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Abstract Dynamic Causal Modelling (DCM) is an

approach first introduced for the analysis of functional

magnetic resonance imaging (fMRI) to quantify effective

connectivity between brain areas. Recently, this framework

has been extended and established in the magneto/

encephalography (M/EEG) domain. DCM for M/EEG

entails the inversion a full spatiotemporal model of evoked

responses, over multiple conditions. This model rests on a

biophysical and neurobiological generative model for

electrophysiological data. A generative model is a pre-

scription of how data are generated. The inversion of a

DCM provides conditional densities on the model param-

eters and, indeed on the model itself. These densities

enable one to answer key questions about the underlying

system. A DCM comprises two parts; one part describes

the dynamics within and among neuronal sources, and the

second describes how source dynamics generate data in the

sensors, using the lead-field. The parameters of this spa-

tiotemporal model are estimated using a single (iterative)

Bayesian procedure. In this paper, we will motivate and

describe the current DCM framework. Two examples show

how the approach can be applied to M/EEG experiments.
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Introduction

In the following, we first highlight several new methodo-

logical developments, which we believe are important for

new approaches to M/EEG analysis. This introductory

motivation is intended to be general. The key components

will be reprised using concrete examples of Dynamic

Causal Modelling (DCM) later.

The analysis of MEG and EEG data can be approached

from various angles. To the un-initiated and expert

researcher alike, the diversity of methods can be simply

breath-taking. However, most researchers typically avoid

switching among methods, because exploration of the

methods landscape can incur a high cost. Rather, most M/

EEG laboratories have adopted a dual strategy: Firstly,

experiments are analyzed using some ‘safe’ strategy based

on a kernel of robust and widely accepted methods. This is

usually the method of choice for analysis and publication,

for example (Picton et al. 2000). Secondly, new methods

are evaluated when they look interesting and if there are

enough resources for doing so. This strategy might be

considered as an ideal mixture of exploitation and explo-

ration. But why is this approach so endemic in the M/EEG

field? Take fMRI analysis, after an initial decade of

methods exploration, most groups nowadays agree on the

main methodological issues. For example, in a recent

special issue of the journal Human Brain Mapping, a

comparison of a dozen different approaches highlighted the

use of common analysis strategies (Poline et al. 2006).

In M/EEG there does not seem to be the same level of

consensus. There are many analysis schemes available,

which look at different components of the signal: analysis

of evoked responses (Kiebel and Friston 2004; van Was-

senhove et al. 2005), of single trials using multivariate

techniques like independent component analysis, analysis
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of oscillations using time-frequency power or coherence

analysis (Friston et al. 2006; Gross et al. 2001; Liljestrom

et al. 2005; Makeig et al. 2002). These analyses can pro-

ceed in sensor or brain-space based on source

reconstruction using equivalent current dipoles (ECDs) or

imaging solutions (Baillet and Garnero 1997; Daunizeau

et al. 2006, 2007; Jun et al. 2005; Mattout et al. 2006).

Variations and mixtures of all these approaches exist.

There might be a simple reason for this diversity of

methods: M/EEG data contain much more information

about underlying neuronal dynamics than the fMRI signal

(Daunizeau et al. 2007). The underlying dynamics, while

still largely a mystery, confer great potential on M/EEG.

Classical M/EEG analysis methods usually try to reduce

the amount of temporal detail, for example by averaging

over temporal windows and channels. This is an appro-

priate strategy for extracting behaviourally relevant

features from the data (Rugg and Curran 2007). However,

averaging, in particular in sensor-space, also moves the

analysis away from the brain enforcing inferences about

summary measures (Makeig et al. 2002). There is not only

uncertainty about how data should be analyzed but also

about how these signals are generated and what they tell us

about the underlying system. Therefore, a key topic in M/

EEG methods research is to identify models that describe

the mapping from the underlying neuronal system to the

observed M/EEG response, which incorporate known or

assumed constraints (David and Friston 2003; Sotero et al.

2007). Using biophysically and neuronally informed for-

ward models means we can use the M/EEG to make

explicit statements about the underlying biophysical and

neuronal parameters (David et al. 2006).

In the past years, there have been three important

developments in M/EEG analysis. The first is that standard

computers are now powerful enough to perform sophisti-

cated analyses in a routine fashion (David et al. 2006).

These analyses would have been impractical ten years ago,

even for low-density EEG measurements. Secondly, the

way methods researchers describe their M/EEG models has

changed dramatically in the last decade. Recent descrip-

tions tend to specify the critical assumptions underlying the

model, followed by the inversion technique. This is useful

because models for M/EEG can be complex; specifying the

model explicitly also makes a statement about how one

believes data were generated (Daunizeau and Friston

2007). This makes model development more effective and

transparent because fully specified models can be com-

pared to other models.

The third substantial advance is the advent of Empirical or

hierarchical Bayesian approaches to M/EEG model inver-

sion. Bayesian approaches are important, because they allow

for the introduction of constraints that ensure robust

parameter estimation, for example (Auranen et al. 2007;

Nummenmaa et al. 2007; Penny et al. 2007; Zumer et al.

2007). This is vital once the model is complex enough to

generate ambiguities (conditional dependencies) among

groups of parameters. One could avoid correlations among

parameter estimates by avoiding complex models. However,

this would preclude further research into the mechanisms

behind the M/EEG. An empirical Bayesian formulation

allows the data to resolve these ambiguities and uncertain-

ties. The traditional argument against the use of Bayesian

methods is that the priors introduce ‘artificial’ or ‘biased’

information not solicited by the data. Essentially, the claim is

that the priors enforce solutions, which are desired by the

researcher. This argument can be discounted for three rea-

sons: (i) In Empirical Bayes the weight afforded by the priors

is determined by the data, not the analyst. (ii) Bayesian

analysis provides the posterior distribution, which encodes

uncertainty about the parameters, after observing the data. If

the posterior is similar to the prior, then the data do not

contain sufficient information to enable qualitative infer-

ence. This can be tested explicitly using the model evidence;

the fact that a parameter cannot be resolved is usually

informative in itself. (iii) Usually, Bayesian analysis

explores a selection of models, followed by model compar-

ison (Garrido et al. 2007). For example, one can invert a

model derived from one’s favourite cognitive neuroscience

theory, along with other alternative models. The best model

can then be found by comparing model evidences (see

below) using standard decision criteria (Penny et al. 2004).

In summary, we argue that the combination of these

developments allow for models that are sophisticated

enough to capture the full richness of the data. The

Bayesian approach is central to this new class of models,

without which is not possible to constrain complex models

or deal with inherent correlations among parameter esti-

mates. Bayesian model comparison represents the

important tool of selecting the best among competing

models, which is central to the scientific process.

Dynamic Causal Modelling provides a generative spa-

tiotemporal model for M/EEG responses. The idea central to

DCM is that M/EEG data are the response of a dynamic

input–output system to experimental inputs. It is assumed

that the sensory inputs are processed by a network of discrete

but interacting neuronal sources. For each source, we use a

neural mass model, which describes responses of neuronal

subpopulations. Each population has its own (intrinsic)

dynamics governed by the neural mass equations, but also

receives extrinsic input, either directly as sensory input or

from other sources. The whole set of sources and their

interactions are fully specified by a set of first-order differ-

ential equations that are formally related to other neural mass

models used in computational models of M/EEG (Break-

spear et al. 2006; Rodrigues et al. 2006). We assume that the

depolarization of pyramidal cell populations gives rise to
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observed M/EEG data; one specifies how these depolariza-

tions are expressed in the sensors through a conventional

lead-field. The full, spatiotemporal model takes the form of a

nonlinear state-space model with hidden states modelling

(unobserved) neuronal dynamics, while the observation

(lead-field) equation is instantaneous and linear in the states.

In other words, the model consists of a temporal and spatial

part with temporal (e.g., connectivity between two sources)

and spatial parameters (e.g., lead-field parameters, like ECD

locations). In the next section, we describe the DCM equa-

tions and demonstrate how the ensuing model is inverted

using Bayesian techniques. We illustrate inference using

evoked responses from a multi-subject data set. We also

introduce a recent addition to the DCM framework, which

can be used to make inferences about M/EEG steady-state

responses. We conclude with a discussion about current

DCM algorithms and point to some promising future

developments.

Dynamic Causal Modelling—theory

Intuitively, the DCM scheme regards an experiment as a

designed perturbation of neuronal dynamics that are pro-

mulgated and distributed throughout a system of coupled

anatomical sources to produce region-specific responses.

This system is modelled using a dynamic input–state–

output system with multiple inputs and outputs. Responses

are evoked by deterministic inputs that correspond to

experimental manipulations (i.e., presentation of stimuli).

Experimental factors (i.e., stimulus attributes or context)

can also change the parameters or causal architecture of the

system producing these responses. The state variables

cover both the neuronal activities and other neurophysio-

logical or biophysical variables needed to form the outputs.

Outputs are those components of neuronal responses that

can be detected by MEG/EEG sensors. In our model, these

components are depolarizations of a ‘neural mass’ of

pyramidal cells. DCM starts with a reasonably realistic

neuronal model of interacting cortical regions. This model

is then supplemented with a spatial forward model of how

neuronal activity is transformed into measured responses,

here, M/EEG scalp-averaged responses. This enables the

parameters of the neuronal model (e.g., effective connec-

tivity) to be estimated from observed data. For M/EEG

data, this spatial model is a forward model of electro-

magnetic measurements that accounts for volume

conduction effects (Mosher et al. 1999).

Hierarchical MEG/EEG neural mass model

DCMs for M/EEG adopt a neural mass model (David and

Friston 2003) to explain source activity in terms of the

ensemble dynamics of interacting inhibitory and excit-

atory subpopulations of neurons, based on the model of

Jansen and Rit (1995). This model emulates the activity

of a source using three neural subpopulations, each

assigned to one of three cortical layers; an excitatory

subpopulation in the granular layer, an inhibitory sub-

population in the supra-granular layer and a population of

deep pyramidal cells in the infra-granular layer. The

excitatory pyramidal cells receive excitatory and inhibi-

tory input from local interneurons (via intrinsic

connections, confined to the cortical sheet), and send

excitatory outputs to remote cortical sources via extrinsic

connections. See also Grimbert and Faugeras (2006) for a

bifurcation analysis of this model.

In David et al. (2005), we developed a hierarchical

cortical model to study the influence of forward, backward

and lateral connections on evoked responses. This model

embodies directed extrinsic connections among a number

of sources, each based on the Jansen model (Jansen and Rit

1995), using the connectivity rules described in Felleman

and Van Essen (1991). Using these rules, it is straightfor-

ward to construct any hierarchical cortico-cortical network

model of cortical sources. Under simplifying assumptions,

directed connections can be classified as: (i) Bottom-up or

forward connections that originate in the infragranular

layers and terminate in the granular layer. (ii) Top-down or

backward connections that connect infragranular to

agranular layers. (iii) Lateral connections that originate in

infragranular layers and target all layers. These long-range

or extrinsic cortico-cortical connections are excitatory and

are mediated through the axonal processes of pyramidal

cells. For simplicity, we do not consider thalamic con-

nections, but model thalamic afferents as a function

encoding subcortical input (see below).

The Jansen and Rit model emulates the MEG/EEG

activity of a cortical source using three neuronal subpop-

ulations. A population of excitatory pyramidal (output)

cells receives inputs from inhibitory and excitatory popu-

lations of interneurons, via intrinsic connections. Within

this model, excitatory interneurons can be regarded as

spiny stellate cells found predominantly in layer 4 and in

receipt of forward connections. Excitatory pyramidal cells

and inhibitory interneurons occupy agranular layers and

receive both intrinsic and extrinsic backward and lateral

inputs. The ensuing DCM is specified in terms of its state-

equations and an observer or output equation

_x ¼ f ðx; u; hÞ
h ¼ gðx; hÞ

ð1Þ

where x are the neuronal states of cortical sources, u are

exogenous inputs, and h is the system’s response. h are

quantities that parameterize the state and observer
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equations (see also below under ‘Prior assumptions’). The

state-equations are ordinary first-order differential equa-

tions and are derived from the behaviour of the three

neuronal subpopulations, which operate as linear damped

oscillators. The integration of the differential equations

pertaining to each subpopulation can be expressed as a

convolution of the exogenous input to produce the

response (David and Friston 2003). This convolution

transforms the average density of pre-synaptic inputs into

an average postsynaptic membrane potential, where the

convolution kernel is given by

pðtÞe ¼
He

se
t expð�t=seÞ t � 0

0 t \ 0

�
ð2Þ

Here, the subscript ‘‘e’’ stands for ‘‘excitatory’’. Simi-

larly subscript ‘‘i’’ is used for inhibitory synapses. H

controls the maximum postsynaptic potential, and s rep-

resents a lumped rate constant. An operator S transforms

the potential of each subpopulation into firing rate, which is

the exogenous input to other subpopulations. This operator

is assumed to be an instantaneous sigmoid nonlinearity of

the form

SðxÞ ¼ 1

1þ expð�q1ðx� q2ÞÞ
� 1

1þ expðq1q2Þ
ð3Þ

where the free parameters q1 and q2 determine its slope

and translation. Interactions, among the subpopulations,

depend on internal coupling constants, c1,2,3,4, which

control the strength of intrinsic connections and reflect the

total number of synapses expressed by each subpopulation

(see Fig. 1). The integration of this model, to form pre-

dicted responses, rests on formulating these two operators

(Eqs. 2, 3) in terms of a set of differential equations as

described in David and Friston (2003). These equations,

for all sources, can be integrated using the matrix expo-

nential of the systems Jacobian as described in the

appendices of David et al. (2006). Critically, the inte-

gration scheme allows for conduction delays on the

connections, which are free parameters of the model. A

DCM, at the network level, obtains by coupling sources

with extrinsic forward, backward and lateral connections

as described above.

Event-related input and event-related response-specific

effects

To model event-related responses, the network receives

inputs from the environment via input connections. These

connections are exactly the same as forward connections

and deliver inputs u to the spiny stellate cells in layer 4 of

specified sources. In the present context, inputs u model

afferent activity relayed by subcortical structures and is

modelled with two components: The first is a gamma

density function (truncated to peri-stimulus time). This

models an event-related burst of input that is delayed with

respect to stimulus onset and dispersed by subcortical

synapses and axonal conduction. Being a density function,

this component integrates to one over peri-stimulus time.

The second component is a discrete cosine set modelling

systematic fluctuations in input, as a function of peri-

stimulus time. In our implementation, peri-stimulus time is

treated as a state variable, allowing the input to be com-

puted explicitly during integration. Critically, the event-

related input is exactly the same for all ERPs. The effects

of experimental factors are mediated through event-related

response (ERR)-specific changes in connection strengths.

See Fig. 1 for a summary of the resulting differential

equations.

We can model differential responses to different stimuli

in two ways. The first is when the effects of experimental

factors are mediated through changes in extrinsic connec-

tion strengths (David et al. 2006). For example, this

extrinsic mechanism can be used to explain ERP (event-

related potential) differences by modulating forward (bot-

tom-up) or backward (top-down) coupling. The second

mechanism involves changing the intrinsic architecture; of

the sort mediating local adaptation. Changes in connec-

tivity are expressed as differences in intrinsic, forward,

backward or lateral connections that confer a selective

sensitivity on each source, in terms of its response to oth-

ers. The experimental or stimulus-specific effects are

modelled by coupling gains

AF
ijk ¼ AF

ij Bijk

AB
ijk ¼ AB

ijBijk

AL
ijk ¼ AL

ijBijk

ð4Þ

Here, Aij encodes the strength of a connection to the ith

source from the jth and Bijk encodes its gain for the kth

ERP. The superscripts (F, B, or L) indicate the type of

connection, i.e., forward, backward or lateral (see also

Fig. 1). By convention, we set the gain of the first ERP to

unity, so that the gains of subsequent ERPs are relative to

the first. The reason we model extrinsic modulations in

terms of gain (a multiplicative factor), as opposed to

additive effects, is that by construction, connections should

always be positive. This is assured; provided both the

connection and its gain are positive. In this context, a

[positive] gain of less than one represents a decrease in

connection strength.

Note that if we considered the gains as elements of a

gain matrix, the intrinsic gain would occupy the leading

diagonal. Intrinsic modulation can explain important fea-

tures of typical evoked responses, which are difficult to

model with a modulation of extrinsic connections (Kiebel

et al. 2007). We model the modulation of intrinsic
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connectivity by a gain on the amplitude He of the synaptic

kernel (Eq. 2). A gain greater than one effectively increases

the maximum response that can be elicited from a source.

For the ith source:

H
ðiÞ
ek ¼ HðiÞe Biik ð5Þ

The spatial forward model

The dendritic signal of the pyramidal subpopulation of the

ith source x
ðiÞ
0 is detected remotely on the scalp surface in

M/EEG. The relationship between scalp data h and source

activity is assumed to be linear and instantaneous

h ¼ gðx; hÞ ¼ LðhLÞx0 ð6Þ

where L is a lead-field matrix (i.e., spatial forward model),

which accounts for passive conduction of the electromag-

netic field (Mosher et al. 1999). Here, we assume that the

spatial expression of each source is caused by one ECD. Of

course, one can use different source models, e.g. extended

patches on the cortical surface (see Section ‘‘Discussion’’).

The head model for the dipoles is based on four concentric

spheres, each with homogeneous and isotropic conductiv-

ity. The four spheres approximate the brain, skull,

cerebrospinal fluid, and scalp. The parameters of the model

are the radii and conductivities for each layer. Here, we use

as radii 71, 72, 79, and 85 mm, with conductivities 0.33,

1.0, 0.0042, and 0.33 S/m, respectively. The potential at

the sensors requires an evaluation of an infinite series,

which can be approximated using fast algorithms (Mosher

et al. 1999; Zhang 1995). The lead-field of each ECD is

then a function of three location and three orientation or

moment parameters hL = {hpos,hmom}. For the ECD for-

ward model, we used a Matlab (Mathworks) routine that is

freely available as part of the FieldTrip package (http://

www2.ru.nl/fcdonders/fieldtrip/), under the GNU general

public license.

Dimension reduction

For computational reasons, it is expedient to reduce the

dimensionality of the sensor data, while retaining the

maximum amount of information. This is assured by pro-

jecting the data onto a subspace defined by its principal

eigenvectors E

y  Ey

L  EL

e  Ee

ð7Þ

where e is the observation error (see below). The eigen-

vectors are computed using principal component analysis

or singular value decomposition (SVD). Because this pro-

jection is orthonormal, the independence of the projected

errors is preserved, and the form of the error covariance

components assumed by the observation model remains

unchanged. In this paper, we reduce the sensor data such

that the retained modes capture at least 99% of the vari-

ability of the data.

The observation or likelihood model

In summary, our DCM comprises a state-equation that is

based on neurobiological heuristics and an observer
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Fig. 1 Neuronal state-

equations. A source consists of

three neuronal subpopulations,

which are connected by four

intrinsic connections with

weights c1,2,3,4. Mean firing

rates (Eq. 3) from other sources

arrive via forward AF, backward

AB and lateral connections AL.

Similarly, exogenous input Cu
enters receiving sources. The

output of each subpopulation is

its trans-membrane potential

(Eq. 2)
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equation based on an electromagnetic forward model. By

integrating the state-equation and passing the ensuing

states through the observer equation, we generate a pre-

dicted measurement. This corresponds to a generalized

convolution of the inputs to generate a response h(h) (Eq.

6). This generalized convolution gives an observation

model for the vectorized data y and the associated

likelihood

y ¼ vecðhðhÞ þ XhXÞ þ e

p y h; kjð Þ ¼ N vec hðhÞ þ XhX
� �

; diagðkÞ � V
� � ð8Þ

Measurement noise, e is assumed to be zero-mean Gaussian

and independent over channels, i.e., Cov(vec(e)) =

diag(k) � V, where k is an unknown vector of channel-

specific variances. V represents the error’s temporal auto-

correlation matrix, which we assume is the identity matrix.

This is tenable because we down-sample the data to about

8 ms. Low-frequency noise or drift components are mod-

elled by X, which is a block diagonal matrix with a low-

order discrete cosine set for each evoked response and

channel. The order of this set can be determined by

Bayesian model selection (see below). This model is fitted

to data by tuning the free parameters h to minimize the

discrepancy between predicted and observed MEG/EEG

time series under model complexity constraints (more

formally, the parameters minimize the Variational Free

Energy; see below). In addition to minimizing prediction

error, the parameters are constrained by a prior specifica-

tion of the range they are likely to lie in Friston et al.

(2003). These constraints, which take the form of a prior

density p(h), are combined with the likelihood, p(y|h), to

form a posterior density p(h|y) � p(y|h) p(h) according to

Bayes’ rule. It is this posterior or conditional density we

want to estimate. Gaussian assumptions about the errors in

Eq. 8 enable us to compute the likelihood from the pre-

diction error. The only outstanding quantities we require

are the priors, which are described next.

Prior expectation

The connectivity architecture is constant over peri-stim-

ulus time and defines the dynamical behaviour of the

DCM. We have to specify prior assumptions about the

connectivity parameters to estimate their posterior distri-

butions. Priors have a dramatic impact on the landscape

of the objective function to be optimized: precise prior

distributions ensure that the objective function has a

global minimum that can be attained robustly. Under

Gaussian assumptions, the prior distribution p(hi) of the

ith parameter is defined by its mean and variance. The

mean corresponds to the prior expectation. The variance

reflects the amount of prior information about the

parameter. A tight distribution (small variance) corre-

sponds to precise prior knowledge. The parameters of the

state-equation can be divided into six subsets: (i) extrinsic

connection parameters, which specify the coupling

strengths among sources, (ii) intrinsic connection param-

eters, which reflect our knowledge about canonical micro-

circuitry within a source, (iii) conduction delays, (iv)

synaptic and sigmoid parameters controlling the dynamics

within an source, (v) input parameters, which control the

subcortical delay and dispersion of event-related respon-

ses, and, importantly, (vi) intrinsic and extrinsic gain

parameters. Table 1 list the priors for these parameters;

see also David et al. (2006) for details. Note that we fixed

the values of intrinsic coupling parameters as described in

Jansen and Rit (1995). Inter-laminar conduction delays

are usually fixed at 2 ms and inter-regional delays have a

prior expectation of 16 ms.

Inference and model comparison

For a given DCM, say model m, parameter estimation

corresponds to approximating the moments of the posterior

distribution given by Bayes’ rule

pðhjy;mÞ ¼ pðyjh;mÞpðh;mÞ
pðyjmÞ ð9Þ

The estimation procedure employed in DCM is described

in Friston et al. (2003). The posterior moments (mean g
and covariance R) are updated iteratively using Variational

Bayes under a fixed-form Laplace (i.e., Gaussian)

approximation to the conditional density q(h) = N(g,R).

This can be regarded as an Expectation-Maximization

(EM) algorithm that employs a local linear approximation

of Eq. 8 about the current conditional expectation. The E-

step conforms to a Fisher-scoring scheme (Fahrmeir and

Tutz 1994) that performs a descent on the variational free

energy F(q,k,m) with respect to the conditional moments.

In the M-Step, the error variances k are updated in exactly

the same way. The estimation scheme can be summarized

as follows:

Repeat until convergence

E-Step q min
q

Fðq; k;mÞ

M-Step k min
k

Fðq; k;mÞ

Fðq; k;mÞ ¼ ln qðhÞ � ln pðyjh; k;mÞ � ln pðhjmÞh iq
¼ Dðqjjpðhjy; k;mÞÞ � ln pðyjk;mÞ

ð10Þ

Note that the free energy is simply a function of the log-

likelihood and the log-prior for a particular DCM and q(h).

The expression �h iq denotes the expectation under the

density q. q(h) is the approximation to the posterior density
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p(h|y,k,m) we require. The E-step updates the moments of

q(h) (these are the variational parameters g and R) by

minimizing the variational free energy. The free energy is

the Kullback–Leibler divergence (denoted by Dð�jj�Þ),
between the real and approximate conditional density

minus the log-likelihood. This means that the conditional

moments or variational parameters maximize the marginal

log-likelihood, while minimizing the discrepancy between

the true and approximate conditional density. Because the

divergence does not depend on the covariance parameters,

minimizing the free energy in the M-step is equivalent to

finding the maximum likelihood estimates of the

covariance parameters. This scheme is identical to that

employed by DCM for functional magnetic resonance

imaging (Friston et al. 2003). Source code for this routine

can be found in the Statistical Parametric Mapping

software package (see Software note below), in the

function ‘spm_nlsi_N.m’.

Bayesian inference proceeds using the conditional or

posterior density estimated by iterating Eq. 10. Usually this

involves specifying a parameter or compound of parame-

ters as a contrast, cTg. Inferences about this contrast are

made using its conditional covariance, cTRc. For example,

one can compute the probability that any contrast is greater

than zero or some meaningful threshold, given the data.

This inference is conditioned on the particular model

specified. In other words, given the data and model,

inference is based on the probability that a particular

contrast is bigger than a specified threshold. In some situ-

ations one may want to compare different models. This

entails Bayesian model comparison.

Different models are compared using their evidence

(Penny et al. 2004). The model evidence is

pðy mj Þ ¼
Z

pðy h;mj Þpðh mj Þdh ð11Þ

Note that the model evidence is simply the

normalization constant in Eq. 9. The evidence can be

decomposed into two components: an accuracy term,

which quantifies the data fit, and a complexity term,

which penalizes models with a large number of parameters.

Therefore, the evidence embodies the two conflicting

requirements of a good model, that it explains the data and

is as simple as possible. In the following, we approximate

the model evidence for model m, under a normal

approximation (Friston et al. 2003), by

ln pðy mj Þ � ln pðy k;mj Þ ð12Þ

This is simply the maximum value of the objective

function attained by EM (see the M-Step in Eq. 10). The

most likely model is the one with the largest log-evidence.

This enables Bayesian model selection. Model comparison

rests on the likelihood ratio Bij (i.e., Bayes Factor) of the

evidence or relative log-evidence for two models. For

models i and j

ln Bij ¼ ln pðy mj ¼ iÞ � ln pðy mj ¼ jÞ ð13Þ

Conventionally, strong evidence in favour of one model

requires the difference in log-evidence to be three or more

(Penny et al. 2004). This threshold criterion plays a similar

role as a p-value of 0.05 = 1/20 in classical statistics (used

to reject the null hypothesis in favour of the alternative

Table 1 Prior densities of

parameters (for connections to

the ith source from the jth, in the

kth evoked response)

Extrinsic coupling parameters AF
ijk ¼ AF

ij Bijk AF
ij ¼ 32 expðhF

ij Þ hF
ij �Nð0; 1

2
Þ

AB
ijk ¼ AB

ijBijk AB
ij ¼ 16 expðhB

ijÞ hB
ij �Nð0; 1

2
Þ

AL
ijk ¼ AL

ijBijk AL
ij ¼ 4 expðhL

ijÞ hB
ij �Nð0; 1

2
Þ

Bijk ¼ expðhB
ijkÞ hL

ij�Nð0; 1
2
Þ

Ci ¼ expðhC
i Þ hC

i �Nð0; 1
2
Þ

Intrinsic coupling parameters c1 ¼ 128 c2 ¼ 4
5
c1 c3 ¼ 1

4
c1 c4 ¼ 1

4
c1

Conduction delays (ms) Dii ¼ 2 Dij ¼ 16 expðhD
ij Þ hD

ij �N ð0; 1
16
Þ

Synaptic parameters (ms)

TðiÞe ¼ 8 expðhT
i Þ hT

i �Nð0; 1
8
Þ

H
ðiÞ
e;k ¼ BiikHðiÞe HðiÞe ¼ 4 expðhH

i Þ hH
i �Nð0; 1

8
Þ

Ti ¼ 16 Hi ¼ 32

Sigmoid parameters
qðiÞ1 ¼ 2

3
expðhq1

i Þ hq1

i �N 0; 1
8

� �
qðiÞ2 ¼ 1

3
expðhq2

i Þ hq2

i �N 0; 1
8

� �

Input parameters (s)

uðtÞ ¼ bðt; g1; g2Þ þ
P

hc
i cosð2pði� 1ÞtÞ hc

i �Nð0; 1Þ
g1 ¼ expðhg

1Þ hg
1�Nð0; 1

16
Þ

g2 ¼ 16 expðhg
2Þ hg

2�Nð0; 1
16
Þ

Spatial (ECD) parameters (mm)
hpos

i �N ðLpos
i ; 32I3Þ

hmom
i �N ð0; 8I3Þ
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model). A difference in log-evidence of greater than three

(i.e., a Bayes factor more than exp(3) * 20) indicates that

the data provide strong evidence in favour of one model

over the other. This is a standard way to assess the dif-

ferences in log-evidence quantitatively.

Models for steady-state responses

The description up to this point has assumed that we are

dealing with evoked responses, which can be located pre-

cisely in time. As we have shown above, given stimulus

timing information, one can model the measured M/EEG

response as the system whose dynamics are prescribed by

neural mass models. In theory, one can also estimate the

input itself, e.g., its onset and duration. This is a hard,

nonlinear problem and we acknowledge most experiments

control the input by design. However, there are experi-

ments for which one does not know the input function. For

example, in sleep research, one might want to model net-

works that receive internally generated input functions.

Similarly, experiments that measure electrophysiological

data (M/EEG, local field potentials) over long times,

without any designed inputs, must assume the exact input

function to be unknown. In such cases, one can posit that

the data have been induced by input with an assumed

statistical distribution. Linear system models offer partic-

ularly amenable analysis strategies to explore state-space

models. The form of the neural mass model equations

above are an example of such state-space models.

For steady-state responses the system can, in essence, be

understood as a filter with an accompanying transfer

function

HðsÞ ¼ ðs� 11Þðs� 12Þðs� 13Þ. . .:

ðs� k1Þðs� k2Þðs� k3Þ. . .:
ð14Þ

Here s represents real and imaginary frequency com-

ponents fi represent the system ‘‘zeros’’ where the

frequency response is zero and ki, the system ‘‘poles’’

where the frequency goes to infinity. This function

describes how any spectral input is shaped to produce

spectral output. This presumes time invariance in the inputs

and response and can describe neatly the dynamics in the

frequency domain, s.

With DCM, we can use this strategy for steady-state

paradigms by assuming a white noise (flat spectral) input.

Assuming the system operates in a steady-state around its

fixed point, we can linearize the nonlinear differential

equations to describe the system response in the frequency

domain. Note that by response we now mean the spectral

output that is shaped by the system transfer function. This

linearization allows us to establish a mapping from the sys-

tem parameters to the predicted frequency spectrum (Moran

et al. 2007). Importantly, as with multiple evoked responses,

this enables us to model differences between two or more

spectra, acquired under different conditions, as conse-

quences of specific parameter changes. These parameters

might be intrinsic or extrinsic connections, but can also be,

for example, the excitatory rate constants se (Eq. 2), which

have a marked influence on the frequency spectrum (Moran

et al. 2007). The basic idea is to manipulate the (real) system

(e.g. by experimental changes in the level of a neurotrans-

mitter), model this change in terms of changes in specific

DCM parameters, and then test the implicit hypothesis using

Bayesian inference, i.e., model comparison and posterior

probabilities. This strategy has been applied in (Moran et al.

in press) using just one source, where we showed that

changes in glutamate levels as measured by microdialysis

can be modelled by a change in DCM parameters. We will

come back to this work below.

Illustrative examples

Mismatch negativity

In this section, we illustrate the use of DCM for ERP/ERFs

by analysing data acquired under a mismatch negativity

(MMN) paradigm. Critically, DCM allows us to test

hypotheses about the changes in connectivity between

sources. In this example study, we will test a specific

hypothesis (see below) about the MMN generation and

compare various models over twelve subjects. The results

shown here are a part of a series of papers that consider the

MMN and its underlying mechanisms in detail (Garrido

et al. 2007).

Novel sounds, or oddballs, embedded in a stream of

repeated sounds, or standards, produce a distinct response

that can be recorded non-invasively with MEG and EEG.

The MMN is the negative component of the waveform

obtained by subtracting the event-related response to a

standard from the response to an oddball, or deviant. This

response to sudden changes in the acoustic environment

peaks at about 100–200 ms from change onset (Sams et al.

1985) and exhibits an enhanced negativity that is distrib-

uted over auditory and frontal areas, with prominence in

frontal regions.

The MMN is believed to be an index of automatic

change detection reflecting a pre-attentive sensory memory

mechanism (Tiitinen et al. 1994). There have been several

compelling mechanistic accounts of how the MMN might

arise. The most common interpretation is that the MMN

can be regarded as a marker for error detection, caused by a

break in a learned regularity, or familiar auditory context.

The early work by Näätänen and colleagues suggested that

the MMN results from a comparison between the auditory

input and a memory trace of previous sounds. In agreement
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with this theory, others (Naatanen and Winkler 1999;

Sussman and Winkler 2001; Winkler et al. 1996) have

postulated that the MMN would reflect on-line modifica-

tions of the auditory system, or updates of the perceptual

model, during incorporation of a newly encountered stim-

ulus into the model—the model-adjustment hypothesis.

Hence, the MMN would be a specific response to stimulus

change and not to stimulus alone. This hypothesis has been

supported by Escera et al. (2003) who provided evidence

that the prefrontal cortex is involved in a top-down mod-

ulation of a deviance detection system in the temporal

cortex. In the light of the Näätänen model, it has been

claimed that the MMN is caused by two underlying func-

tional processes, a sensory memory mechanism related to

temporal generators and an automatic attention-switching

process related to the frontal generators (Giard et al. 1990).

Accordingly, it has been shown that the temporal and

frontal MMN sources have distinct behaviours over time

(Rinne et al. 2000) and that these sources interact with

each other (Jemel et al. 2002). Thus the MMN could be

generated by a temporofrontal network (Doeller et al.

2003; Opitz et al. 2002), as revealed by M/EEG and fMRI

studies. This work has linked the early component (in the

range of about 100–140 ms) to a sensorial, or non-com-

parator account of the MMN, elaborated in the temporal

cortex, and a later component (in the range of about 140–

200 ms) to a cognitive part of the MMN, involving the

frontal cortex (Maess et al. 2007).

Using DCM, we modelled the MMN generators with a

temporo-frontal network comprising bilateral sources over

the primary and secondary auditory and frontal cortex. Fol-

lowing the model-adjustment hypothesis, we assume that the

early and late component of the MMN can be explained by an

interaction of temporal and frontal sources or network nodes.

The MMN itself is defined as the difference between the

responses to the oddball and the standard stimuli. Here, we

modelled both evoked responses and explained the MMN,

i.e., differences in the two ERPs, by a modulation of DCM

parameters. There are two kinds of parameters that seem

appropriate to induce the difference between oddballs and

standards: (i) modulation of extrinsic connectivity between

sources, and (ii) modulation of intrinsic parameters in each

source. Modulation of intrinsic parameters would corre-

spond to a mechanism that is more akin to an adaptation

hypothesis, i.e., the MMN is generated by local adaptation of

populations. This is the hypothesis considered by Jaaske-

lainen et al. (2004) who report evidence that the MMN is

explained by differential adaptation of two pairs of bilateral

temporal sources. In a recent paper (Garrido et al. in press),

we have compared models derived from both hypotheses: (i)

the model-adjustment hypothesis and (ii) the adaptation

hypothesis. Here, we will constrain ourselves to demonstrate

inference based on DCMs derived from the model-

adjustment hypothesis only, which involves a fronto-tem-

poral network.

Experimental design

We studied a group of 13 healthy volunteers aged 24–35 (5

female). Each subject gave signed informed consent before

the study, which proceeded under local ethical committee

guidelines. Subjects sat on a comfortable chair in front of a

desk in a dimly illuminated room. Electroencephalographic

activity was measured during an auditory ‘oddball’ para-

digm, in which subjects heard of ‘‘standard’’ (1,000 Hz)

and ‘‘deviant’’ tones (2,000 Hz), occurring 80% (480 trials)

and 20% (120 trials) of the time, respectively, in a pseudo-

random sequence. The stimuli were presented binaurally

via headphones for 15 min every 2 s. The duration of each

tone was 70 ms with 5 ms rise and fall times. The subjects

were instructed not to move, to keep their eyes closed and

to count the deviant tones.

EEG was recorded with a Biosemi system with 128 scalp

electrodes. Data were recorded at a sampling rate of 512 Hz.

Vertical and horizontal eye movements were monitored

using EOG (electro-oculograms) electrodes. The data were

epoched offline, with a peri-stimulus window of -100 to

400 ms, down-sampled to 200 Hz, band-pass filtered

between 0.5 and 40 Hz and re-referenced to the average of

the right and left ear lobes. Trials in which the absolute

amplitude of the signal exceeded 100 lV were excluded.

Two subjects were eliminated from further analysis due to

excessive trials containing artefacts. In the remaining sub-

jects, an average 18% of trials were excluded.

Specification of dynamic causal model

In this section, we specify three plausible models defined

under a given architecture and dynamics. The network

architecture was motivated by recent electrophysiological

and neuroimaging studies looking at the sources underlying

the MMN (Doeller et al. 2003; Opitz et al. 2002). We

assumed five sources, modelled as ECDs, over left and right

primary auditory cortices (A1), left and right superior tem-

poral gyrus (STG) and right inferior frontal gyrus (IFG), see

Fig. 2. Our mechanistic model attempts to explain the gen-

eration of each individual response, i.e., responses to

standards and deviants. Therefore, left and right primary

auditory cortex (A1) were chosen as cortical input stations

for processing the auditory information. Opitz et al. (2002)

identified sources for the differential response, with fMRI

and EEG measures, in both left and right STG, and right IFG.

Here we employ the coordinates reported by Opitz et al.

(2002) (for left and right STG and right IFG) and Radem-

acher et al. (2001) (for left and right A1) as prior source

location means, with a prior variance of 32 mm. We
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converted these coordinates, given in the literature in

Talairach space, to MNI space using the algorithm described

in http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach.

The moment parameters had prior mean of 0 and a variance

of 8 in each direction. We have used these parameters as

priors to estimate, for each individual subject, the posterior

locations and moments of the ECDs (Table 2). Using these

sources and prior knowledge about the functional anatomy

we constructed the following DCM: An extrinsic input

entered bilaterally to A1, which were connected to their

ipsilateral STG. Right STG was connected with the right

IFG. Inter-hemispheric (lateral) connections were placed

between left and right STG. All connections were reciprocal

(i.e., connected with forward and backward connections or

with bilateral connections). Given this connectivity graph,

specified in terms of its nodes and connections, we tested

three models. These models differed in the connections

which could show putative learning-related changes, i.e.,

differences between listening to standard or deviant tones.

Models F, B and FB allowed changes in forward, backward

and both forward and backward connections, respectively

(see Fig. 2). All three models were compared against a

baseline or null model. The null model had the same archi-

tecture described above but precluded any coupling changes

between standard and deviant trials.

Results

The difference between the ERPs evoked by the standard and

deviant tones revealed a standard MMN. This negativity was

present from 90 to 190 ms and had a broad spatial pattern,

encompassing electrodes previously associated with audi-

tory and frontal areas. Four different DCMs, forward only (F-

model), backward only (B-model), forward and backward

(FB-model) and the null model were inverted for each sub-

ject. Figure 3 illustrates the model comparison based on the

increase in log-evidence over the null model, for all subjects.

Figure 3a shows the log-evidence for the three models, rel-

ative to the null model, for each subject, revealing that the

three models were significantly better than the null in all

subjects. The diamond attributed to each subject identifies

the best model on the basis of the highest log-evidence. The

FB-model was significantly better in seven out of 11 sub-

jects. The F-model was better in four subjects but only

significantly so in three (for one of these subjects [subject 6],

model comparison revealed only weak evidence in favour of

the F-model over the FB-model, though still very strong

evidence over the B-model). In all but one subject, the F and

FB-models were better than the B-model. Figure 3b shows

the log-evidences for the three models at the group level. The

log-evidence for the group is the sum of the log-evidences

from all subjects, because of the independent measures over

subjects. Both F and FB are clearly more likely than B and,

Forward
Backward

Lateral

A1 A1

STG

input

STG

IFG

B-model

A1 A1

STG

input

STG

IFG

F-model

modulation of effective connectivity

A1 A1

STG

input

STG

IFG

FB-model

rIFG

rSTG

rA1lA1

lSTG

a b c d

Fig. 2 Model specification. The sources comprising the network are

connected with forward (dark grey), backward (grey) or lateral (light

grey) connections as shown. A1: primary auditory cortex, STG:

superior temporal gyrus, IFG: inferior temporal gyrus. Three different

models were tested within the same architecture (a–c), allowing for

learning-related changes in forward F, backward B and forward and

backward FB connections, respectively. The broken lines indicate the

connections we allowed to change. (d) Sources of activity, modelled

as dipoles (estimated posterior moments and locations), are superim-

posed in an MRI of a standard brain in MNI space

Table 2 Prior coordinates for the locations of the ECDs in Montreal

Neurology Institute (MNI) space [mm]

Left primary auditory cortex (lA1) -42, -22, 7

Right primary auditory cortex (rA1) 46, -14, 8

Left superior temporal gyrus (lSTG) -61, -32, 8

Right superior temporal gyrus (rSTG) 59, -25, 8

Right inferior frontal gyrus (rIFG) 46, 20, 8
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over subjects, there is very strong evidence in favour of

model FB over model F. Figure 4a shows, for the best model

FB, the predicted responses at each node of the network for

each trial type (i.e., standard or deviant) for a single subject

(subject 9). For each connection in the network, the plot

shows the coupling gains and the conditional probability that

the gains are different from one. For example, a coupling

change of 2.04 from lA1 to lSTG means that the effective

connectivity increased 104% for rare events relative to fre-

quent events. The response, in measurement space, of the

three principal spatial modes is shown on the right (Fig. 4b).

This figure shows a remarkable agreement between pre-

dicted (solid) and observed (dotted) responses. Figure 5

summarises the conditional densities of the coupling

parameters for the F-model (Fig. 5a) and FB-model

(Fig. 5b). For each connection in the network, the plot shows

the coupling gains and the conditional probability that the

gains are different from one, pooled over subjects. For the F-

model the effective connectivity has increased in all con-

nections with a conditional probability of almost 100%. For

the FB-model the effective connectivity has changed in all

forward and backward connections with a probability of

almost 100%. Equivalently, and in accord with theoretical

predictions, all extrinsic connections (i.e., influences) were

modulated for rare events as compared to frequent events.

Steady-state responses

Here, we describe briefly an experiment using local field

potential (LFP) data. The same technique can be applied to

M/EEG data, after source reconstruction. LFP recordings

were taken from embedded electrodes in the prefrontal

cortex of normal rats and isolation reared counterparts.

The latter animals are a well-established model of

schizophrenia-like sensorimotor deficits as measured by

pre-pulse inhibition of startle (Geyer et al. 1993). More-

over, these animals were recently reported to show

profound reduction in prefrontal glutamate levels as mea-

sured by microdialysis (Table 3) (Mean GABA levels were

also reduced but variability among the isolated group

meant that these differences were not significant). This sort

of reduction in extracellular neurotransmitter levels usually

leads to an up-regulation of neurotransmitter uptake pro-

cesses and a sensitization of post-synaptic receptor

mechanisms. In the current context, this suggests that we

should see an increase in the amplitude (He) of synaptic

kernels and an increase in the coupling parameters

(c1,c2,c3) in the isolated group, relative to the social control

group.

Empirical LFP data were acquired with a Data Science

International radio-telemetric system; collecting LFPs over

a 24 h period from the prefrontal cortex of six social and

six isolation reared animals. These animals were moving

freely in their home cage and not exposed to external

stimuli. The data analyzed here was an average spectral

response over a 10-min period. Pre-processing involved a

Fast Fourier Transform of the data, using the same fre-

quencies as above.

The inversion was performed separately using each rat’s

spectral response. See Fig. 6 for an exemplar fit. To speed

the inversion, the number of parameters was reduced by

setting prior variances on parameters Hi,si,c4,c5 to zero.

The model could then account for differences in spectral

response, between the two groups, using the excitatory

parameters He,se,c1,c2,c3 and q2. Population differences

between their MAP estimates were significant in the case

of He and q2 (p \ 0.05). Group parameter means and their

respective p-values are illustrated in Fig. 7.

Fig. 3 Bayesian model selection among DCMs for the three models,

F, B and FB, expressed relative to a DCM in which no connections

were allowed to change (null model). The graphs show the free

energy approximation to the log-evidence. (a) Log-evidence for

models F, B and FB for each subject (relative to the null model). The

diamond attributed to each subject identifies the best model on the

basis of the subject’s highest log-evidence. (b) Log-evidence at the

group level, i.e., pooled over subjects, for the three models
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The picture from LFP modelling corresponds to

the microdialysis predictions on two levels, first the

MAP estimates suggest a sensitization of post-synaptic

responses; with increases in He (and excitatory intrinsic

connections) in the isolated animals, secondly an overall

decrease in firing rate for that group with the increase in q2

point to a low excitatory field. This parameter is a proxy for

neuronal adaptation and highlights a greater adaptation in

the low-glutamate ‘‘schizophrenic’’ rat group. This is

consistent with reduced levels of extracellular neurotrans-

mitter. For a more detailed discussion of these results see

Moran et al. (in press).

Discussion

Dynamic Causal Modelling for M/EEG entails the inversion

of informed spatiotemporal models of observed responses.

The idea is to model condition-specific responses over

channels and peri-stimulus time with the same model, where

the differences among conditions are explained by changes

in only a few key parameters. The face and predictive
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spatial modes
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Fig. 5 Coupling gains and their posterior probability estimated over

subjects for each connection in the network for models F (a) and FB

(b). There are widespread learning-related changes in all connections,

expressed as modulations of coupling for deviants relative to

standards

Table 3 Microdialysis measures of extracellular glutamate neuro-

transmitter levels from two groups (social and isolated) of Wistar rats

Glutamate

Social 4.2 ± 1.4 lM (100%)

Isolated 1.5 ± 0.8 lM (36%)

Measurements were taken from the medial prefrontal cortex
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validity of DCM have been established, which makes it a

potentially useful tool for group studies (David et al. 2006;

Garrido et al. 2007; Kiebel et al. 2006). In principle, the

same approach can be applied to the analysis of single trials,

where one would use a parametric modulation of parameters

to model the effects of trial-to-trial changes in an experi-

mental variable (e.g., reaction time or forgotten vs.

remembered). Furthermore, we have described how DCM

can be extended to cover source-reconstructed M/EEG or

LFP steady-state responses under simple assumptions about

the statistical distribution of the input.

One can also view DCM for evoked responses as a

source reconstruction device using biophysically informed

temporal constraints. This is because DCM has two com-

ponents; a neural-mass model of the interactions among a

small number of dipole sources and a classical electro-

magnetic forward model that links these sources to extra-

cranial measurements. Inverting the DCM implicitly opti-

mises the location and orientation of the sources. This is in

contrast to traditional ECD fitting approaches, where

dipoles are fitted sequentially to the data; using user-

selected periods and/or channels of the data. Classical

approaches have to proceed in this way, because there is

usually too much spatial and temporal dependency among

the sources to identify the parameters precisely. With our

approach, we place temporal constraints on the model that

are consistent with the way that signals are generated

biophysically. As we have shown, these allow simulta-

neous fitting of multiple dipoles to the data.

We used the ECD model because it is analytic, fast to

compute and a quasi-standard when reconstructing evoked

responses. However, the ECD model is just one candidate

for spatial forward models. Given the lead-field, one can

use any spatial model in the observation equation (Eq. 6).

A further example would be some linear distributed

approach (Baillet et al. 2001; Phillips et al. 2005; Dauni-

zeau et al. 2006), where a ‘patch’ of dipoles, confined to

the cortical surface, would act as the spatial expression of

one area. With DCM, one could also use different forward

models for different areas (hybrid models). For example,

one could employ the ECD model for early responses while

using a distributed forward model for higher areas.

Fig. 6 Social (left) and isolated (right) parameter estimates from the

steady-state LFP data analysis. The top panels illustrate the predicted

and actual (dashed line) spectra. The bottom panels show the prior (in

white) and posterior (in black) mean for each parameter. Parameters

here are q1;q2; se; si;He;Hi; c1; c2; c3; c4; c5; d; see also Fig. 7
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More generally, we anticipate that Bayesian model

comparison will become a ubiquitous tool in M/EEG. This

is because further development of M/EEG models and their

fusion with other imaging modalities requires more com-

plex models embodying useful constraints. The

appropriateness of such models for any given data cannot

necessarily be intuited, but can be assessed formally using

Bayesian model comparison. The key is to compute the

model evidence p(y|m) (Eq. 12), for using a variational

approach (see above) or as described in Sato et al. (2004),

or by employing sampling approaches like the Monte Carlo

Markov Chain (MCMC) techniques as in Auranen et al.

(2007) and Jun et al. (2005). In principle, one can compare

models based on different concepts or, indeed, inversion

schemes, for a given data set y. For example, one can easily

compare different types of source reconstruction (ECD

versus source imaging) with DCM. This cannot be done

with classical, non-Bayesian approaches, for which model

comparisons are only feasible under certain constraints

(‘nested models’); precluding comparisons among quali-

tatively different models. Although other approximations

to the model evidence exist, e.g. the Akaike Information

Criterion, they are not generally useful with informative

priors (Beal 2003).

Currently, the DCM framework is deterministic, i.e., it

allows for observation noise in the sensors but does not

consider noise at the level of the neuronal dynamics. This

is part of ongoing work; several groups are developing

variational techniques that invert stochastic DCMs based

on stochastic differential equations with both nonlinear

evolution and observation functions (c.f., Eq. 1).

Software note

All procedures described in this note have been imple-

mented as Matlab (MathWorks) code. The source code is

freely available in the DCM and neural model toolboxes of

the Statistical Parametric Mapping package (SPM5) under

http://www.fil.ion.ucl.ac.uk/spm/.

Acknowledgments This work was supported by the Wellcome

Trust. MIG holds a FCT doctoral scholarship, Ministry of Science,

Portugal. RJM was supported by the Irish Research Council for

Science Engineering and Technology.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

Auranen T, Nummenmaa A, Hamalainen MS, Jaaskelainen IP,

Lampinen J, Vehtari A, Sams M (2007) Bayesian inverse

analysis of neuromagnetic data using cortically constrained

multiple dipoles. Hum Brain Mapp 28:979–994

1γ 2γ

5
γ

4γ 3
γ

u

Excitatory spiny cells in granular layers 

Pyramidal cells in infragranular layers  

Inhibitory cells in supragranular layers  

[161, 210]

[29,37]

[195, 233]

(0.4)

(0.37)(0.13)

[3.8,6.3]

[4.6,3.9]

[0.76,1.34]
(0.0003)

(0.17)

(0.04)
eH

et

2ρ

Fig. 7 Results of steady-state LFP data analysis. The left panel

shows the connection parameters of the different cell groups within

the modelled source. Parameters were inferred with inhibitory

connectivity (and impulse response) prior parameter variances set to

zero. The mean estimates of the connectivity’s c1, c2, c3 are shown

with the associated p-values. The right panels display the expected

excitatory impulse response functions and sigmoid firing functions for

both groups. These are constructed using the maximum a posteriori

(MAP) estimates of the excitatory synaptic kernel amplitude and

time-constant (He, se) in the former and the MAP estimate of q2 in the

latter. The control group estimates are shown in blue and the isolated

animals in red, with p-values in parentheses. Note that for steady-state

models, we have added an inhibitory–inhibitory connection (c5),

which is not used for the evoked response models

134 Cogn Neurodyn (2008) 2:121–136

123

http://www.fil.ion.ucl.ac.uk/spm/


Baillet S, Garnero L (1997) A Bayesian approach to introducing

anatomo-functional priors in the EEG/MEG inverse problem.

IEEE Trans Biomed Eng 44:374–385

Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain

mapping. IEEE Signal Process Mag 18:14–30

Beal MJ (2003) Variational algorithms for approximate Bayesian

inference. University College London

Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N,

Robinson PA (2006) A unifying explanation of primary

generalized seizures through nonlinear brain modeling and

bifurcation analysis. Cereb Cortex 16:1296–1313

Daunizeau J, Friston KJ (2007) A mesostate-space model for EEG

and MEG. Neuroimage 38:67–81

Daunizeau J, Mattout J, Clonda D, Goulard B, Benali H, Lina JM

(2006) Bayesian spatio-temporal approach for EEG source

reconstruction: conciliating ECD and distributed models. IEEE

Trans Biomed Eng 53:503–516

Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-

Issac M, Lina JM, Benali H (2007) Symmetrical event-related

EEG/fMRI information fusion in a variational Bayesian frame-

work. Neuroimage 36:69–87

David O, Friston KJ (2003) A neural mass model for MEG/EEG:

coupling and neuronal dynamics. Neuroimage 20:1743–1755

David O, Harrison L, Friston KJ (2005) Modelling event-related

responses in the brain. Neuroimage 25:756–770

David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ

(2006) Dynamic causal modeling of evoked responses in EEG

and MEG. Neuroimage 30:1255–1272

Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schroger E

(2003) Prefrontal cortex involvement in preattentive auditory

deviance detection: neuroimaging and electrophysiological evi-

dence. Neuroimage 20:1270–1282

Escera C, Yago E, Corral MJ, Corbera S, Nunez MI (2003) Attention

capture by auditory significant stimuli: semantic analysis follows

attention switching. Eur J Neurosci 18:2408–2412

Fahrmeir L, Tutz G (1994) Multivariate statistical modelling based on

generalized linear models. Springer-Verlag, New York

Felleman DJ, Van Essen DC (1991) Distributed hierarchical process-

ing in the primate cerebral cortex. Cereb Cortex 1:1–47

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling.

Neuroimage 19:1273–1302

Friston K, Henson R, Phillips C, Mattout J (2006) Bayesian

estimation of evoked and induced responses. Hum Brain Mapp

27:722–735

Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007)

Dynamic causal modelling of evoked potentials: a reproducibil-

ity study. Neuroimage 36:571–580

Geyer MA, Wilkinson LS, Humby T, Robbins TW (1993) Isolation

rearing of rats produces a deficit in prepulse inhibition of

acoustic startle similar to that in schizophrenia. Biol Psychiatry

34:361–372

Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators

implicated in the processing of auditory stimulus deviance: a

topographic event-related potential study. Psychophysiology

27:627–640

Grimbert F, Faugeras O (2006) Bifurcation analysis of Jansen’s neural

mass model. Neural Comput 18:3052–3068

Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A,

Salmelin R (2001) Dynamic imaging of coherent sources:

studying neural interactions in the human brain. Proc Natl Acad

Sci USA 98:694–699

Jaaskelainen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ,

Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen

H, Belliveau JW (2004) Human posterior auditory cortex gates

novel sounds to consciousness. Proc Natl Acad Sci USA

101:6809–6814

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked

potential generation in a mathematical model of coupled cortical

columns. Biol Cybern 73:357–366

Jemel B, Achenbach C, Muller BW, Ropcke B, Oades RD (2002)

Mismatch negativity results from bilateral asymmetric dipole

sources in the frontal and temporal lobes. Brain Topogr 15:13–

27

Jun SC, George JS, Pare-Blagoev J, Plis SM, Ranken DM, Schmidt

DM, Wood CC (2005) Spatiotemporal Bayesian inference dipole

analysis for MEG neuroimaging data. Neuroimage 28:84–98

Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of

evoked responses in EEG/MEG with lead field parameterization.

Neuroimage 30:1273–1284

Kiebel SJ, Friston KJ (2004) Statistical parametric mapping for event-

related potentials (II): a hierarchical temporal model. Neuroim-

age 22:503–520

Kiebel SJ, Garrido MI, Friston KJ (2007) Dynamic causal modelling

of evoked responses: the role of intrinsic connections. Neuro-

image 36:332–345

Liljestrom M, Kujala J, Jensen O, Salmelin R (2005) Neuromagnetic

localization of rhythmic activity in the human brain: a compar-

ison of three methods. Neuroimage 25:734–745

Maess B, Jacobsen T, Schroger E, Friederici AD (2007) Localizing

pre-attentive auditory memory-based comparison: magnetic

mismatch negativity to pitch change. Neuroimage 37:561–571

Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J,

Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of

visual evoked responses. Science 295:690–694

Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG

source localization under multiple constraints: an extended

Bayesian framework. Neuroimage 30:753–767

Moran RJ, Stephan KE, Kiebel SJ, Rombach N, O’Connor WT,

Murphy KJ, Reilly RB, Friston KJ (in press) Bayesian estimation

of synaptic physiology from the spectral responses of neural

masses. Neuroimage

Moran RJ, Kiebel SJ, Stephan KE, Reilly RB, Daunizeau J, Friston

KJ (2007) A neural mass model of spectral responses in

electrophysiology. Neuroimage 37:706–720

Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward

solutions for inverse methods. IEEE Trans Biomed Eng 46:245–259

Naatanen R, Winkler I (1999) The concept of auditory stimulus

representation in cognitive neuroscience. Psychol Bull 125:826–

859

Nummenmaa A, Auranen T, Hamalainen MS, Jaaskelainen IP,

Lampinen J, Sams M, Vehtari A (2007) Hierarchical Bayesian
estimates of distributed MEG sources: theoretical aspects and

comparison of variational and MCMC methods. Neuroimage

35:669–685

Opitz B, Rinne T, Mecklinger A, von Cramon DY, Schroger E (2002)

Differential contribution of frontal and temporal cortices to

auditory change detection: fMRI and ERP results. Neuroimage

15:167–174

Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing

dynamic causal models. Neuroimage 22:1157–1172

Penny WD, Kilner J, Blankenburg F (2007) Robust Bayesian general

linear models. Neuroimage 36:661–671

Phillips C, Mattout J, Rugg MD, Maquet P, Friston KJ (2005) An

empirical Bayesian solution to the source reconstruction problem

in EEG. Neuroimage 24:997–1011

Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr,

Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000)

Guidelines for using human event-related potentials to study

cognition: recording standards and publication criteria. Psycho-

physiology 37:127–152

Poline JB, Strother SC, Dehaene-Lambertz G, Egan GF, Lancaster JL

(2006) Motivation and synthesis of the FIAC experiment:

Cogn Neurodyn (2008) 2:121–136 135

123



reproducibility of fMRI results across expert analyses. Hum

Brain Mapp 27:351–359

Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C,

Freund HJ, Zilles K (2001) Probabilistic mapping and volume

measurement of human primary auditory cortex. Neuroimage

13:669–683

Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Naatanen R (2000)

Separate time behaviors of the temporal and frontal mismatch

negativity sources. Neuroimage 12:14–19

Rodrigues S, Terry JR, Breakspear M (2006) On the genesis of spike-

wave oscillations in a mean-field model of human thalamic and

corticothalamic dynamics. Phys Lett A 355:352–357

Rugg MD, Curran T (2007) Event-related potentials and recognition

memory. Trends Cogn Sci 11:251–257

Sams M, Paavilainen P, Alho K, Naatanen R (1985) Auditory

frequency discrimination and event-related potentials. Electro-

encephalogr Clin Neurophysiol 62:437–448

Sato MA, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K,

Kawato M (2004) Hierarchical Bayesian estimation for MEG

inverse problem. Neuroimage 23:806–826

Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F,

Jimenez JC (2007) Realistically coupled neural mass models can

generate EEG rhythms. Neural Comput 19:478–512

Sussman E, Winkler I (2001) Dynamic sensory updating in the

auditory system. Brain Res Cogn Brain Res 12:431–439

Tiitinen H, May P, Reinikainen K, Naatanen R (1994) Attentive

novelty detection in humans is governed by pre-attentive sensory

memory. Nature 372:90–92

van Wassenhove V, Grant KW, Poeppel D (2005) Visual speech

speeds up the neural processing of auditory speech. Proc Natl

Acad Sci USA 102:1181–1186

Winkler I, Karmos G, Naatanen R (1996) Adaptive modeling of the

unattended acoustic environment reflected in the mismatch

negativity event-related potential. Brain Res 742:239–252

Zhang Z (1995) A fast method to compute surface potentials

generated by dipoles within multilayer anisotropic spheres. Phys

Med Biol 40:335–349

Zumer JM, Attias HT, Sekihara K, Nagarajan SS (2007) A probabilistic

algorithm integrating source localization and noise suppression for

MEG and EEG data. Neuroimage 37:102–115

136 Cogn Neurodyn (2008) 2:121–136

123


	Dynamic causal modelling for EEG and MEG
	Abstract
	Introduction
	Dynamic Causal Modelling?theory
	Hierarchical MEG/EEG neural mass model
	Event-related input and event-related response-specific effects
	The spatial forward model
	Dimension reduction
	The observation or likelihood model
	Prior expectation
	Inference and model comparison
	Models for steady-state responses

	Illustrative examples
	Mismatch negativity
	Experimental design
	Specification of dynamic causal model
	Results

	Steady-state responses

	Discussion
	Software note
	Acknowledgments
	References


