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The P300 event-related potential (ERP) can be used to
infer whether an observer is looking at a target or not.
Common practice in P300 experiments and applications is
that observers are asked to fixate their eyes while stimuli
are presented. We investigated the possibility to
differentiate between single target and nontarget fixations
in a target search task involving eye movements by using
EEG epochs synchronized to fixation onset (fixation-
related potentials: FRPs). Participants systematically
scanned search displays consisting of six small Landolt Cs
in search of Cs with a particular orientation. After each
search display, they indicated whether and where target
Cs had been presented. As expected, an FRP component
consistent with the P300 reliably distinguished between
target and nontarget fixations. It was possible to classify
single FRPs into target and nontarget FRPs above chance
(on average 62% correct, where 50% would be chance).
These results are the first step to practical applications
such as covertly monitoring observers’ interests and
supporting search tasks.

Introduction

The P300 is an event related potential (ERP)
occurring approximately 250–500 ms after a target or

task-relevant stimulus has been presented (Ravden &
Polich, 1999). Because the P300 is relatively easy to
detect and its amplitude depends on voluntarily
controlled endogenous attentional processes, it is often
used as a control signal in brain–computer interfaces
(BCIs; Brouwer & van Erp, 2010; Farwell & Donchin,
1988; Jin et al., 2012; Sellers, Krusienski, McFarland,
Vaughan, & Wolpaw, 2006). In P300 BCIs, different
stimuli are presented sequentially. The stimulus chosen
by the observer (i.e., the stimulus that the observer
focuses his/her attention on), elicits a P300 that is
detected by the computer. In this way, BCI users can
select one of several presented options, such as a
particular letter to spell a word.

Usually, participants using a P300 BCI or taking
part in an experiment in which the P300 is investigated,
are asked not to move their eyes around the time that
the P300 occurs. For example, they fixate a fixation
cross that is subsequently replaced by a particular
visual stimulus, or they fixate a target among non-
targets and count the number of times it is flashed.
However, in natural visual search tasks, observers
sample their visual environment by self-initiated
fixations and saccades instead of fixating a location
where the visual stimulus is known to appear. We
expect that the brain’s electrophysiological response to
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perceiving a target among nontargets will be similar
regardless of whether the eyes are static and targets and
nontargets are presented at a fixation location or
whether an observer fixates a set of nontargets
individually in search for a target (Kamienkowski,
Ison, Quiroga, & Sigman, 2012). Here we try to infer
from EEG whether individuals look at a target object
or not in situations with natural eye movements.
Rather than locking EEG to stimulus onset, we lock
EEG to fixation onset and examine whether we can
distinguish target from nontarget fixations on a single-
fixation basis. If so, this would enable new types of
(online) applications, such as covertly monitoring
observers’ interests and supporting search tasks, as well
as further stimulating more ecologically valid scenarios
in EEG studies about visual search, selective attention,
and detection.

Fixation-related potentials (FRPs) or saccade related
potentials (SRPs) have been studied in the context of
reading (Baccino & Manunta, 2005; Dimigen, Sommer,
Hohlfeld, Jacobs, & Kliegl, 2011; Marton, Szirtes, &
Breuer, 1985; Simola, Holmqvist, & Lindgren, 2009),
viewing and identifying drawings (Ravden & Polich,
1999), viewing natural images (Ossandón, Helo, Mon-
tefusco-Siegmund, & Maldonado, 2010), studying
awareness of oculomotor errors (Belopolsky, Kramer,
& Theeuwes, 2008) and, as an example of an applied
setting, evaluation of lighting systems (Yagi, Imanishi,
Konishi, Akashi, & Kanaya, 1998). It is generally held
that conventional ERP components such as the P1 and
the N1 can be identified in FRPs or SRPs (Baccino &
Manunta, 2005; Belopolsky et al., 2008; Kazai & Yagi,
2003; Ossandón et al., 2010; Rämä & Baccino, 2010) as
well as later components such as the N400 (Dimigen et
al., 2011). A review of studies on FRPs and SRPs in
reading is given by Dimigen et al. (2011). They
conclude that while EEG is seldom recorded in natural
viewing conditions, it can indeed contribute new
answers to long-standing questions in the field of
reading.

We are interested in an FRP component related to
the P300 that could distinguish between target
fixations and nontarget fixations. In research by Hale,
Fuchs, and Berka (2008), observers viewed photo-
graphic images of industrial sites and satellite images
in which they had to search for specific targets, such as
a particular vehicle. An overall difference between
different types of target and nontarget FRPs was
found. In particular, figure 2 in Hale et al. (2008)
shows a late, broad, positive peak at around 600 ms
for FRPs associated with fixations on correctly
identified targets (hits) compared to other FRPs (such
as those associated with correct rejections and misses).
While the grand average results are clear, it is not clear
whether or not one individual FRP could be labeled as
belonging to a target or nontarget fixation. In

addition, the difference between target and nontarget
FRPs that they found may have been due to several
confounding factors. First, saccades to targets may
have systematically differed from saccades to non-
targets (for instance, saccades to targets may have
been shorter than those to nontargets), which could
have led to different effects of eye movements on
target FRPs than on nontarget FRPs (Plöchl,
Ossandón, & König, 2012). Second, the difference
between target and nontarget FRPs could have been
caused by the effect of preparing to push a button to
indicate that a target was found. The results may also
have been affected by systematic differences in search
times of images with and without a target present
since, in case of target present images, a search ended
when a target was found. Finally, low-level visual
differences between targets and nontargets may have
contributed to their results. It has been shown that
properties of the visual stimuli such as luminance and
spatial frequency can indeed affect SRPs (Marton &
Szirtes, 1982; Ossandón et al., 2010; Yagi, Ishida, &
Katayama, 1992). While in practical applications
confounding effects like the ones just mentioned could
occur and may even be used, we wanted to investigate
in the present experiment to what extent target and
non-target FRPs can be distinguished.

A poster by Luo, Parra, and Sajda (2009) describes a
classification approach where SRPs locked to single
saccades toward targets are distinguished from single
nontarget SRPs. Both EEG epochs before and after
saccade onset could be classified above chance as being
associated with targets or nontargets. While classifica-
tion results were good, these may be explained by
factors other than brain signals associated with top-
down attentional processes. In the study by Luo et al.
(2009), observers were presented with several image
chips scattered across a screen. Targets were chips
containing people; nontarget chips did not contain
people. Thus, and as also discussed and indicated by
their results, low-level (bottom-up) target saliency
effects could have contributed to increased classifica-
tion accuracy. There could be one or no target present
on the screen and participants pressed a button after
identifying a target or after deciding that no target was
present. This means that target fixations were associ-
ated with button presses and nontarget fixations
occurred on average earlier in a trial than target
fixations, which may also have contributed to the
difference between target and nontarget SRPs. Luo et
al. (2009) report timing and scalp topographies to not
reflect typical P300 results (where timing, at least,
would indeed be expected to be atypical since in their
design, objects could be identified to be targets or not
before fixation).

A recent study (Kamienkowski et al., 2012) com-
pared target and nontarget FRPs while taking care of
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the confounding effects as mentioned above. They
asked their observers to freely search a group of
stimuli, consisting of 20 instances of the letter ‘‘E.’’ Two
of the Es were mirror images and constituted the
targets. Each E was surrounded by nine symbols (‘‘#’’)
such that participants were required to fixate the letters
for identification. In this way, it was guaranteed that
target detection could only occur after target fixation
onset and not before. Participants pressed a button
after they found the second target, which terminated
the trial. Only target FRPs associated with the first
target were included in the analysis. Nontarget FRPs
were selected in such a way that they matched the target
FRPs in terms of accompanying saccade length and
direction. Kamienkowski et al. (2012) found a P300-
like late effect at around 480 ms at Cz and Pz. They
also found a difference between target and nontarget
FRPs at Cz and Pz after about 150 ms. This effect was
not present in data from fixed gaze control experi-
ments. Kamienkowski et al. (2012) conclude that this
early effect is consistent with presaccadic attentional
engagement enhancing rapid processing of target
identification. Kamienkowski et al. (2012) did not
present analyses to classify single trials.

Similar to Kamienkowski et al. (2012) we aimed to
design our experiment in such a way that eye
movements and other confounding effects as discussed
above cannot explain potential differences between
target and nontarget FRPs. As in Kamienkowski et al.
(2012), we used stimuli that required foveal vision in
order to be identified as a target or nontarget, and that
did not differ on low-level visual features, such as
luminance and spatial frequency. Rather than selecting
(nontarget) data afterward in order to compare target
and nontarget FRPs unconfounded by saccade length
and direction, we asked participants to search a series
of circularly arranged, equally distanced objects fol-
lowing a predetermined scan path. Targets could be
present on any location and participants did not know
the number of targets present beforehand. They
indicated whether and where targets were present after
finishing the complete fixation sequence.

Methods

Participants

Thirteen participants (four female and nine male,
between 21 and 34 years old) were recruited through
the participant pool of the Netherlands Organization
for Applied Scientific Research (TNO). They received a
monetary reward to make up for their travel and time.
One additional participant (36 years old, female,
participant 1 in Table 1) was the first author. The study

is in accordance with the Declaration of Helsinki and
has been approved by the local ethics committee. All
participants signed an informed consent form prior to
taking part in the experiment.

Apparatus

Stimuli were presented on a 17-inch flat-screen
monitor (Dell 1707FP), set at a resolution of 1280 ·
1024 pixels. The refresh rate for this screen was set at
60 Hz.

Eye position and blinks were recorded at 50 Hz using
a Tobii x50 eye tracker (Tobii Technology, Stockholm,
Sweden). This system consists of a noninvasive stand-
alone unit positioned underneath the stimulus screen.

EEG was recorded at Fz, Cz, Pz, Oz, P3, P4, PO7,
and PO8 electrode sites of the 10-20 system using
electrodes mounted in an EEG cap (G.Tec Medical
Engineering GmbH, Schiedlberg, Austria). The EEG
electrodes were referenced to linked mastoid electrodes.
EOG electrodes were fitted to the outer canthi of both
eyes, as well as above and below the left eye (Kendall
Neonatal ECG electrodes, Tyco Healthcare Deutsch-
land GmbH, Neustadt, Germany). The horizontal
EOG electrodes were referenced to each other and the
vertical EOG electrodes likewise. The impedances of all
electrodes were below 5kX. EEG and EOG data were
sampled at 256 samples per second, and were filtered by
a 0.1 Hz high pass, a 100 Hz low pass, and a 50 Hz
notch filter using a USB Biosignal Amplifier (G.Tec
Medical Engineering).

Stimuli

Figure 1B gives an impression of the search display.
It consisted of six Landolt Cs with four possible

Participant

Number of

included FRPs

Classification

performance (K)

Standard

deviation of K

1 358 0.37 0.12

2 315 0.21 0.08

3 162 0.21 0.13

4 305 0.31 0.10

5 79 0.44 0.18

6 148 0.28 0.03

7 152 0.17 0.10

8 191 0.20 0.12

9 82 �0.02 0.24

10 253 0.23 0.10

11 437 0.18 0.12

Table 1. Number of valid FRPs per participant, classification
performance as expressed by mean Cohen’s kappa K and the
standard deviation of K.
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orientations: the gap could be at the top, bottom, left,
or right. The Cs were arranged in a circle with a
diameter of 960 pixels (23.82 degrees of visual angle)
and displayed at the 12, 2, 4, 6, 8, and 10 o’clock
positions. They were 15 pixels (0.38 deg) in diameter
with a gap size of 3 pixels (0.088). The shortest distance
between two Cs was 6.298, making it impossible to
detect the orientation of any C other than the one
currently fixated. The target C could have any
orientation, but remained the same for each individual
participant. The nontarget Cs had randomly selected
other orientations. One-third of the displays contained
two targets, one third contained one target, and one
third contained no targets so that participants could
(almost) never know whether the next C would be a
target. Target positions were randomly selected and
could be adjacent, but targets were never presented at
the 12 o’clock position. The C at 12 o’clock was only
used as a starting and ending point of the eye movement
sequence since FRPs associated with fixations on the 12
o’clock position could differ from those on other
positions because of anticipatory eye movements.

Task, design, and procedure

Participants seated themselves comfortably in front
of the screen. They were instructed to minimize eye
blinks, and head and body movements. This was
further accomplished by the use of a chinrest. The
distance between the screen and the eyes was 60 cm. A
nine-point calibration was used to calibrate the Tobii
eye tracker. Figure 1 gives an overview of a trial. A trial
started with the presentation of the target in the center
of the screen (Figure 1A), both as a reminder of what
the target orientation was, and as a fixation point for
the participant. After a mouse click by the participant
on the ‘‘next’’ button, the search display appeared
(Figure 1B). Participants were instructed to fixate on
each C, starting at the C at the 12 o’clock position and
switching to the next in clockwise direction as fast as
they wished. When the participants returned to the top
C, they indicated this by pressing the ‘‘next’’ button.
Upon clicking, the Cs in the search display were
replaced by buttons (Figure 1C). Participants were
asked to click any button corresponding with a
previously displayed target C. When finished, they
clicked ‘‘next’’ and a new trial started. Each participant
was tested in four blocks, each consisting of 60 trials.

Analysis

Tobii data and default ClearView 2.7.1 algorithms
(Tobii Technology) were used to identify fixations
made throughout the experiment and inspect their

locations. The ClearView algorithms require subse-
quent valid data points to reside within an area of 60
pixels (1.528) for a minimum of 100 ms in order to be
included in a fixation. These requirements imply
exclusion of blinks (closed eyes prevent recording of
valid data points). Fixation location is the average of
those data points. We then selected fixations on the Cs
at the 2, 4, 6, 8, and 10 o’clock positions. Participants
were considered to fixate a C when the fixation was
within an area of 100 · 100 pixels (2.528) centered on
the middle of the C. Subsequently, EOG was used to

Figure 1. Overview of the course of a trial: (A) presentation of

the target, (B) search display, and (C) display to indicate target

positions. For clarity, Landolt Cs in Panel B are represented

substantially larger with respect to the circle than they actually

were. The arrows and words in Panel B clarify the scan path and

were not present in the actual display.
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define fixation onset that was exactly synchronized with
EEG. For this, we looked for the peak EOG speed
within a window starting 160 ms before and ending 160
ms after fixation onset as defined by the Tobii. The start
of the fixation was then set at the first frame that the
speed was below 2 mV/frame.

FRPs were defined as EEG samples starting at
fixation onset and ending 500 ms after, where only the
first fixation on a particular C was included in the
analysis. The interval of 500 ms is a compromise
between including the window of the expected effect
(which is rather late) and not losing too much data:
since in this study we are interested in clean data
reflecting the P300, FRPs associated with fixations
shorter than 500 ms were discarded (see also Kamien-
kowski et al., 2012, who used a similar selection
criterion for a similar purpose). For three participants,
this resulted in less than 10 valid target fixations. These
participants were therefore excluded from analysis. For
the remaining participants, the 500 ms requirement
decreased the total number of valid fixations from 9552
to 2624. FRPs associated with misses (target Cs that
were not identified as such) were discarded; this
happened only in 17 of the 2624 fixations. The fixations
did not include false alarms (nontarget Cs that were
indicated to be targets). Thus, in the remainder, target
FRPs are always associated with hits and nontarget
FRPs with correct rejections. Finally, we discarded
FRPs containing absolute voltages exceeding 80 mV
(126 FRPs), which left us with 2481 fixations. Table 1
indicates the number of FRPs that were used in the
analysis for each participant.

While the probability of target presentation in the
experiment was equal for each of the 2, 4, 6, 8, and 10
o’clock positions, the selection of data may have
affected this. As a check, we determined the proportion
of nontarget and target fixations included in the
analysis for each participant and each location. The
amount of included fixations appeared to depend on
object location (with 28%, 19%, 6%, 9%, and 39% for
the 2, 4, 6, 8, and 10 o’clock positions, respectively).
However, paired t tests indicate that there is no
difference between proportion target and nontarget
fixations for the different locations, except for the
location at 6 o’clock (8% target fixations vs. 3%
nontarget fixations, t10 ¼ 2.78, p ¼ 0.02).

Since we are interested in judging from a single FRP
whether or not a specific observer is looking at a target,
we used an analysis based on machine learning
methods. For each participant, we estimated whether
FRPs (running from fixation onset until 500 ms later)
could be correctly classified as associated with a target
or nontarget. These estimates were produced using a
five-fold cross-validation procedure in which data was
partitioned into five subsets. A classification pipeline
was trained on four of the subsets, and evaluated on the

remaining test subset. This procedure was then
repeated for all subsets, resulting in five performance
measures per participant.

The classification pipeline consisted of the following
steps. First, we computed a symmetrical spatial
whitening transform P to normalize the channel
covariance matrix S:

P ¼ S �
1
2ð Þ: ð1Þ

This transformation has the property that it attenuates
strong signals, and amplifies smaller signals. The FRPs
were subsequently spatially filtered by P. The resulting 8
(electrodes) by 129 (samples) arrays were rearranged to
form 1,032 dimensional feature vectors. An L2-regu-
larized logistic regression (LR) classifier was trained on
these feature vectors. We chose logistic regression since
it provides probabilistic output, and works robustly on
imbalanced datasets. For each fold, the whitening
transformation and the coefficients of the LR classifier
were re-estimated using the training set. The LR
classifier has a hyperparameter, C, that controls the
amount of regularization to reduce the chance of
overfitting. The value of C was optimized using a
second five-fold cross-validation procedure performed
on the training data of the outer fold. This guarantees
that all adjustable parameters were optimized indepen-
dently of the test sets. This classification pipeline was
implemented using the version 0.13.1 of the scikit-learn
machine learning package (Pedregosa et al., 2011).

If the FRPs contain no information that distin-
guishes between targets and nontargets, the classifier’s
best guess would be whichever of the two classes occurs
most often. The percentage of the most-frequently
occurring class thus represents chance level. Because the
balance between target and nontarget FRPs included in
the analysis differs between participants, the expected
percentage of correct classifications, P(e), for a random
classifier also differs between participants. Therefore,
we use Cohen’s kappa, K, to describe classification
performance. It linearly transforms this percentage such
that 0 corresponds to chance level agreement, and 1
corresponds to perfect agreement between the random
predictions and the true labels of the FRPs:

K ¼ PðaÞ � PðeÞ
1� PðeÞ ; ð2Þ

where P(a) is the mean correspondence of the classifier
and the labels, and P(e) is expected chance level
correspondence.

For practical applications, it would be convenient to
classify fixations with durations shorter than 500 ms.
To assess the feasibility of using these shorter windows,
and to examine information content over time after
fixation, we repeated the analysis presented above on
the same data but for eight shorter window sizes. The
start of the window was kept at the onset of the
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fixation. Tested window lengths were 441, 379, 316,
254, 191, 129, 66, and 8 ms. Note that decreasing the
window length reduces the dimensionality of the
feature space, which could improve performance, while
on the other hand, valuable information may no longer
be contained in the analysis window, which could
decrease performance.

We compare the classification scores obtained using
EEG with scores of the exact same classification
analysis performed on EOG, and on EOG combined
with EEG recordings. This was done to verify that
potentially distinguishing information in EEG did not
originate from eye movements. Pairs of performance
measured by Cohen’s kappa were compared using
Wilcoxon signed-rank tests.

As another comparison for the EEG classification,
we determined how well target and nontarget fixations
can be distinguished on the basis of fixation duration.
For this analysis, we did not exclude fixations on the
basis of fixation duration, which made it possible to use
data for all subjects. For each participant, a subset of
nontarget fixations was chosen to have equal-sized sets
of target and nontarget fixations. Then, the median
fixation duration was determined per participant.
Fixations with a duration longer than the median were
classified as target fixations; shorter fixations were
classified as nontarget fixations. If there were fixations
with a duration equal to the median, half were classified
as target and half as nontarget fixations.

For each participant and electrode, we also calcu-
lated grand average target and nontarget FRPs. These
served as input for calculating standard errors of the
mean per frame, as well as for running paired sample t
tests that were used to test for significant differences
between target and nontarget FRPs (alpha of 0.01). In
addition, we checked for significant differences in the
100 ms epoch before fixation onset to verify that FRPs
do not differ before fixation onset. Note that the
conventional procedure of using ERP baselines (sub-
tracting the mean amplitude of the ERP over an
interval before stimulus onset) is not appropriate here
because at the interval before fixation onset the eyes are
moving, which results in a strongly variable signal. This
means that our FRPs are expected to be more variable
than conventional baseline corrected ERPs. To verify
that EOG associated with target and nontargets is
similar, as intended by our experimental design, we
examined EOG ‘‘FRPs’’ associated with the same set of
fixations as used in the FRP analyses in the same way.

Results

The solid lines in Figure 2 show the grand average
target and nontarget FRPs (with equal weights given to

participants) at each of the EEG recording sites. The
averages are consistent with a higher P300 for a target
than for a nontarget fixation. The difference is
significant at some frames towards the end at the
parietal and parieto-occipital electrode sites. At POz a
clear P1 is visible. Except for one frame at PO8, the 100
ms epoch before fixation onset does not show
differences between targets and nontargets, which is
consistent with identification of the C happening only
after fixation onset. The clear positive parietal peak
corresponds to a presaccadic spike potential (Balaban
& Weinstein, 1985; Carl, Açık, König, Engel, & Hipp,
2012; Dimigen et al., 2011). The dotted lines in Figure 2
show the standard error of the traces averaged over
subjects for each of the EEG electrodes. Variability is
largest around fixation and strongly decreases going
from frontal to more occipital electrodes, suggesting
that eye movements contributed to the variability of the
signal. t tests on the EOG ‘‘FRPs’’ (Figure 3) and the
100 ms before did not indicate significant differences
between targets and nontargets, confirming that
saccades to targets and nontargets were similar.

Classification performance per participant, as mea-
sured by Cohen’s kappa, K, is presented in Table 1.
With the exception of participant 9, all participants
have a classification performance well above chance
level. This indicates that the EEG can be used to
predict whether a user is fixating on a target or not. The
mean K over participants is 0.23 (SD 0.11), which is
significantly above chance level of 0 as indicated by a
Wilcoxon signed-rank test (t10 ¼ 1, p , 0.01). With
equal numbers of targets and nontargets, this K
corresponds with an accuracy of 62% correct predic-
tions. With 39% target and 61% nontarget FRPs (the
average proportions of included FRPs in our classifi-
cation analysis), this K corresponds with an accuracy of
70% correct predictions. Since the five parts of the
cross-validation procedure are not independent, we
cannot simply check significance on the individual
participant level. There appears to be a correlation
between the amount of training data and the classifi-
cation performance, which is significant with Spear-
man’s rank correlation (r ¼ 0.61, p ¼ 0.047). This
suggests that better results can be obtained when more
FRPs are available for training the model.

Figure 4 shows the influence of the length of the FRP
window on classification performance. Performance
increases with the length of the window. There is a
plateau with relatively constant performance for
windows from fixation onset up to 250 ms later. After
300 ms, performance steadily increases with longer
windows. This is consistent with the P300 contributing
to the distinction between target and nontarget
fixations.

Comparing K resulting from the analysis on FRPs as
described above to K resulting from the same analysis
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but based on EOG, indicates that classification
performance is genuinely based on EEG. Although the
EOG channels perform slightly above chance with a
mean K of 0.13, EEG significantly outperforms EOG as
indicated by a Wilcoxon signed-rank test (t10 ¼ 7, p ¼
0.02). In addition, when we compare K resulting from
the analysis on EEG to the same analysis performed on
a combination of EEG and EOG, we find no significant
difference (t10 ¼ 32, p ¼ 0.93).

As expected, fixations on targets generally last longer
than fixations on nontargets: median target fixation
durations averaged over participants was 415 ms (SD
75); for nontargets this was 371 ms (SD 93). A paired t
test indicated that this difference was significant (t14 ¼
3.95, p , 0.01). Classification analysis based on fixation
duration resulted in an average classification accuracy

of 56% (range 46%–66%, SD 6%). Excluding the three
participants that were left out in the EEG analysis did
not change these numbers, except for an increase of the
standard deviation to 7%.

Discussion

In the current study we provided evidence for a
target-linked P300 in a well-controlled search task
involving eye movements, where ERPs were locked to
fixation onset rather than to the onset of an externally
imposed stimulus. To the best of our knowledge,
Kamienkowski and others (2012) is the only well-
controlled study that has demonstrated this before.
Additionally, we showed that individual FRPs can be
labeled offline as belonging to a target or nontarget
fixation significantly above chance. Note that classifi-
cation analysis as used here is based on response
patterns of individual observers, while these patterns
may not be visible in overall FRP averages.

Our interest here were brain responses to self-paced
fixation of top-down determined targets versus non-
targets. We included only long fixations in our analyses
in order to examine late FRP components that were not
contaminated by eye movements. We do have to note
that our eye movement recording equipment did not
allow checking for microsaccades (Martinez-Conde,
Otero-Millan, & Macknik, 2013), which may have
affected FRPs through microsaccade related brain
activity (Dimigen, Valsecchi, Sommer, & Kliegl, 2009;
Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell,
2008). EOG does not seem to differ significantly
between targets and nontargets. More importantly,
classification based on EOG performs significantly
worse than classification based on EEG, while adding
EOG to EEG classification models does not improve
performance. This is consistent with brain signals
related to target identification underlying the distinc-
tion between targets and nontargets.

Figure 3. Average target (bold solid lines) and nontarget (thin

solid lines) EOG ‘‘FRPs’’ and the 100 ms before. Running paired

sample t tests did not indicate significant differences. The

dashed lines indicate standard errors of the mean of target

(bold) and nontarget (thin) EOG ‘‘FRPs.’’

Figure 2. Average target (bold solid lines) and nontarget (thin

solid lines) FRPs and the 100 ms before for each of the

electrode locations. Blue crosses indicate significant differences

between the two as indicated by running paired sample t tests.

The dashed lines indicate standard errors of the mean of target

(bold) and nontarget (thin) FRPs.

Figure 4. Classification performance (K) for differently sized

time windows, all starting at fixation onset. Dashed lines

indicate standard errors of the mean.
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Consistent with Dimigen et al. (2011) and Kamien-
kowski et al. (2012), our findings emphasize that, for
later components as well, it is possible to investigate
ERPs in contexts with self-paced eye movements and
suggest that P300 knowledge that has been gathered
within tasks with stationary eyes could be generalized
to situations with eye movements. We hope this will
spur more ecologically valid visual P300 studies in
which participants can explore and sample a visual
environment themselves rather than being presented
with specific stimuli at specific times. Furthermore,
these findings are of relevance in applied fields of
research such as passive Brain-Computer Interfaces
(Coffey, Brouwer, Wilschut, & van Erp, 2010; Zander
& Kothe, 2011; Zander, Kothe, Welke, & Roetting,
2008), augmented cognition (van Erp, Veltman, &
Grootjen, 2010; Schmorrow, Estabrooke, & Grootjen,
2009) and neuroergonomics (Parasuraman & Wilson,
2008). The aim of these fields is to exploit spontane-
ously occurring brain signals (and possibly other
physiological signals or types of information) in order
to smooth human–machine interaction or to support
users in other ways. While augmented cognition and
passive BCI focus on online use of brain signals, offline
use of brain signals that reflect the state of the user
could also be useful when, for instance, evaluating
different interfaces or studying task performance over
time.

Using FRPs online or offline would make it possible
to infer whether, in situations with natural eye
movements, individuals look at target objects (objects
that are of specific relevance to the observer) or not,
without the need to ask them to report. FRPs would be
especially valuable in situations where you do not want
conscious judgments to interfere with what is being
reported as a ‘‘target,’’ for example, when evaluating
advertisements. Another group of relevant cases is that
which involves the observer being more or less unaware
of the target. FRPs could be used to extract implicit
knowledge from expert observers or would enable the
support of search tasks (e.g., by asking radiologists
looking for tumors ‘‘didn’t you just miss something
interesting?’’). In this last type of use it is not strictly
necessary to know exactly what a user was looking at—
EEG and EOG sensors would suffice to indicate when
something interesting was fixated. Another important
issue is whether FRPs can distinguish between correct
rejections and misses (i.e., fixations on nontargets and
targets in cases when an observer does not report a
target), and between hits and false alarms (i.e.,
distinguish between targets and nontargets when the
observer reports a target). If these were possible, FRPs
would provide information that is impossible to obtain
by asking observers to report. Several ERP studies
suggest that subliminal oddball stimuli indeed elicit
P300s (Bernat, Shevrin, & Snodgrass, 2001; Brazdil,

Rektor, Dufek, Jurak, & Daniel, 1998; Devrim,
Demiralp, & Kurt, 1997). Recently, Zander, Gaertner,
Kothe, and Vilimek (2011) showed that selection
systems based on eye gaze duration could be improved
by adding consciously generated brain signals (power in
certain EEG frequency ranges). Our findings suggest
that spontaneously generated ERP features could also
be of help. However, while the single-fixation classifi-
cation results show that it is possible to distinguish
between target and nontarget fixations based on
fixation-locked EEG above chance, an average perfor-
mance of 62% (if chance is 50%) may not be good
enough for many practical applications. Selection of
long fixations will also limit practical use. Possible
routes for improvement are discussed below.

One way to improve classification is simply to
acquire more data to train the classifier. We did not
reach ceiling level with respect to the amount of
training data as indicated by our finding that partici-
pants who produced more training data generally
reached higher classification performance. Further-
more, the probabilistic output of the classifier can be
exploited to better interpret data or improve the
accuracy of detections. For example, when the FRP
classifier yields uncertain predictions, other informa-
tion can be relied on more heavily. In any case, other
information besides EEG will probably increase to
classification performance. Here we showed that
fixation duration contains information. Factors that we
carefully tried to exclude from affecting our results in
the current study might be exploited in real life to reach
better distinction between targets and nontargets. For
instance, saccade length may be informative where
saccade length might be used directly in the estimate, or
indirectly through affecting EEG differently for targets
than for nontargets. Also, context information and
low-level visual features may be used (e.g., certain
fixations that are largely determined by bottom-up
processes may be predicted a priori). Finally, we would
like to note that FRPs shorter than 500 ms also contain
information as showed by our classification analysis of
differently sized intervals. This is consistent with
Kamienkowski et al. (2012) who found a relatively
early component (around 150 ms) distinguishing
between targets and nontargets. They point out that in
contrast to (experimental) situations that impose
stimuli to stationary eyes, the brain may be sensitized
for information uptake in a case of a self-paced fixation
(presaccadic attentional engagement). Also, in other
search tasks, targets are detected in the periphery, that
is, before the target is fixated, causing a positive target
potential to occur close to fixation onset, as we
demonstrated in a later experiment (Brinkhuis &
Brouwer, 2012).

In conclusion, our findings of a P300 like component
in target fixation-locked ERPs and the fact that target
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and nontarget FRPs can be distinguished on a single
trial level could be of importance both in fundamental
and applied fields of ERP research on visual search and
attention.

Keywords: EEG, eye movement, P300, fixation-
related potential, visual search, selective attention
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