 and 906 correspond respectively to residue

144 and 318 in the complete hemagglutinin (HA) protein CDS.

Polymorphism at position 384 leads to a mutation from Asparagine

to Lysine, present in 32.1% of strains sampled in 2006 while virtually

absent before 2006. Polymorphism at position 906 is synonymous.
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corresponding allele, which avoids adding artefactual

between-group differentiation. Without loss of general-

ity, we assume that each column of X is centred to

mean zero. Classical (linear) discriminant analysis seeks

linear combinations of alleles with the form:

f vj j

j

p

( )v X Xv= =

=

∑
1

(5)

(v = [v1...vp]
T being a vector of p alleles loadings,

known as ‘discriminant coefficients’), showing as well as

possible the separation between groups as measured by

the F statistic (Equation 3). That is, the aim of DA is to

choose v so that F(Xv) is maximum.

Linear combinations of alleles (Equation 5) optimizing

this criterion are called principal components, which in

the case of the discriminant analysis are also called dis-

criminant functions. Discriminant functions are found

by the eigenanalysis of the D-symmetric matrix [51]:

PX W X P D( )−1 T T (6)

where P is the previously defined projector onto the

dummy vectors of H, and W is the matrix of covar-

iances within groups, computed as:

W X I P D I P X= − −
T T( ) ( ) (7)

This solution requires W to be invertible, which is not

the case when the number of alleles p is greater than

the number of individuals n. Moreover, this inverse is

numerically unstable (’ill-conditioned’) whenever vari-

ables are correlated, which is always the case in allele

frequencies and can be worsened by the presence of

linkage disequilibrium.

To circumvent this issue, DAPC uses a data transfor-

mation based on PCA prior to DA. Rather than analyz-

ing directly X, we first compute the principal

components of PCA, XU, verifying:

X DXU UT
= Λ (8)

where U is a p × r matrix of eigenvectors (in columns)

of XTDX, and Λ the diagonal matrix of corresponding

non-null eigenvalues. Note that when the number of

alleles (p) is larger than the number of individuals (n),

we can alternatively proceed to the eigenanalysis of

XXTD to obtain U and Λ [55], which can save consider-

able computational time. By definition, the number of

principal components (r) cannot exceed the number of

individuals or alleles (r ≤ min(n, p)), which solves the

issue relating to the number of variables used in DA.

Moreover, principal components are, by construction,

uncorrelated, which solves the other issue pertaining to

the presence of collinearity among allele frequencies.

DA is then performed on the matrix of principal com-

ponents. At this step, less-informative principal compo-

nents may be discarded, although this is not mandatory.

Replacing X with XU into Equation 6, the solution of

DAPC is given by the eigenanalysis of the D-symmetric

matrix:

PXU U WU U X P D( )T T T T−1 (9)

The first obtained eigenvector v maximizes b(XUv)

under the constraint that w(XUv) = 1, which amounts

to maximizing the F-statistic of XUv. This maximum is

attained for the eigenvalue g associated to v (i.e., F(XUv)

= g). In other words, the loadings stored in the vector v

can be used to compute the linear combinations of prin-

cipal components of PCA (XU) which best discriminate

the populations in the sense of the F-statistic.

However, it can be noticed that these linear combina-

tions of principal components ((XU)v) can also be inter-

preted as linear combinations of alleles (X(Uv)), in

which the allele loadings are the entries of the vector

Uv. This has the advantage of allowing one to quantify

the contribution of a given allele to a particular struc-

ture. Denoting zj the loading of the jth allele (j = 1,...,p)

for the discriminant function XUv, the contribution of

this allele can be computed as:

z

z

j

j

j

p

2

2

1=

∑
(10)

Prior clustering using K-means

Whenever groups are not known in advance, it is possi-

ble to define them using a clustering algorithm.

K-means is a natural choice to do so since it uses the

same model as DA and a similar measure of group dif-

ferentiation. K-means relies on the model in equation

(1) which decomposes the total variance of a variable

into between-group and within-group components. This

model can be extended to the multivariate case by sum-

ming variance components over the different variables.

To differentiate univariate and multivariate variances,

we use upper case notations for variances of multivariate

data. Note, however, that these quantities are in both

cases squared norms of vectors or matrices (considering

the Frobenius norm in the multivariate case). Applied to

the previously-defined matrix of principal components

of PCA (XU) as in [5,16], this model can be written:

VAR( ) ( ) ( )XU XU XU= +B W (11)

with VAR(X) = tr(Λ), B(XU) = tr(UTXTPTDPXU), and

W(XU) = tr(UTWU). The Bayesian Information
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Criterion (BIC) used to choose the best clustering model

is then defined as:

BIC = +n W g nlog( ( )) log( )X (12)

where W(X) is the residual variance (i.e., variance

within groups, Equation 2) and g is the number of

groups. This criterion quantifies the lack of fit of the

model, while penalising the number of clusters used.

Note that here, g is used as an ad hoc way of avoiding

overfitting, and does not estimate the parametric dimen-

sionality of the model as in the original formulation of

BIC [56]. Several K-means can be run separately with dif-

ferent numbers of groups, and the best runs can be

inferred from the decrease of BIC. In simulated data, BIC

proved more efficient for identifying the correct number

of clusters than other criteria such as Akaike Information

Criterion (AIC) or the adjusted R2 (results not shown).

This result is consistent with previous findings which

advocated the use of BIC for selecting the best number of

groups in K-means clustering of genetic data [5].

Clustering analyses using STRUCTURE

We used STRUCTURE [1,2] as a benchmark for the

performance of DAPC. We analysed all simulated data-

sets with STRUCTURE v2.1, using the admixture model

with correlated allele frequencies to determine the opti-

mal number of genetic clusters and to assign individuals

to groups. Computations were performed on the com-

puter resources of the Computational Biology Service

Unit at Cornell University (http://cbsuapps.tc.cornell.

edu/). For each run, results were based on a Markov

Chain Monte Carlo (MCMC) of 100,000 steps, of which

the first 20,000 were discarded as burn-in. Analyses

were ran with numbers of clusters (k) ranging from 1 to

8 for the island and hierarchical island models (Figure

2a-b), from 1 to 15 for the hierarchical stepping stone

(Figure 2c), and from 1 to 30 for the stepping stone

(Figure 2d). Ten runs were performed for each k value.

We employed the approach of Evanno et al. [57] to

assess the optimal number of clusters. In order to assess

assignment success, STRUCTURE was run by enforcing

k to its true value. Individuals were assigned to clusters

using CLUMPP 1.1.2 [58], which allows to account for

the variability in individual membership probabilities

across the different runs. To obtain results comparable

to DAPC, individuals were assigned to the cluster to

which they had the highest probability to belong.

Implementation and examples

The methodological approach presented in the paper is

implemented in the adegenet package [6] for the R soft-

ware [27]. The function find.clusters runs successive K-

means for a range of k values, and computes the BIC of

the corresponding models. The basic K-means procedure

is implemented by the function kmeans in the stats pack-

age [27]. DAPC is implemented as the function dapc, and

relies on procedures from ade4 [55,59,60] and MASS [61]

to perform PCA (dudi.pca) and DA (lda). Both find.clus-

ters and dapc can be used with any quantitative data, and

have specific implementations for genetic data. The analy-

sis of the four simulated datasets presented in Figures 4

and 5 can be reproduced by executing the example of the

dataset dapcIllus. Similarly, analyses of the extended

HGDP-CEPH and of the seasonal influenza (H3N2) data

can be reproduced by executing the example of the data-

sets eHGDP and H3N2, respectively. Documentation and

support can be found at the adegenet website (http://ade-

genet.r-forge.r-project.org/).
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