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Abstract

Background: The regression of similarity against distance unites several ecological phenomena, and thus provides a highly
useful approach for illustrating the spatial turnover across sites. Our aim was to test whether the rates of decay in
community similarity differ between diatom growth forms suggested to show different dispersal ability. We hypothesized
that the diatom group with lower dispersal ability (i.e. periphyton) would show higher distance decay rates than a group
with higher dispersal ability (i.e. plankton).

Methods/Principal findings: Periphyton and phytoplankton samples were gathered at sites distributed over an area of
approximately 800 km length in the Negro River, Amazon basin, Brazil, South America (3u089000S; 59u549300W). Distance
decay relationships were then estimated using distance-based regressions, and the coefficients of these regressions were
compared among the groups with different dispersal abilities to assess our predictions. We found evidence that different
tributaries and reaches of the Negro River harbor different diatom communities. As expected, the rates of distance decay in
community similarity were higher for periphyton than for phytoplankton indicating the lower dispersal ability of periphytic
taxa.

Conclusions/Significance: Our study demonstrates that the comparison of distance decay relationships among taxa with
similar ecological requirements, but with different growth form and thus dispersal ability provides a sound approach to
evaluate the effects of dispersal ability on beta diversity patterns. Our results are also in line with the growing body of
evidence indicating that microorganisms exhibit biogeographic patterns. Finally, we underscore that clumbing all microbial
taxa into one group may be a flawed approach to test whether microbes exhibit biogeographic patterns.
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Introduction

In a recent review it was suggested that diversity could be

partitioned into two different components. The first component,

inventory diversity, relates to the species composition of a single

plot or a region and thus refers to classical Whittaker̀s alpha and

gamma diversity; the second component considers changes in

species composition between plots or areas and is known as beta

diversity or differentiation diversity [1]. In recent years, different

methods to analyze patterns in beta diversity have been developed,

given the paramount importance of this component in both

theoretical and applied terms [2–4]. In 1970, W. Tobler stated

what is regarded as the first law of geography: ‘‘Everything is

related to everything else, but near things are more related than

distant things [5].’’ Inspired by Tobler’s work, botanists popular-

ized a pattern that is currently recognized as the distance decay of

similarity (DDS) [6]. This pattern emerges when compositional

similarities (i.e., the complement of beta diversity) decrease with

the increase of geographic distances between sites. Currently, the

DDS is one of the most widely studied relationships in ecology and

has been recognized as a manifestation of processes controlling

community composition on different spatial scales [7–8].

Nekola & Whitte [6] provided a comprehensive conceptual

framework of distance decay rate variation. According to them,

the DDS can be explained by different extrinsic and intrinsic

factors. Extrinsic factors include, for instance, environmental

variability, habitat isolation and dispersal barriers, whereas

intrinsic factors include dispersal ability, body size, trophic position

and thermoregulation of the organisms concerned [7,9]. Dispersal

ability, in particular, is a key factor that could explain much of the

variation in the rate of the DDS. For instance, a high rate of

similarity decay can be expected for organisms with low dispersal

ability [6,10–11].
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Many organism groups offer interesting possibilities to study the

potential effect of dispersal ability on patterns in DDS. Diatoms

(Bacillariophyceae) belong to a diverse group of microalgae.

Depending on the species concept, conservative estimates suggest

that the total number of diatom species could be as high as two

hundred thousand [12]. They have a worldwide distribution and

constitute a major component of planktonic and benthic algal

communities from oceanic waters to polar ice caps and from moist

soils to freshwater alkaline lakes or eutrophic estuaries [13]. They

form a taxonomically dominant and functionally diverse commu-

nity in streams and rivers, possessing different growth forms and

strategies to resist environmental pressures, such as grazing and

flow disturbance. The different life forms include benthic,

planktonic, mobile, colonial, mucous tubule, pedunculate and

pioneer taxa [14]. All these strategies are supposedly connected

with their dispersal abilities and, consequently, with the patterns in

beta diversity exhibited by these organisms.

Some authors have emphasized that, in general, diatoms are

ubiquitous and their community compositions are predominantly

determined by species sorting of the environment [15–16].

According to Finlay et al. [17], diatoms possess exceptional

dispersal abilities because many taxa have a cosmopolitan

distribution, and undersampling of rare habitats, taxa or resting

stages have led to erroneous claims of endemism. However, several

fine-grained taxonomic studies suggest endemism, geographic

limits and dispersal constraints for diatoms [18–20]. Indeed, there

is accumulating evidence that diatoms also respond to large-scale

climatic, historical or dispersal-related factors [21–22].

In this study, we examined the DDS in periphytic and

planktonic diatom communities from one of the largest neotropical

rivers (the Negro River, a Brazilian tributary of the Amazon) to

study whether the rates of decay in similarity differ between the

diatom groups growing in different habitats. Building on the

conceptual framework developed by Nekola & White [6], we

expected a faster decrease of similarity with distance for periphytic

species (which possess poorer dispersal abilities due to their

association with the substrata) than for free-living planktonic

species (which possess higher dispersal abilities). Following a de-

constructive approach [23], we also tested the same prediction

after dividing each of the communities according to inferred

dispersal abilities.

Materials and Methods

Study Area
Of the hundreds of tributaries of the Amazon River (15u31950S;

71u459550W), the Negro River is considered to be one of the most

important, due to its high flow (annual mean < 29,000 m3 s21),

being the second largest discharge tributary [24]. Its basin mostly

encompasses an intensely weathered area of the Precambrian

shield and extends 1,100 km in the east-west direction and 600 km

in the north-south direction with a basin area of 715,000 km2. The

hydrographical basin of the Negro River is characterized by

environments with low nutrient concentrations and pH values

[25]. Exceptions, such as the Branco River, have intermediate

values between black and white waters for most limnological

variables (i.e., pH, conductivity, dissolved organic carbon, metals

and ionic composition). The Branco River is a ‘clear’ water river

and is one of the most important affluents on the left bank of the

Negro River in its middle-low reach. According to geomorpho-

logical characteristics, the Negro River basin can be divided into

six reaches [24], five of which were sampled during our study

(Figure 1).

Sampling
During an expedition across the Negro River basin in March

2005, two different sets of samples (periphyton and phytoplankton)

were collected. Samples were gathered during the rising water

period. Subsurface phytoplankton samples were collected from the

main channel of the Negro River and its tributaries (n = 114,

Figure 1, A) with a plankton net (54 mm mesh) and were fixed with

a solution of 3–4% formaldehyde. Periphytic samples (n = 129)

were collected mainly in riparian flooded forests located in nine

different tributaries (Figure 1, B). Samples were gathered mainly

from litter and submerged plants (n = 119). A small number of

samples (n = 10) were collected from other microenvironments

(rocks and sand sediments). All necessary permits were obtained

for the described field studies. They were not conducted in

privately-owned or protected area and did not involved endan-

gered or protected species.

Sample Treatment
Homogenized aliquots of the material from both periphyton

and phytoplankton samples were heated in an 85˚C water bath

with a 30% hydrogen peroxide (H2O2) solution for at least 3 hours

to oxidize the organic matter and clean the frustules. Next,

samples were cleaned with 10% hydrochloric acid (HCl) to

dissolve carbonates. Cleaned samples were mounted on glass slides

using NaphraxH as mounting medium. Slides were counted on

a ZeissH (AxioscopeH 2) at 1000X magnification under oil

immersion. Relative abundances were estimated following the

counting technique described by Pappas and Stoermer [26] with

a minimum of 400 valves counted per slide on up to six random

transects until reaching an efficiency $92%.

Species Traits used to Deconstruct Phytoplankton and
Benthic Communities

The species matrix was divided into four main tables based on

different studies (Text S1). Thus, we further split the phytoplank-

ton species matrix into true planktonic (TP) and loosely attached

mobile species (MP). Similarly, the benthic species data table was

divided into loosely attached mobile taxa (MB) and firmly attached

species (true benthic TB). Within each community (i.e., planktonic

and benthic), we assumed that vagility was higher for TP and MB

when compared with MP and TB, respectively. According to our

initial hypothesis, the rate of decline in similarity with distance

should be greater for MP than for TP. A similar pattern should be

found for the comparison between TB and MB. As these groups

possess similar environmental requirements, we assumed that this

scheme of comparison could, at least partially, rule out the

possibility that differences in the patterns of distance decay could

be solely or mostly attributed to differences in the ways that the

groups respond to species sorting mechanisms; the differences

could then be better explained by dispersal abilities. We thus

assumed higher dispersal ability for phytoplankton community

than for periphytic diatoms, which adhere to substrata. Within

periphyton and phytoplankton, dispersal ability was assumed to

increase from TB to MB and from MP to TP.

Turnover and Nestedness
Patterns in beta diversity can be decoupled into a spatial

turnover component (variation in species identity among sites) and

a nestedness component (when sites with lower richness are subsets

of sites with higher richness; see [27]. To quantify the relative

importance of these components, we used the procedures de-

scribed by Baselga [28].

Neotropical Diatom Communities
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Initial Similarity and Distance Decay Analyses
For each matrix (periphyton, phytoplankton and deconstructed

sets), we used the Bray-Curtis index of similarity to calculate

pairwise similarities of abundance data between sampling sites. A

matrix of geographic (Euclidean) distances between sites was

derived from the longitudinal and latitudinal coordinates. We used

euclidean distances instead of distances along river channels

because diatoms disperse efficiently also via air. Subsequently and

for each algal group, the Bray-Curtis distance matrix was regressed

on the geographic distance matrix [29]. We used the intercept of

the resulting regression model as a measure of the ‘‘initial

similarity’’ [6–7]. A high intercept indicates a low level of beta

diversity at short distances (as expected for organisms with high

vagility). The standardized regression coefficients of these re-

gression models were used as measures of the rate of decay in

similarity as a function of geographical distance between sites. As

we were using only one explanatory variable, the standardized

regression coefficients we obtained were identical to the Mantel’s

matrix correlation statistics. P-values associated with the regression

coefficients were estimated using 10,000 randomizations [29]. To

test whether the rates of decay in similarity differ between the

diatom groups we used a Monte Carlo randomization procedure

based on Nekola & White [6]. The procedure consisted of the

following steps: (i) the lower triangles of the similarity matrices (one

for each group under comparison) were unfolded into a single

vector containing (n16n1–1)/2+ (n26n2–1)/2 rows (where n1 and n2

are the number of sites for the groups under comparison); (ii) the

slope of the relationship between geographic distance and

community similarity was estimated for each group; (iii) a vector

with the same number of rows and containing the codes to identify

the groups under comparison was created (e.g., TB and MB) and

paired with the similarity vector; (iv) the vector containing the

labels was randomly rearranged 10000 times and, for each

randomization, the absolute difference between the slopes were

calculated (the criterion statistics) to produce a null distribution for

the absolute differences between the slopes; (v) the P-values were

estimated as the ratio between the number of times that the

randomized differences were equal or greater than the observed

difference (+1) and the number of randomizations. The number of

zero similarity values was very low (eight for periphyton and 95 for

phytoplankton) and had no effect on the analysis; therefore, we

included zero similarity values in all analyses. All distance decay

analyses were repeated after transforming abundance data into

presence/absence data. In these cases, we used the pairwise

Simpson index to calculate the floristic similarities between

sampling sites [28] (Figure S1). For comparative purposes, we

also estimated initial similarity values following the procedures

described by Soininen [7]. All statistical analyses were performed

in R (R Development Core Team [30]) using the libraries vegan

and ecodist and the functions provided by Baselga [28]. The Monte

Carlo randomization procedure was written in R language and is

available upon request.

Results

Diatom Composition and Diversity
A high number of diatom taxa (652) was identified in the

samples (n= 243 samples). Eunotiaceae was the most species-rich

family with almost a third (28.5%) of the species from both

Figure 1. Sampling sites located along the Negro River hydrographical basin, the Brazilian Amazon for (A) phytoplankton samples
(n=114), including tributaries (1–8) and the main channel; and for (B) periphyton samples collected on tributaries (1–9) (n=129).
Geomorphological reaches (I to V) are presented according to Latrubesse and Franzinelli [24].
doi:10.1371/journal.pone.0045071.g001

Neotropical Diatom Communities
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periphytic and planktonic environments [31] followed by Pinnu-

lariaceae (14.6%), Naviculaceae (8.6%), Cymbellaceae (8.0%),

Sellaphoraceae (7.1%), Gomphonemataceae (5.0%), Surirellaceae

(4.8%) and Fragilariaceae (3.2%). These families represented

79.2% of the total species number detected. Aulacoseira Thwaites,

Asterionella Hassal, Fragilariforma D.M. Williams et Round, small-

celled (610 mm) genera (e.g., Chamaepinnularia Lange-Bertalot et

Krammer, Eolimna Lange-Bertalot et W. Schiller, Nupela Vyver-

man et Compère) and the family Stephanodiscaceae were among

the most abundant taxa in phytoplankton samples. Periphyton

communities were mainly represented by the members of

Eunotiaceae (Eunotia Ehrenberg with 151 species and Actinella

F.W. Lewis with 31 species) (Table S1 and Figure S2).

Nestedness and Community Turnover
Patterns of beta diversity in phytoplankton and periphyton at

the Negro River hydrographical basin were mainly caused by the

spatial turnover with a small contribution from nestedness

(Figure 2). A high nestedness component of beta diversity was

observed only for true planktonic species (bNES = 0.034), but this

component was still much lower than the turnover component

(bSIM = 0.930).

Distance Decay Relationships (DDR)
In all data sets, community similarity decreased significantly

with distance (P,0.001, Figure 3 and 4). However, there were

important differences in the distance decay relationships (DDS)

among the groups under comparison, as described by their

intercepts, slopes and levels of scatter. For instance, the DDS for

all species recorded in phytoplankton samples showed a signifi-

cantly (P,0.001) lower slope (standardized regression coefficient

b=20.3860.01 SE), a higher intercept (‘‘initial similarity’’

a= 0.3860.003) and a lower coefficient of determination

(R2 = 0.15) when compared to the DDS obtained for periphyton

communities (b=20.5660.009; a= 0.3560.002; R2 = 0.31;

Figure 3). The DDS obtained for true planktonic diatoms (TP,

Figure 4, A) showed a significantly (P,0.001) higher value of

a (0.5460.004) and b (20.3560.012) than the DDS derived from

mobile species (MP; a= 0.1860.002; b=20.2460.012; Figure 4,

B). Considering the periphyton samples, the DDS for benthic

diatoms (TB, Figure 4, D) also presented a significantly (P,0.001)

higher b (20.5460.009) and a (0.3960.002) when compared with

the mobile group (MB; b=20.3060.011; a= 0.1860.002)

(Figure 4, C). The randomization procedure also revealed

a significant difference (P,0.001) when the comparison was made

between between TB and TP, but not between MB and MP

(P= 0.547). In general, most of these results were in line with our

predictions (Figure S1), and similar results were found for the

Simpson index applied to the incidence-based data (Figure S3).

Figure 2. Turnover and nestedness components of beta diversity for the different diatom groups.
doi:10.1371/journal.pone.0045071.g002

Figure 3. Bray-Curtis similarity of phytoplankton and periph-
yton samples plotted against geographical distance between
sites.
doi:10.1371/journal.pone.0045071.g003
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Discussion

Our basic results agree with what is expected from a mega-

diverse region. Besides several taxa that are known from other

regions in similar habitats, we found several populations that either

did not entirely fit the descriptions found in floras from Europe,

North America or elsewhere, or that could not be related to any

taxa known to us at the time of the preparation of this paper.

While it is possible that some undetermined taxa could be linked to

a published name after extensive literature searches and compar-

ison with type material, others are potentially new species. Species

accumulation curves (unpublished results) indicated that the actual

species richness of this region is far greater than the 652 diatom

taxa identified in our study. Although a few comparisons of species

richness between regions cannot be definitive, it is nevertheless

clear that the diversity of freshwater diatoms from the Neotropic is

among the most diverse in the world.

Diatom Beta Diversity Across the Negro River Watershed:
How High was it in Relation to other Studies and How
Predictable was it?

The magnitude of beta diversity estimated in a given study can

be explained by the interaction of multiple intrinsic (e.g., dispersal

ability of organisms) and extrinsic factors (e.g., latitudinal position,

size and type of the system under study [6,9]. Based on the results

provided by the meta-analysis published by Soininen et al. [9], we

can verify whether our results are within the expected range,

considering the intrinsic and extrinsic factors they analyzed. More

importantly, this comparison may shed some light on the relative

importance of these factors in driving beta diversity patterns.

Similarity values declined with increasing distance between

sampling sites (as expected by Tobler’s first law of geography;

see [32]. If compared with reported values in literature [33–34],

these seem quite high indicating high species turnover in

Neotropical communities. This suggests that large-scale turnover

Figure 4. Bray-Curtis similarity of phytoplanktonic (A-B) and periphytic diatom communities (C-D) plotted against geographical
distances between sites. A. True planktonic species (TP); B. mobile planktonic species (MP); C. Loosely attached mobile taxa (MB); D. Firmly
attached species (true benthic TB).
doi:10.1371/journal.pone.0045071.g004

Neotropical Diatom Communities

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e45071



diversity may be high in low latitudes compared with regions

nearer the poles [9].

For comparative purposes, interesting measure of beta

diversity is also given by the ‘‘initial similarity’’ (the similarity

at one km distance), and all results discussed in this section are

based on this metric and on the Sørensen index [7]. The

predicted initial similarities for phytoplankton and periphyton

communities at the Negro River were 0.352 (CI95% = 0.347–

357) and 0.373 (CI95% = 0.369–0.376), respectively. These low

values were comparable to those reported by Soininen et al. [7]

for microorganisms living in freshwater systems located at low

latitudes (see their figures 2 h, 2b, and 2a) but lower than for

planktonic communities in Finland [34]. High beta diversity

(i.e., low initial similarity) for small organisms inhabiting

freshwater systems localized at lower latitudes is expected if

we assume, simultaneously, a predominance of small-bodied and

range-restricted species near the tropics (which, due to higher

surface-to-volume ratios and shorter generation time, are more

sensitive to fine-scale environmental variability [35]) and that

freshwater systems are more isolated than terrestrial systems.

Taken together, these results indicate the importance of such

factors as body size, realm and latitude in determining beta

diversity values. More importantly, and independently of the

underlying mechanisms, results from Soininen et al. [7] and our

comparative analysis indicate that beta diversity patterns are, to

some extent, predictable [36]. In addition, these results appear

to be robust to the use of an alternative similarity index (see

discussion between Baselga [27] and Soininen and Hillebrand

[37]), as we also obtained a low initial similarity with the use of

the Simpson index (CI95% = 0.480–0.493 for phytoplankton and

CI95% = 0.478–0.487 for periphyton).

Considering our results, the comparison of the initial similarities

(y-intercepts) estimated with the Simpson index, which provides

estimates that are independent of species richness [27–28,38],

highlighted the importance of dispersal abilities in explaining beta

diversity values. Indeed, we estimated the highest initial similarity

(i.e., lowest small-scale beta diversity) for true planktonic species

(a= 0.78; CI95% = 0.769–789; see Figure S3). This result is in line

with the expectation that high dispersal abilities (as assumed for

true planktonic algae) tend to homogenize communities and to

reduce beta diversity in small spatial scales [39–40].

Do Diatoms have Biogeography?
Diatom beta diversity patterns across the Negro River

watershed were mainly driven by spatial turnover. This result

suggests that some level of biogeographic provincialism cannot be

disregarded. Unfortunately, we do not have a comprehensive set of

environmental variables because some basic limnological variables

were measured only at certain sampling sites. In principle, we

would need a more comprehensive dataset to fully verify whether

the among-site differences in diatom composition were mostly due

to biogeographic signals, rather than current species-sorting

mechanisms. Although we are not ruling out the roles of species-

sorting mechanisms by the unmeasured environmental variables,

other lines of evidence suggest that dispersal limitation and

barriers were also important in shaping the patterns we found. For

example, most of the sampling sites were located in black water

rivers (except those in the Branco River), which tend to be

environmentally homogeneous in the Negro River hydrographical

basin. Indeed, according to the data gathered simultaneously with

the algal samples, the coefficients of variation estimated for pH,

dissolved oxygen (n= 41) and ionic concentrations (as indicated by

conductivity; n= 29) were relatively low (10.8%, 38.6% and

55.4%, respectively; see Table S2). Also, it is important to note

that all samples were gathered during the high water period; even

so, despite the fact that floods tend to homogenize the abiotic

characteristics and the biota of aquatic habitats [41], we found that

communities were spatially patterned.

There is an ever-increasing amount of evidence indicating that

microbial organisms exhibit biogeographic patterns [42–44]

(Green et al. 2004, Noguez et al. 2005, Telford et al. 2006).

Thus, the studies previously cited, among others, support the

second part of the L.G.M. Baas-Becking statement, ‘‘the

environment selects,’’ but reject the first part that states

‘‘everything is everywhere’’ [44–46].

What is the Role of Dispersal Ability on Distance Decay
Patterns?

Nekola and White [6] were among the first to raise and test the

hypothesis that increased dispersal ability would cause a decrease

in distance decay rates. Specifically, using a dataset obtained in

North American spruce-fir forests, they show, for instance, that

large-seeded plants have much more rapid rates of decay than

small, wind-dispersed seeds and that the rate of distance decay was

significantly higher for fragmented forests than for contiguous

forests. Subsequently, Soininen et al. [7] and Heino [47] suggested

that a fruitful approach to evaluate the relative roles of species-

sorting mechanisms, and dispersal limitation would be the

comparison of the distance decay relationships produced by

organisms with different dispersal abilities (considering data

gathered at the same sites). Although Nekola and White [6] called

our attention to the importance of dispersal ability in explaining

the variation in the DDR more than a decade ago, this prediction

has been tested only recently [11,33]. These tests have been

conducted in both aquatic and terrestrial systems and have focused

on different taxonomic groups. Also, some interesting variations of

the general prediction have been investigated, including the

comparison of the distance decay rates between exotic and native

species [48–51] and between parasitic communities of hosts with

different vagilities [52].

Thus, we built on these works to formulate the main

predictions of our study. Specifically, we predicted that groups

of algae with higher dispersal ability should show lower rates of

distance decay (or low scale-dependency of beta diversity

according to Soininen et al. [7], when compared with groups

with lower dispersal ability. As we found a higher distance

decay rate for periphyton than for phytoplankton communities,

our results support this prediction independently of the

similarity index used (Simpson’s dominance index and Sør-

ensen’s similarity index for incidence data and Bray-Curtis

index of similarity for abundance data). This pattern was also

observed for the comparison between benthic and mobile algae

within the periphyton communities. Brown and Swan [53] also

found that only ‘‘low-dispersal communities’’ of macroinverte-

brates inhabiting the main channels of a riverine network

(Maryland, USA) exhibited significant DDR. Similarly, studies

focusing on turnover patterns of exotic and native plant species

in North America and Europe found that exotic species

(supposedly with high dispersal ability) exhibited lower rates of

similarity decay than do native species [48–50,53–54]. In one

extreme, Mazaris et al. [55] detected a significant DDR only for

fish in a comparison with better dispersers’ communities

(phytoplankton and zooplankton). However, the prediction of

a lower rate of similarity decay for better dispersers did not

hold in many cases [51–52,56].

If we consider that body size is a reliable proxy for dispersal

ability, and if we consider the analysis of the 401 DDR performed

by Soininen et al. [7], then the generality of this prediction should

Neotropical Diatom Communities
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be qualified. This would be because they did not detect a negative

and significant relationship, as expected by the prediction,

between body size and halving distance (a metric inversely related

to the rate of distance decay). However, a possible caveat of this

and all results described above, including ours, is that, instead of

being directly measured, the trait ‘‘dispersal ability’’ is, in general,

inferred from other traits, such as body size, growth form, habitat

use, invasiveness, and, in the case of parasitic communities, host

vagility. Thus, although we realize the methodological challenges

of explicitly measuring dispersal ability for an entire community

[57], especially for microorganisms, we suggest that a more

reliable way to test the effect of dispersal ability on DDR would

involve the direct measurement of dispersal.

Our study demonstrates that the comparison of distance decay

relationships among diatom taxa with different dispersal abilities

was a sound approach to evaluate the potential effects of dispersal

rates on beta diversity patterns [9,47]. Although dispersal ability is

clearly high for microorganisms, the deconstructive approach we

used suggested that a range of dispersal capabilities within this

huge group could be found. The confirmation of our general

prediction (higher rates of decay in community similarity for less-

vagile algae groups) can be seen as an indirect validation of the

suitability of the traits we used to create the groups. More

importantly, these results indicate that treating all unicellular taxa

as ‘‘microorganisms’’ may be a flawed approach to test whether

microbes exhibit biogeographic patterns.
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38. Baselga A, Jiménez-Valverde A, Niccolini G (2007) A multiple-site similarity

measure independent of richness. Biol Lett 3: 642–645.
39. Mouquet N, Loreau M (2002) Coexistence in metacommunities: The regional

similarity hypothesis. Am Nat 159: 420–425.

40. Gonzalez A (2009) Metacommunities: Spatial Community Ecology. In: eLS.
John Wiley and Sons Ltd, Chichester, 1–18.

41. Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among
aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

42. Green JL, Holmes AJ, Westboy M, Oliver I, Briscoe D, et al. (2004) Spatial
scaling of microbial eukaryote diversity. Nature 432: 747–750.

43. Noguez AM, Arita HT, Escalante AE, Forney LJ, Garcı́a-Oliva F, et al. (2005)

Microbial macroecology: highly structured prokaryotic soil assemblages in
a tropical deciduous forest. Global Ecol Biogeogr 14: 241–248.

44. Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for
microbial morphospecies. Science 312: 1015.

45. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, et al.

(2006) Microbial biogeography: putting microorganisms on the map. Nat Rev
Microbiol 4: 102–112.

46. O’Malley MA (2008) ’Everything is everywhere: but the environment selects’: ubiquitous

distribution and ecological determinism in microbial biogeography. Stud Hist

Phil Biol Biomed Sci 39: 314–325.

47. Heino J (2011) A macroecological perspective of diversity patterns in the

freshwater realm. Freshwater Biol 56: 1703–1722.

48. La Sorte FA, McKinney ML (2006) Compositional similarity and the

distribution of geographical range size for assemblages of native and non-native

species in urban floras. Divers Distrib 12: 679–686.

49. Qian H, Ricklefs RE (2006) The role of exotic species in homogenizing the

North American flora. Ecol Lett 9: 1293–1298.
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