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Abstract

Introduction: Evaluating the environmental impacts of climate change on water resources and biological
components of the landscape is an integral part of hydrologic and ecological investigations, and the resultant land
and resource management in the twenty-first century. Impacts of both climate and simulated hydrologic
parameters on ecological processes are relevant at scales that reflect the heterogeneity and complexity of
landscapes. At present, simulations of climate change available from global climate models [GCMs] require
downscaling for hydrologic or ecological applications.

Methods: Using statistically downscaled future climate projections developed using constructed analogues, a
methodology was developed to further downscale the projections spatially using a gradient-inverse-distance-
squared approach for application to hydrologic modeling at 270-m spatial resolution.

Results: This paper illustrates a methodology to downscale and bias-correct national GCMs to subkilometer scales
that are applicable to fine-scale environmental processes. Four scenarios were chosen to bracket the range of
future emissions put forth by the Intergovernmental Panel on Climate Change. Fine-scale applications of
downscaled datasets of ecological and hydrologic correlations to variation in climate are illustrated.

Conclusions: The methodology, which includes a sequence of rigorous analyses and calculations, is intended to
reduce the addition of uncertainty to the climate data as a result of the downscaling while providing the fine-scale
climate information necessary for ecological analyses. It results in new but consistent data sets for the US at 4 km,
the southwest US at 270 m, and California at 90 m and illustrates the utility of fine-scale downscaling to analyses
of ecological processes influenced by topographic complexity.
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Background and introduction
Climate change has become an integral part of conduct-
ing hydrologic and ecological studies in the twenty-first
century. In general, the best scientific evidence suggests
that global warming has been occurring and will con-
tinue to occur during this century no matter what man-
agement approaches to ameliorate climate change are
implemented (California Department of Water
Resources 2008). Were we to eliminate all anthropo-
genic greenhouse gas emissions today, about half of the
anthropogenic CO2 would be removed from the atmo-
sphere within 30 years, but the remaining atmospheric

CO2 would remain for centuries (IPCC 2007). To assess
the impacts of climate change, many global socio-eco-
nomic scenarios are being developed by the Intergovern-
mental Panel on Climate Change [IPCC] to provide
climate scenarios that take into account estimates of
possible magnitudes of greenhouse gas emissions that
are responsible for much of the climate change. These
scenarios are used as boundary conditions for global cli-
mate models [GCMs] that provide us with insight into
how human behavior in the future may influence
changes in climate. These GCMs lack orographic detail,
having a coarse spatial resolution with a grid-cell size
on the order of 2.5° × 2.5° (approximately 275 × 275
km2), which is far too coarse for landscape or basin-* Correspondence: lflint@usgs.gov

U.S. Geological Survey, Placer Hall, 6000 J St., Sacramento, CA 95819, USA

Flint and Flint Ecological Processes 2012,

© 2012 Flint and Flint; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:lflint@usgs.gov
http://creativecommons.org/licenses/by/2.0


http://www.ecologicalprocesses.com/content//1/1/2
:2

scale models that investigate hydrologic or ecological
implications of climate change. The meso-scale (1 to
100 km) climate surfaces provided by most GCM out-
puts are also too coarse to provide correlations of ecolo-
gical processes and vegetation distribution needed for
understanding threats to biodiversity, and for conserva-
tion planning.
Physical and hydrologic processes such as springtime

snowmelt, aquifer recharge, forest die-off, or vegetation
distributions occur at a myriad of spatial scales. Oak
woodlands may be dominant on north-facing slopes in
one basin, while another has no aspect bias. Snow melt-
ing in the high-elevation Sierra Nevada Mountains
under warming climatic conditions may be delayed by
weeks in some subbasins in comparison to others
(Lundquist and Flint 2006), providing uncertainty for
biological and water-resource processes. Conditions
driving the processes may be far more relevant at the
hillslope scale for some investigations, such as rare plant
species distribution, runoff and overland flow as
ungauged streamflow distributions of evapotranspiration
for agricultural and native vegetation, etc.; the subbasin
scale may be appropriate for springtime runoff for fish-
eries, and the regional scale may be the necessary tool
to evaluate water resources in the southwest. The
majority of climate change studies are using readily
available climate projections at scales greater than 1 km.
The need for fine-scale investigations of ecological pro-

cesses for species distribution models is related to the dif-
ferences in model results between meso-scale (coarse)
and topo-scale (fine; 0.01 to 1 km) environments,
whereby fine-scale models that capture fine-scale envir-
onments show markedly different range loss and extinc-
tion estimates than coarse-scale models for some species.
Results from the western US suggest that fine-scale mod-
els may predict vegetation to persist where coarse-scale
models show no suitable future climate (Guisan and
Thuiller 2005; Dobrowski 2010). Fine-scale spatial het-
erogeneity should provide greater opportunity for migra-
tion and reassembly of communities (Ackerly et al. 2010).
This is related to the topographic variation in climate at
the topo-scale environment that can exert strong influ-
ences on establishment patterns (Callaway and Davis
1998; Keyes et al. 2009). At a finer scale (well below the
spatial resolution available in commonly used gridded cli-
mate products such as the Parameter-elevation Regres-
sions on Independent Slopes Model [PRISM] at 4 km
and 800 m, and WorldClim at 1 km), topoclimate diver-
sity may provide significant spatial buffering that will
modulate the local impacts of climate change. Several
researchers are currently linking simple fine-scale (25 to
50 m) climatologies to correlational species distribution
models (Randin et al. 2009; Trivedi et al. 2008).

Climatic data are normally available at a spatial scale
of 1,000 to 10,000 km2, while plant growth is normally
measured at a much smaller scale of 100 m2 to 10 km2.
Thus, a plant may actually ‘experience’ a local climate
that is quite different from the larger scale climatic data
used to quantify climate-growth relationships (Peterson
et al. 1998). The scale of topoclimates (0.5 km to 10 m)
is the spatial scale at which topography can be used to
describe the climate near the ground (Geiger et al.
2003), thus more closely approximating the experience
of the organism. The discrete influence of complex
environments on habitats and species incorporates topo-
graphic shading that influences solar radiation and eva-
potranspiration, frost pockets or cold-air pooling, and
differences in soils, all of which can be described on the
basis of topoclimates.
A suite of investigations has detected the improve-

ment in developing species-environment associations
using information to account for topographic complex-
ity. Lookingbill and Urban (2003, 2005) determined that
spatial variations in temperature have a large influence
on the distribution of vegetation and are therefore, a
vital component of species distribution models (Ashcroft
et al. 2008). Topographic variability of a steep alpine ter-
rain creates a multitude of fine-scale thermal habitats
that is mirrored in plant species distribution, warning
against projections of the responses of alpine plant spe-
cies to climate warming that adopt a broad-scale iso-
therm approach (Scherrer and Korner 2010).
Topographic complexity and the associated fine-scale
heterogeneity of climate dictate the velocity with which
current temperature isoclimates are projected to move
under climate change scenarios, and this spatial hetero-
geneity in climate represents an important spatial buffer
in response to climate change (Loarie et al. 2009; Ack-
erly et al. 2010). Wiens (1989) notes that choice of spa-
tial scale is critical in analyzing species-environment
associations, and Guisan and Thuiller (2005) describe it
as a central problem in bioclimate modeling. The 1-km
(or greater) scale was shown to be less effective for spe-
cies distribution modeling when multiple biophysical
attributes, climate, geology, and soils were being used
for correlation analyses in a study of forest composition
and sudden oak death in the Big Sur region (Davis et al.
2010). In this study, it was determined that the 90-m
resolution climate data proved especially important in
resolving the strongly contrasting and locally inverted
temperature regimes associated with the marine bound-
ary layer near the coast and for approximating the sam-
pling scale of the field sites. A similar conclusion was
reached in a California-wide study of valley oak genetic
adaptation to rapid climate change, where 90-m climate
data provided excellent correlations with the geographic
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patterns of multivariate genetic variation associated with
climatic conditions (Sork et al. 2010).
An example of increases in variability with decreases

in scale is illustrated in Ackerly et al. (2010). In this
example, the PRISM mesoclimate gradient exhibits a
range of just 3°C in January minimum temperatures on
the landscape of the San Francisco Peninsula. However,
topoclimatic effects modeled at a 30-m scale add a local
variability of 8°C nested within the mesoclimate. They
conclude that the effects of topoclimatic gradients on
the distribution and abundance of organisms can be
profound in the Bay Area grasslands, where fine-scale
topography provides resilience in the face of year-to-
year climate variation, influencing the emergence time
of Bay Checkerspot butterflies in relation to the phenol-
ogy of its host plants (Weiss and Weiss 1998; Hellman
et al. 2004). Although downscaling at a regional level to
30 m can be prohibitive due to large file sizes and
model runtimes, a fine scale of 270 m captures the
topographic variability and corresponding ranges in air
temperature, providing for information and enhanced
interpretation for conservation planning.
Downscaling is the process of transferring the climate

information from a climate model with coarse spatial
and fine temporal scales to the fine scale required by
models that address effects of climate. Although dyna-
mical downscaling can be achieved using a regional cli-
mate model, it is computationally expensive and
currently is not practical for processing multi-decadal
and/or multimodel simulations from GCMs. A viable
alternative that is adequate for many applications is to
use statistical downscaling, which has the advantage of
requiring considerably less computational resources. In
addition, GCM outputs are biased (warmer, colder, wet-
ter, or drier than current conditions) and need to be
corrected (transformed) to properly represent modern
climate. To convert the results of these coarse scale and
biased GCM outputs for input into local scale models,
there needs to be a reasonable and systematic process of
downscaling and bias correction to produce new data
sets that correctly represent the implications of the
GCMs but at a scale applicable to local studies. In this
paper, we provide an additional example to illustrate the
relevance of fine-scale applications at the 270-m scale.
This paper provides a novel approach to address the

complex impacts of climate change on the landscape as
a result of changes in precipitation and air temperature
and the resultant hydrologic response. The approach
combines downscaling of global climate projections at 2°
spatial resolution to a fine scale of 270-m spatial resolu-
tion, verified for accuracy with measured data, and
applies the results to a hydrologic model to illustrate the
potential application for analyses of impacts of climate

change to ecological processes at the landscape, basin,
and hillslope scales.
This discussion describes the method used to down-

scale and bias-correct national monthly GCM outputs
and provides new internally consistent data sets for
hydrologic and ecological-scale modeling for the US at 4
km, the southwest including California at 270 m, and
California at 90 m. These datasets are currently being
used in multiple state and region-wide investigations at
270 m and 90 m, and the procedure descriptions will
address the 270-m fine-scale resolution. For illustrative
purposes, fine-scale applications of these downscaled
datasets of ecological and hydrologic correlations to var-
iation in climate are provided using a relatively dry
model with business-as-usual emissions.

Methods: downscaling approach and application
Climate change scenarios
On the basis of analyses done by Cayan et al. (2008), cli-
mate change scenarios were selected from those used in
the IPCC Fourth Assessment. Two emission scenarios
were selected to range from optimistic to business-as-
usual. Two models were required to contain realistic
representations of some regional features, such as the
spatial structure of precipitation and important oro-
graphic features, and to produce a realistic simulation of
aspects of California’s recent historical climate - particu-
larly the distribution of monthly temperatures and the
strong seasonal cycle of precipitation that exists in the
region and throughout the western states. Because the
observed western US climate has exhibited considerable
natural variability at seasonal to interdecadal time scales,
the historical simulations by the climate models were
required to contain spatial and temporal variability that
resembles that from observations at shorter time scales.
Finally, the selection of models was designed to include
models with differing levels of sensitivity to greenhouse
gas forcing. On the basis of these criteria, two GCMs
were identified: the parallel climate model [PCM] (with
simulations from NCAR and DOE groups; see Washing-
ton et al. 2000; Meehl et al. 2003) and the NOAA geo-
physical fluid dynamics laboratory [GFDL] CM2.1
model (Stouffer et al. 2006; Delworth et al. 2006). The
choice of greenhouse gas emission scenarios which
focused on A2 (medium-high) and B1 (low) emissions
was based upon implementation decisions made earlier
by IPCC (Nakic’enovic’ et al. 2000).
The B1 scenario assumes that global CO2 emissions

peak at approximately 10 gigatons per year [Gt/year] in
the mid-twenty-first century before dropping below cur-
rent levels by 2100. This yields a doubling of CO2 con-
centrations relative to its pre-industrial level by the end
of the century (approximately 550 ppm), followed by a
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leveling of the concentrations. Under the A2 scenario,
CO2 emissions continue to climb throughout the cen-
tury, reaching almost 30 Gt/year.

Statistical downscaling
The two general approaches for interpolating GCM out-
puts are statistical and dynamical downscaling. In dyna-
mical downscaling, the GCM outputs are used as
boundary conditions for finer-resolution regional-scale
GCM models. This technique is computer intensive,
requires detailed, finer-scale full physical weather and
ocean models, and will not be used here. Statistical
downscaling methods apply statistical relations between
historical climate records at coarse resolutions and fine
resolutions to interpolate from coarse model outputs to
finer resolutions. This requires much less computational
effort but generally involves extreme simplifications of
the physical relations. One recent example is a determi-
nistic, linear approach that relies on the spatial patterns
of historical climate data called constructed analogues.
By linear regressions with the current weather or cli-
mate pattern as the dependent variable and selected his-
torical patterns as independent variables, high-quality
analogues can be constructed that tend to describe the
evolution of weather or climate into the future for a
time (Hidalgo et al. 2008). The approach implicitly
assumes stationarity in time and space (Milly et al.
2008) and was inspired by an approach for predicting
climatic patterns by van den Dool et al. (2003).
The statistical downscaling method of constructed

analogues was developed at Scripps Institution of Ocea-
nography by Hidalgo et al. (2008) and used here for
these four scenarios. Models selected for downscaling
have been downscaled from coarse-resolution GCM
daily and monthly maps (approximately 275 km) to
12-km national maps (binary files can be found at
http://tenaya.ucsd.edu/wawona-m/downscaled/). This
method uses continental-scale historical (observed) pat-
terns of daily precipitation and air temperature at coarse
resolution and their fine-resolution (approximately
12 km) equivalents with a statistical approach to climate
prediction based on the conceptual framework of van
den Dool et al. (2003). This method assumes that if one
could find an exact analogue (in the historical record) to
the weather field today, weather in the future should
replicate the weather following the time of that exact
analogue. This approach is analogous to the principal
component analysis with multiple dependent variables
that represents various similar historical snapshots. Pro-
cedurally, a collection of historically observed coarse-
resolution climate patterns is linearly regressed to form
a best-fit constructed analogue of a particular coarse-
resolution climate-model output. The constructed analo-
gue method develops a downscaled, finer-resolution

climate pattern associated with the climate-model out-
put from the (same) linear combination of historical
fine-resolution patterns as was fitted to form the coarse-
resolution analogue. Thus, the regression coefficients
that form the best-fit combination of coarse-resolution
daily maps (at 275-km resolution) to reproduce a given
climate-model daily pattern are applied to the fine-reso-
lution (12-km resolution) maps from the same (histori-
cal) days.
The downscaling method of constructed analogues

illustrates a high level of skill, capturing an average of
50% of daily high-resolution precipitation variance and
an average of around 67% of average air temperature
variance, across all seasons and across the contiguous
United States. The downscaled precipitation variations
capture as much as 62% of observed variance in the
coastal regions during the winter months. When the
downscaled daily estimations are accumulated into
monthly means, an average 55% of the variance of
monthly precipitation anomalies and more than 80% of
the variance of average air temperature monthly anoma-
lies are captured (Hidalgo et al. 2008).

Spatial downscaling and bias correction
Spatial downscaling here refers to the calculation of
fine-scale information on the basis of coarse-scale infor-
mation using various methods of spatial interpolation.
This downscaling is required for the application of sta-
tistically downscaled climate parameters from the 12-km
resolution to grid resolutions that more adequately
address the patchiness of ecological and environmental
processes of interest. Bias correction is a necessary com-
ponent in developing useful GCM projections. Without
this correction applied to GCM data, which then is used
in local hydrologic or ecological models, the results
could be erroneous, resulting in the over or under esti-
mation of the climatic variables. Bias correction requires
a historically measured dataset for correction that is at
the same grid scale as the spatially downscaled para-
meter set. Therefore, the initial spatial downscaling was
done to 4 km, which is the resolution of an existing his-
torical climate dataset that is spatially distributed and
grid-based. The PRISM dataset developed by (Daly et al.
1994) is a knowledge-based analytical model that inte-
grates point data of measured precipitation and air tem-
perature with a digital elevation model reflecting expert
knowledge of complex climatic extremes, such as rain
shadows, temperature inversions, and coastal effects, to
produce digital grids of monthly precipitation and mini-
mum and maximum air temperatures. Historical clima-
tology is available from PRISM as monthly maps (http://
www.prism.oregonstate.edu/). The spatial downscaling is
done using the 4-km resolution digital elevation model
in PRISM prior to bias correction.
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Spatial downscaling is performed on the coarse-resolution
grids (12 km) to produce finer-resolution grids (4 km) using
a model developed by Nalder and Wein (1998) modified
with a nugget effect specified as the length of the coarse-
resolution grid. Their model was developed to interpolate
very sparsely located climate data over regional domains
and combines a spatial gradient and inverse distance
squared [GIDS] weighting to monthly point data with mul-
tiple regressions. Parameter weighting is based on location
and elevation of the new fine-resolution grid relative to
existing coarse-resolution grid cells using the following the
equation:

Z =

[
N∑

i=1

Zi + (X − Xi) × Cx + (Y − Yi) × Cy + (E − Ei) × Ce

d2
i

]
/

[
N∑

i=1

1

d2
i

]
(1)

where Z is the estimated climatic variable at a specific
location defined by easting (X) and northing (Y) coordi-
nates and elevation (E); Zi is the climate variable from
the 12-km grid cell i; Xi, Yi, and Ei are easting and
northing coordinates and elevation of the 12-km grid
cell i, respectively; N is the number of 12-km grid cells
in a specified search radius; Cx, Cy, and Ce are regres-
sion coefficients for easting, northing, and elevation,
respectively; di is the distance from the 4-km site to
12-km grid cell i and is specified to be equal to or
greater than 12 km (the nugget) so that the regional
trend of the climatic variable with northing, easting, and
elevation within the search radius does not cause the
estimate to interpolate between the closest 12-km grid
cells, which causes a bull’s-eye effect around any 4-km
fine-resolution grid cell that is closely associated or co-
located in space with an original 12-km grid cell. For
example, in the case of the 12-km to 4-km downscaling
step, a search radius of 27 km is used to limit the influ-
ence of distant data but allow for approximately twenty-
one 12-km grid cells to estimate the model parameters
for temperature and precipitation for each 4-km grid
cell with the closest cell having the most influence. This
interpolation scheme incorporates the topographic and
elevational effects on the climate.
Statistical downscaling approaches use both the spa-

tially downscaled grids and measured data for the same
period to adjust the 4-km grids so that certain statistical
properties, in this case the mean and standard deviation,
are the same as the measured data set. To make the
correction possible, the GCM is run under the historical
forcings to establish a baseline for modeling to match
the current climate. Baseline for this study is based on
the PCM and GFDL model runs for 1950 to 2000,
where the climate change forcings are absent from the
model, and uses recent (pre-2000) atmospheric green-
house gas conditions. The baseline period can be any
time period but should encompass the variation

imposed by the major climate cycles, such as the Pacific
decadal oscillation (approximately 25 to 30 years; Gur-
dak et al. 2009), as these are still present in the hindcast
GCM, as analyzed by Hanson and Dettinger (2005).
This baseline period is corrected (transformed) using
the PRISM data from the same time period.
There are different statistical downscaling methods

that can be used to ensure that GCM and historical
data have similar statistical properties. One commonly
used method is the bias correction and spatial downscal-
ing [BCSD] approach of Wood et al. (2004) that uses a
quantile-based mapping of the probability density func-
tions for the monthly GCM climate onto those of
gridded observed data, spatially aggregated to the GCM
scale. This same mapping is then applied to future
GCM projections, allowing the mean and variability of a
GCM to evolve in accordance with the GCM simulation,
while matching all statistical moments between the
GCM and observations for the base period. Recently,
one hundred twelve 150-year GCM projections were
downscaled over much of North America using the
BCSD method (Maurer and Hidalgo 2008).
We use a method described by Bouwer et al. (2004)

that uses a simple adjustment of the projected data to
match the baseline mean and standard deviation. This
correction is done on a cell-by-cell basis so that the cor-
rection is not global but embedded in the spatial inter-
polation for each location for just that month. Using the
standard deviation in the formulation, the bias correc-
tion allows the GCM to be transformed to match the
mean and the variability of the climate parameter to the
baseline period. The equation for both temperature and
precipitation is

Cunbiased =
(
(Cbiased − CamGCM) /σamGCM

) ×σamPRISM) + CamPRISM(2)

where Cunbiased is the bias-corrected monthly climate
parameter (temperature or precipitation), Cbiased is the
monthly downscaled but biased future climate para-
meter, CamGCM is the average monthly climate para-
meter downscaled but biased for the baseline period,
samGCM is the standard deviation of the monthly climate
parameter for the baseline period, samPRISM is the stan-
dard deviation for the climate parameter from PRISM
for the baseline period, and CamPRISM is the average
monthly PRISM climate parameter for the baseline per-
iod. This method was applied for this study incorporat-
ing both mean and standard deviation on a cell-by-cell
data at 4-km resolution for the baseline time period for
each month.
Processing sequence
The 12-km resolution data has been obtained from
Scripps for 1950 to 2000, representing current climate,
and 2000 to 2100 representing future climate for the
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three scenarios and two models. The sequence of steps
for processing the data is as follows: (1) The monthly
12-km data are spatially downscaled using GIDS to a
4-km grid designed to match grids from the PRISM
digital elevation model. (2) The monthly 4-km data for
1950 to 2000 are used to develop the bias correction
statistics (mean and standard deviation) using mea-
sured or simulated current climate data for 1950 to
2000 from PRISM and from each of the two GCM

models. (3) These corrections are then applied to the
2000 to 2100 monthly data. (4) Monthly data are
further downscaled using GIDS to a 270-m scale for
the southwest Basin Characterization Model [BCM] (a
regional water-balance model; Flint and Flint 2007),
including California. The processing sequence, includ-
ing the step involving the downscaling of the GCM
grids to the 12-km grids using constructed analogues,
is presented in Figure 1.

Figure 1 Spatial downscaling. Spatial downscaling using a modified gradient-inverse-distance squared method from the 12-km resolution
available from Hidalgo et al. (2008) to the 270-m ecological-scale resolution, maximum monthly air temperature June 2035 using the GFDL A2
scenario.
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Comparison of downscaled climate parameters and
measured climate data
An analysis was done to assess whether the spatial
downscaling process introduced additional uncertainty
into the final estimates of the climatic parameters. Mea-
sured monthly precipitation and maximum and mini-
mum air temperatures from meteorological stations
throughout California operated by the California Irrigation
Management Information System [CIMIS] and National
Weather Service [NWS] were compared to the 4-km
PRISM grid cell occupied by each station (Figure 2). The
station data were also compared to the 4-km data that was
downscaled to 270 m to determine which of those scales
was closer to the measured data. Figure 2 illustrates the
physical conditions that are represented by each grid reso-
lution in comparison with the location of the Hopland FS
CIMIS station in the northern part of the Russian River
basin in Sonoma County. This station is located at a
354-m elevation, while the average elevation of the 4-km
grid cell is 608 m (Figure 2a). The 270-m cell in which the
station is located is 366 m, much closer to the station loca-
tion. As a result, the representation of the data by
the downscaling, which specifically takes into account the
elevation of each cell, can more accurately reflect the
measured data. While this example explains how the
downscaling can improve the gridded estimates by incor-
porating the determinism that location and elevation may
lend to the estimate of climate parameters, this may not
always be the case, depending on whether the PRISM esti-
mate closely matches the measured data and whether the
topography is flat or very spatially variable.

Application of future climate grids to a hydrologic model
and characterization of topoclimates
Downscaled monthly climate parameters, precipitation,
and maximum and minimum air temperatures were
applied to a regional hydrologic model (BCM; Flint and
Flint 2007; Flint et al. 2004). This model relies on the
calculation of hourly potential evapotranspiration [PET]
determined from solar radiation that is simulated using
topographic shading to calculate the water balance for
every grid cell. Resulting estimates of actual evapotran-
spiration [AET] based on changes in soil moisture with
changes in climate from projections can be used to cal-
culate climatic water deficit [CWD].
CWD is the annual evaporative demand that exceeds

available water and has been found to be a driver for
ecological change (Stephenson 1998) and is correlated
to distributions of vegetation. This correlation can be
used to investigate potential changes in distribution with
changes in climate. It is calculated as PET minus AET.
In the BCM, AET is calculated on the basis of soil
moisture content that diminishes over the dry season;
therefore, in Mediterranean climates with minimal

summer precipitation, PET exceeds AET, thus accumu-
lating the annual deficit.
The topoclimate is described in the BCM in the solar

radiation model and resulting calculation of PET,
whereby hillslopes with lower energy loads (lower

Figure 2 Close-up example of the HOPLAND FS station location.
The location is within the (a) PRISM 4-km grid cell and the (b) 270-m
downscaled grid cell, illustrating their corresponding elevations.
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potential evapotranspiration) are likely to have less of an
impact on the basis of rising air temperatures from cli-
mate change. The fine-scale discretization of soil prop-
erties allows for the distinction of soils on the landscape
with varying soil water holding capacities. Deep soils
such as those in valley bottoms can extend the amount
of water available for AET further into the dry season,
whereas shallow soils such as those on ridgetops can
limit the amount of water available, regardless of magni-
tude of precipitation, as it will run off or recharge when
the soil capacity is filled. These details are captured by
the scale at which the climate is downscaled, and the
hydrologic model is applied to the landscape. This appli-
cation of CWD integrates the climate, energy loading,
drainage, and available soil moisture to provide hydrolo-
gic response to changes in climate that reflect distinct
landscapes and habitat characteristics.

Results
Evaluation of downscaled climate parameters
The comparison of downscaled climate parameters with
measured station data at Hopland indicated that for all
three climate parameters, the estimates of the para-
meters for this station using the downscaled 270-m data
were closer to the measured monthly data for the 18
years of record at this station than the estimates using
the 4-km PRISM data (Figure 3).
A look at all CIMIS and NWS stations in California

shows a good correlation of estimated data from PRISM
with measured data, especially for air temperature data
(Figure 4). The regression of both 4-km and 270-m
downscaled estimates with the measured data was not
any different for all stations, with r2 values remaining
the same for precipitation and slightly improving for the
270-m estimates for air temperature. The slope, indicat-
ing the 1:1 fit to the measured data, was about the same
for the 4-km and 270-m estimates of precipitation and
minimum air temperature and was slightly less corre-
lated for the maximum air temperature. All stations are
represented for California in Figure 5, with colors indi-
cating whether the 270-m estimate for maximum
monthly air temperature was closer to or further from
the measured data than the 4-km estimate. The yellow
points indicate that the spatially downscaled estimate
was within 0.1°C of the measured air temperature,
which is equivalent to the reported instrument accuracy.
There are no specific spatial trends although the larger
deviations of the estimates from the measured data
are shown more in the mountains than the valleys
(Figure 5).
It is clear from Figure 1 that a fine scale of 270 m

captures the topographic variability and corresponding
ranges in air temperature, with a range in air tempera-
ture of 16.3°C to 44.9°C (standard deviation [SD] 6.1)

for June 2035 for the state of California at the12-km
grid cell resolution, 15.3°C to 44.9°C (SD 6.0) for the
4-km grid cell resolution, and 11.6°C to 47.0°C (SD
6.0) for the 270-m grid cell resolution (Figure 1; Table
1). It is clear that as the spatial scale is reduced, the
locations of the coldest temperatures that have the
potential for offering refugia from warming are more

Figure 3 Downscaled climate parameters. Illustration of the fit
between measured precipitation and minimum and maximum
monthly air temperatures at the CIMIS station HOPLAND FS, the
PRISM 4-km estimate, and the 270-m estimate that was spatially
downscaled from the PRISM 4-km grid cell.
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Figure 4 Comparisons of measured parameters. The measured parameters are compared with those developed from PRISM (Daly et al. 1994)
at the 4-km spatial resolution and spatially downscaled using modified gradient-inverse-distance-squared technique to 270 m, and frequency
histograms for 4-km and downscaled parameters.
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evident at both high elevations east of Owens Valley
and low elevations in the Sierra Nevada, providing for
information and enhanced interpretation for conserva-
tion planning.

Ecological application: fine-scale environmental refugia in
the San Francisco North Bay area
Rising air temperatures over the twenty-first century are
expected to force many vegetative species to either

Figure 5 Location of CIMIS and NWS stations. The colour indicates if the PRISM 4-km estimate of maximum air temperature or the 270-m
estimate that was spatially downscaled from the PRISM 4-km grid cell was closer to the measured data.
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migrate northward or up in elevation, or die off. A clo-
ser look at environmental conditions and stresses at a
fine scale suggests that even at the end of the twenty-
first century, considering a medium-high emission sce-
nario, fine-scale topographic or land surface features
may provide refugia to maintain limited populations.
For example, in the North Bay region of the San Fran-
cisco Bay area, the locations of tree species have been
mapped for conservation planning (http://openspace-
council.org). Three vegetation types serve as examples:
Douglas-fir forest, redwood forest, and blue oak forest/
woodland. Historical climate data from PRISM (1971 to
2000), representing baseline conditions, and downscaled
future projections for 2071 to 2100 were applied to the
BCM that was used to simulate hydrologic conditions at
the 270-m scale.
The baseline CWD (1971 to 2000) is illustrated for

basins in the North Bay (Figure 6a), indicating higher def-
icits in areas with shallower soils; soils with low water
holding capacity; south-facing slopes; or further inland
away from the direct coastal climatic influences. A close-
up view of selected areas illustrates the differences in cur-
rent CWD and future projections for 2071 to 2100 for
three vegetation types. In Figure 6b, the mapped loca-
tions of Douglas-fir forest (at a 30-m scale) are indicated
in red. For every 270-m cell in which Douglas-fir was
mapped, the CWD was extracted to ascertain the range
of conditions that could be considered suitable for Dou-
glas-fir. The distribution ranged from 610 to 800 mm/
year. Although Douglas-fir is currently restricted to the
red areas, the current distribution of CWD within that
range is shown in white indicating the area in which
Douglas-fir could live if CWD was the only controlling
factor. The future CWD distribution of the suitable range
is in orange, and it illustrates the decline in potentially
suitable habitat for Douglas-fir by the end of this century.
When the red areas are overlain by the future CWD dis-
tribution, the mapped Douglas-fir areas decline as well,
as noted by the blue cells. Of note is that the future Dou-
glas-fir habitat is mostly on north-facing slopes and that
the habitat is reduced by about 70%.
The same analysis was done for a less abundant vege-

tation type, redwood forest (Figure 6c). Redwoods are
found in areas of CWD with a slightly smaller range,

640 to 800 mm/yr. A close-up look at the future distri-
bution of CWD indicates a large decline of area suitable
for redwoods, with these areas on north-facing slopes
and in the bottoms of valleys. Although suitable habitat
declines and becomes less connected than the current
distribution of mapped redwoods, there is ample suita-
ble habitat in surrounding cells to provide nearby loca-
tions for preservation of the species. The final example
is the blue oak forest/woodland (Figure 6d), which is
located in areas with CWD of 710 to 900 mm/yr. This
range of conditions declines only slightly over the next
century, generally moving to areas of deeper soils. As
the blue oak is currently at the edge of its range in the
North Bay and probably already occupying selected
areas of refuge, the suitable habitat of the mapped popu-
lations of blue oak does not decline significantly by the
end of the next century, potentially providing an
increase in the preferred habitats for this vegetation
type.
To illustrate the variation in CWD among climate

projections for grid cells mapped as redwood forest, all
four climate scenarios are shown as cumulative prob-
ability distributions (Figure 7). These distributions
represent the range of CWD in which the redwood for-
est currently lives and indicate that the lowest 10% of
the population lives over a large range of low CWD,
from 265 to 625 mm/yr, whereas the remaining 90%
lives in a smaller range of CWD. Those grid cells at
very high CWD, such as the upper 10%, live in locations
that will experience increases in CWD in the future that
exceed CWD currently defining the suitable habitat for
redwood forest. All future climate projections indicate
that CWD increases for all locations, increasing the least
for the PCM models and the most for the GFDL mod-
els. The PCM A2 and GFDL B2 nearly overlie each
other, except for very low CWD. The GFDL A2 scenario
is more than twice the increase in CWD than the other
three scenarios.
The distinction of fine-scale downscaling and hydrolo-

gic modeling is evident in an analysis comparing the
mapped redwood forest shown in Figure 6c. The region
around the figure is expanded to illustrate the CWD for
the current and future climate (using GFDL A2 sce-
nario) at the 270-m spatial resolution (Figure 8a) and

Table 1 Means and standard deviations

Climate parameters Measured PRISM 4-km cells (Daly et al.
1994)

PRISM cells downscaled to
270 km

Number of stations

Mean Standard deviation Mean Standard deviation Mean Standard deviation

Precipitation (mm/month) 38.1 23.8 35.8 22.4 35.7 22.2 195

Minimum air temperature (°C) 8.2 3.5 8.8 3.7 8.8 3.6 183

Maximum air temperature (°C) 23.2 3.5 23.5 3.7 23.5 3.6 185

Means and standard deviations of measured climate parameters (from the National Weather Service and California Irrigation and Management Information
System) and PRISM parameters for 4-km cells and cells downscaled to 270 m for cells occupied by climate stations.
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Figure 6 Climatic water deficit. CWD illustrated for (a) the San Francisco north bay area region and for three smaller areas (subset boxes in (a))
that indicate baseline (1971 to 2000) suitable CWD conditions (white), future (GFDL A2 2071 to 2100) suitable CWD conditions (orange), current
mapped vegetation locations (red), and locations where future suitable CWD conditions overlap current mapped locations (blue) for (b) Douglas-
fir forest, (c) redwood forest, and (d) blue oak forest/woodland.
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Figure 8 Climatic water deficit for redwoods. CWD for redwoods in Figure 6c for a larger area illustrating baseline (1971 to 2000) suitable
CWD conditions (white), future (GFDL A2 2071 to 2100) suitable CWD conditions (orange), current mapped vegetation locations (red), and
locations where future suitable CWD conditions overlap current mapped locations (blue) for the (a) 270-m spatial scale and (b) 4-km spatial
scale.

Figure 7 Cumulative probability distribution. Cumulative probability distribution of climatic water deficit for grid cells mapped as redwood
forest for 1971 to 2000 (current) and four future scenarios for 2071 to 2100.
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4-km spatial resolution (Figure 8b). At the fine scale, the
suitable conditions in the future indicate locations on
north-facing slopes and some valley bottoms, whereas at
the coarse scale, the hydrologic response to climate
represented by CWD does not indicate any topographi-
cally controlled conditions, with the exception of the
large valley bottom in the upper right corner of Figure
8b.
The application of future climate projections to vege-

tation distributions and the potential change in environ-
mental stressors are well served by the fine scale of the
downscaled projections. The application of these projec-
tions in a fine-scale regional hydrologic model provides
simulations of environmental conditions that occur at
the hillslope scale that reflects energy-loading processes
and changes in soil conditions that influence the pre-
sence and distribution of vegetation types.

Conclusions
Climate change projections available as output from glo-
bal climate models require downscaling to scales that
appropriately reflect the environmental processes under
consideration. Depending on the process of concern,
this downscaling may range from spatial extents of kilo-
meters to meters. As projections maintain their own set
of uncertainties on the basis of the assumptions chosen
for global climate modeling and greenhouse gas emis-
sion scenarios, it is advisable to incur the least addi-
tional uncertainty attributable to the downscaling
scheme itself. The approaches chosen here reflect high
rigor and defensible error for the spatial downscaling
method and the statistical downscaling method upon
which it relies. The constructed analogue method
(Hidalgo et al. 2008) skillfully reproduces monthly varia-
tions of precipitation and average temperature anoma-
lies, as well as seasonal cycles, across the contiguous
United States. The modified gradient-inverse-distance-
squared spatial downscaling technique described here
does not introduce additional uncertainty in the down-
scaling process and may indeed improve the estimate of
the climate parameter by incorporating the deterministic
influence (such as lapse rates or rain shadows) of loca-
tion and elevation on climate.
The fine-scale downscaling illustrated provides an

enhancement to the suite of options for environmental
analysis when climate projections are translated into
hydrologic and environmental impacts via hydrologic
modeling. Analyses may include regional to site-specific
applications such as regional vegetation distributions,
basin-scale water availability studies, or water deficits
on north- or south-facing hillslopes. These details are
captured by the scale at which the climate is down-
scaled and the hydrologic model is applied to the land-
scape. The representation of topoclimates and

hydrologic response to climate at fine scales can provide
impacts at the scale that the organism experiences and
may indicate potential refugia as climates warm to
guide land and resource management. The application
of CWD integrates the climate, energy loading, drai-
nage, and available soil moisture to provide hydrologic
response to changes in climate that reflect distinct land-
scapes and habitat characteristics. Environmental
impacts as a result of changing climate will be evident
at multiple scales and thus require the tools to perform
analyses at the same scales reflecting the changing
processes.
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