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Abstract

The copy mode selection, such as the text mode and photo mode, of a digital copy machine can provide suitable

process and enhancement for the scanned image. To classify the scanned image without expensive hardware and

reduce the running time, in this article, we designed an efficient automatic method for classifying a document image

using a probabilistic decision strategy. The proposed algorithm is tailored to inexpensive hardware and significantly

reduces both the running time and memory requirements compared to the existing algorithms, while substantially

improving the classification accuracy. In addition, we incorporate a new classification module to help avoid moiré

patterns by identifying periodic halftone noise.
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1 Introduction
A digital copier is a very common piece of home or office

equipment. Users typically just push the copy button to

make a copy. Most of them are not aware of the fact that

copy machines usually have various copy modes associ-

ated with different rendering techniques. For example,

while the text mode would enhance the edge detail, the

photo mode would improve the appearance of very pale

colors and smooth the scanned document for noise reduc-

tion. Even if the user is aware of different copy modes, it

is still cumbersome to select the appropriate copy mode

page by page formulti-page documents. Hence, it is essen-

tial to develop an automatic page classifier.

The low-complexity method proposed in this paper

enables automatic tagging of document images in a

low-end copier or all-in-one, by classifying an input

original into all possible combinations of mono/color,

text/mix/picture/photo, and periodic/stochastic. Note

that classifying a document as a photo automatically

implies stochastic halftone, hence there is no color-photo-

periodic or mono-photo-periodic class. Mono mode is a

configuration optimized for monochrome originals while
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color mode is optimized for color originals. Text mode is

optimized for text, line arts, simple graphics, handwritten

text, and faxes; picture mode is for high dynamic range

halftoned originals; photo mode is for continuous tone

natural scenes; mix mode is for originals containing both

text and picture content; periodic mode is for periodic

halftoned printed documents, and stochastic mode is for

documents printed by other methods.

Misclassifying an original from one class as any of the

other classes is an error; however, not all misclassification

errors are equally costly. We define two cases of misclassi-

fication as benign error: Misclassifying mono originals as

color, and misclassifying text or picture or photo originals

as mix. All the othermisclassification cases are considered

harmful errors.

There is a substantial amount of literature related both

to the problem of overall segmentation and classifica-

tion of document images, and to the specific classification

tasks considered in this paper. The literature [1, 2] is not

applicable to our task due to the stringent complexity

restrictions imposed by the low-end machines. Moreover,

the document classification algorithms of [3–7] access

the entire image all at once and visit each pixel multi-

ple times—something that is impossible in the low-end

machines.
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A number of articles [8–10] discussed the related train-

ing classifiers. The literature [9] presented the training

classifiers using multilayer neural networks to reduce the

error in a supervised learning situation. Neural Network

techniques can build powerful classifiers with regulariza-

tion, complexity adjustment and model adjusting. The

parameters (weights) in neural network significantly influ-

ence the training results. The training analysis in [9, 10]

normally is a costly and time-consuming process. The

article [11] using multiple instance learning (MIL) to

reduce the training instances for handwritten and printed

documents classifications. From the results, their scheme

can achieve the similar detection accuracy as SVM for

the two document image classifications. Nevertheless, the

training time and testing time of MIL are still higher than

support vector machine (SVM).

The scheme [12] utilizes SVM classifiers with Huffman

tree architecture to classify massive documents. The SVM

multiple classifiers can be constructed based on Huffman

tree with the paragraph and local pixel feature of the

input document images. Their scheme can distinguish the

texture, character and color from the document images.

However, the schemes [11, 12] are complexity and infea-

sible of distinguishing different modes, such as text, pic-

ture, photo, mix, and periodic, for the common scanned

image. The article [13] proposed an incremental learning

approach for document image with zone classification.

The scheme segments the document image into physical

zones according to a zone-model with incremental learn-

ing. The scheme provides five classes (handwritten, tables,

stamps, signatures, and logos) with 1117 zones. However,

the five classes are unsuitable for applied in the digital copier.

To classify biomedical document images, the article [14]

extends image classification with scale invariant feature

transform (SIFT) by adding color features with bags-of-

colors (BoC). In [15, 16], the articles designed a document

image classification using convolutional neural network

(CNN) that shares weights among neurons among a layer.

The schemes aim to distinguish the content of the input

document image, such as the ad, email, news and report.

The manner [17] can achieve higher accuracy than [15]

by utilizing speeded up robust features (SURF). Conse-

quently, to design an efficient copy mode selection for

low-end digital copier, the complexity, time consuming

and accuracy should be the major concerns.

In our previous work [1], we demonstrated that our low-

complexity image classification algorithms perform with

29 to 99 % accuracy on a large dataset, where misclassifi-

cations tend toward benign. Our present work improves

upon [1] in two important respects:

(1) Developing new feature extraction and classification

methods which result in both lower complexity and

higher accuracy than the algorithm of [1]. Specifically:

• In Section 2, we propose a novel classification

algorithm. We demonstrate in Section 4 that it

improves the classification rate by up to 22 %

points as compared to the classifier of [1], when

both use the same set of low-complexity

features developed in Section 3.
• In Section 3, we develop a set of features all of

which, unlike the features in [1], avoid vertical

filtering operations (i.e., computations that

involve more than one line of data at a time) and

result in 23 and 50 % reductions of the running

time and memory requirements, respectively.

(2) In Section 3.5, we incorporate a periodic halftone

classification module developed in [18] which can be

added both to the classifier of [1] and to the classifier

proposed here, in order to help avoid moiré patterns.

Experimental studies in [18] and in Section 4 show

that our periodic halftone detector has a 97 % correct

classification rate.

2 Algorithm overview and hybrid
hard/soft-decision algorithm

We work with a specific copy pipeline equipped with

different copy modes which are all possible combina-

tions of mono/color, text/mix/picture/photo, and peri-

odic/stochastic. Our goal is to classify the scanned image

of the original into fourteen distinct classes. These classes

are listed in the first column of Table 1, where p and s

indicate periodic and stochastic, respectively. Note that

classes mono-photo-p and color-photo-p are absent, since

classifying a document as a photo automatically means

stochastic halftone.

In [1], we developed an algorithm for classifying a

document as combinations of mono/color and text/mix/

photo/picture. That algorithm works by sequentially

applying four simple classifiers to a document: first, a

classifier to distinguish color from neutral documents;

second, a classifier to distinguish text from non-text doc-

uments; another classifier to distinguish mix documents

from photos/pictures; and a fourth classifier to decide

between photos, pictures, and the mix class, as shown in

Fig. 1a.

Each classifier i uses a feature vector �xi consisting of

one or two simple features extracted from the docu-

ment image, and makes its decision based on the decision

boundaries shown in Fig. 2a–d. The decision bound-

aries, as well as certain parameters of the feature vectors,

are estimated from training data. An additional classifier

developed in [18] is depicted in Fig. 2e. It can be added to

the classifier [1], as shown in Fig. 1b.

A disadvantage of this sequential classification approach

is that an incorrect decision made early has no chance

of being corrected [19]. For example, a photo document
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Table 1 The fourteen distinct classes

Mono Color

Text Mix Pic Photo Text Mix Pic Photo

p mono-text-p mono-mix-p mono-pic-p – color-text-p color-mix-p color-pic-p –

s mono-text-s mono-mix-s mono-pic-s mono-photo-s color-text-s color-mix-s color-pic-p color-photo-s

misclassified as text by the second classifier will not

be processed by the remaining classifiers. We propose

to address this disadvantage by developing a hybrid

hard/soft-decision algorithm where each classification

node is visited, but most decisions are not made until all

nodes have been traversed. Specifically, our new algorithm

still starts by performing a hard decision for the neu-

tral/color classifier, in order to avoid anymisclassifications

of color documents as mono. We retain the remaining

classification nodes; however, we use them for estimat-

ing class likelihoods instead of for producing individual

classification decisions. In other words, instead of pro-

ducing a hard classification decision, each classifier now

produces a likelihood for each class. These likelihoods are

then combined to produce the final classification. This

strategy produces some complexity overhead because now

every image goes through every classification node. This

is in contrast to the hard classification strategy of Fig. 1a

where, for example, correctly classified text documents

do not go through the last two classification nodes. The

overhead, however, is small. The average running time

per test image is approximately 0.268 s1 on an Intel(R)

Core(TM) i7-4770 3.40 GHz desktop computer for our

proposed soft classification algorithm. The average run-

ning time for text documents in our test set for the hard

classifier is approximately 0.212 s. The average running

time for mix documents for the hard classifier is approx-

imately 0.259 s. For correctly classified photo and picture

documents, all classification nodes of the hard classifier

must be visited, and therefore the average running time

for such documents is the same as for the soft classifier.

Figure 3a shows the structure of our new classifier using

the classes from [1]; Fig. 3b shows the modified structure

which incorporates the additional halftone classification

node developed in Section 3.5.

2.1 Soft classification algorithm

As shown in Fig. 3, a hard mono-or-color decision is made

at the beginning of our new classification strategy. We

call the four soft classification nodes shown at the second

level of Fig. 3b nodes 1, 2, 3, and 4, left to right, and let

�xi be the feature vector computed at the i-th node. (The

computation of feature vectors is described in the next

section.)

We let �X = (�x1, �x2, · · · , �xn) be the overall feature vec-

tor obtained from all n soft classification nodes: n =
3 for Fig. 3a and n = 4 for Fig. 3b. Let cj, j =
1, · · · ,M, be the M document classes for the overall

classifier, i.e., M = 8 for Fig. 3a and M = 14 for

Fig. 3b. Our proposed algorithm estimates the likelihood

Fig. 1 a Hard decision tree from [1]. b Hard decision tree with an additional module for halftone classification developed in Section 3.5
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Fig. 2 Decision boundaries for classification nodes. (a), (b), (c), (d), (e) show the decision boundaries for “mono vs color,” “text vs nontext,” “text/mix

vs photo/picture,” “mix vs photo vs picture,” and “periodic vs stochastic” classification node, respectively

P(�X|cj) of each class cj and classifies the document into

the class that has the highest estimated likelihood. We

assume conditional independence of the feature vectors

computed at all nodes, given each class. Hence, each

class likelihood factorizes over the n classification nodes

as follows:

P(�X|cj) =
∏

i

P(�xi|cj). (1)

The class likelihood at each node i, P(�xi|cj), is esti-

mated using a five-bin histogram. The histogram bins are

produced for every classifier by using four shifts of the

decision boundary in Fig. 2. This is illustrated in Fig. 4

for the the text-vs-nontext classifier. In this case, the his-

togram bin containing the origin represents documents

that are very probable to be text documents. Going from

the innermost bin to the outermost bin, the probability of

text diminishes, and the probability of nontext increases.

Fig. 3 a Our proposed classifier for the classes from [1]. b Our proposed classifier with the additional halftone classification node developed in [18]
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Fig. 4 Decision boundaries for the soft text-vs-nontext classifier

The innermost bin boundary is chosen to minimize the

following number: (number of training text documents

inside the innermost bin) - 10·(number of training nontext

documents inside the innermost bin). This is illustrated in

Fig. 5. The first term in this objective function reflects the

fact that we would like the innermost bin to characterize

text documents. The second term reflects the fact that we

are willing to tolerate a relatively small number of outlier

nontext documents inside the innermost bin.

Fig. 5 Scatter plot of two features used in the text-vs-nontext

classification for the color originals in the training suite. Blue O’s

represent text documents, and red X’s represent nontext documents

Similarly, the outermost bin boundary is chosen to min-

imize the following number: (number of training nontext

documents in the outermost bin) - 10·(number of train-

ing text documents in the outermost bin). To obtain the

remaining three bins, the distance between the inner-

most and outermost bin boundaries is then partitioned

into three equal parts along each feature axis. The likeli-

hood P(�x1|cj) of each class cj for any feature vector �x1 at

the text-vs-nontext node is estimated as the value of the

histogram bin which �x1 belongs to. Similar histogram con-

struction and likelihood estimation procedures are used

for the other three soft classification nodes.

To classify a document, we employ a modified maxi-

mum likelihood decision rule, constructed so as to bias

the decision towards the safe “mix” classification. Given

a document to classify, we extract the features, perform

the mono-vs-color classification, and estimate the class

likelihoods P(�xi|cj) at the four soft classification nodes

i = 1, 2, 3, 4. We then combine these estimates via Eq. (1)

to estimate the overall class likelihoods P(�X|cj). We clas-

sify the document as class j∗ if both following conditions

hold:

P̂(�X|cj∗) > P̂(�X|cj)for all j �= j∗, (2)

P̂(�X|cj∗)
∑M

j=1 P̂(�X|cj)
> T , (3)

where T is a threshold parameter. In our experiments,

T = 0.85.2 The first equation corresponds to the standard

maximum likelihood classification. The second equation

ensures that if there is no clear winner among the differ-

ent classes, we do not declare a winner. Instead, if Eq. (3)

does not hold, we default to the safe mix class. In this

case for the classifier in Fig. 3b, if the maximum likelihood

class is one of the periodic halftone modes, we classify the

document as mix-p; otherwise, we classify it as mix-s.

3 Feature extraction
In this section, we describe all the features used in the

four classifier nodes. These nodes use seven features: the

mono-vs-color, photo-vs-mix-vs-picture, and periodic-

vs-stochastic nodes use one feature each, and the text-

vs-nontext and picture/photo-vs-mix/text nodes use two

features each. Of these seven features, three are new to

this work, three are taken from [1], and one is taken from

[18]. We work with the same NIQ color space as [1].

3.1 Text vs. nontext classifier

Two features, luminance variability score and histogram

flatness score, are utilized to distinguish text documents

from nontext documents. We first describe the luminance

variability score. We define a text edge as five consecu-

tive pixels p0, p1, p2, p3, and p4, in horizontal direction,

satisfying the following conditions:
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• N(p1), N(p2), N(p3) are monotonically increasing or

monotonically decreasing,
• |N(p1) − N(p3)| > T1,
• |N(p0) − N(p1)| < T2 and |N(p3) − N(p4)| < T2,

where N(pi) represents the luminance intensity of pi, and

T1 and T2 are predefined thresholds. An image block is

called a nontext block if there are no text edges in it. To

compute the luminance variability score, a test image is

partitioned into 8 × 8 blocks and the mean of each non-

text block is calculated. We build a 256-bin histogram of

nontext block means over the test image. Luminance vari-

ability score is then defined as the number of bins whose

values are greater than a predefined threshold η.

The definition of the luminance variability score is

similar to the corresponding feature in [1]; importantly,

however, it avoids any vertical computations which is sig-

nificant for low-complexity hardware implementations.

The second feature, histogram flatness score, is identical

to [1], and uses the fact that the histogram for a typical text

region has peaks that are more narrow and tall than the

peaks in a typical picture or photo histogram. To compute

this feature, we partition an image into 8 × 64 blocks and

calculate a 64-bin luminance histogram for each block.

The k-span of a histogram is defined as the largest num-

ber of consecutive bins in the histogram whose values

exceed k. The k-span of an image is then defined as the

maximum value over all blocks. For each image, we form

a n-dimensional feature vector consisting of n different

k-spans, for n different values of k. We use n = 10 and

k = 15, 30, . . . , 150 as suggested by [1]. Given a fea-

ture vector x, the histogram flatness score is defined as

(mnontext −mtext)
T�−1

F x, where m̂nontext and m̂text are the

estimated mean vector for the two classes; and �̂F is the

estimated common covariance matrix.

3.2 Text/mix vs. picture/photo classifier

There are two main differences between text/mix and pic-

ture/photo documents: (1) pictures and photos contain

no text; (2) pictures and photos contain natural scenes.

These two properties are exploited by the two features,

the text edge score and the unnaturalness score, that

we designed for distinguishing text/mix documents from

picture/photo documents.

To describe the text edge score, we first define a halftone

noise triplet as three consecutive pixels p0, p1, and p2, in

horizontal direction, satisfying the following conditions:

• [N(p0) − N(p1)]×[N(p1) − N(p2)]< 0,
• |N(p0) − N(p1)| > T3 and |N(p1) − N(p2)| > T3,

where T3 is a predefined threshold. An image is parti-

tioned into 64 × 64 blocks. For each block, we count the

number of text edges (defined in the previous subsection)

and the number of halftone noise triplets. Since halftone

noise generally causes false text edge detection, we define

text edge score of a block as the number of text edges

minus the number of halftone noise triplets. The text edge

score for an image is then defined as the maximum text

edge score among all blocks.

The second feature, unnaturalness score, of this classi-

fier is identical to [1]. To compute it, we reuse the 256-bin

histogram of 8 × 8 nontext block means over the image

defined in Subsection 3.1. We calculate the number of

nonzero bins for the histogram; furthermore, we calcu-

late the k-spans for three different k: M/8, M/4, M/2,

where M is the maximum of the histogram over its 230

bins. These values form a feature vector. Given a feature

vector y, we define the unnaturalness score as follows:

U = (m̂text/mix − m̂pic/photo)
T�̂−1

U y, where m̂pic/photo

and m̂text/mix are the estimated mean vectors for the two

classes, and �̂U is the estimated common covariance

matrix.

3.3 Picture vs. photo classifier

A picture is a halftone image; on the other hand, a photo is

a continuous-tone image.We observe that smooth regions

near midtone are most affected by the halftone noise.

Therefore, we use these regions to distinguish between a

picture and a photo.

The feature used for picture-vs-photo classifier in our

algorithm is obtained from the one in [1] by removing all

vertical computations. We partition an image into 8 × 8

blocks and measure each block b’s noise level in the lumi-

nance channel. We define a block b’s roughness γN (b) as

follows:

γN (b) =

{
∑

(i,j)

|N(i) − N(j)| if |N̄(b) − 128| < φ,

∞ otherwise.
(4)

Where the summation is over all possible pairs (i, j) of

horizontal neighboring pixels inside the block b, N̄(b) is

the average luminance intensity of all pixels inside the

block b, and φ is a predefined threshold. The roughness of

the image γimage is defined as the minimum γ (b) over all

its blocks.

3.4 Neutral vs. color classifier

We use the feature for the neutral-vs-color classifier from

[1]. We define the colorfulness, C(p), of a pixel p as

follows:

C(p) = |I(p) − 128| + |Q(p) − 128|. (5)

An image is divided into 32 × 32 blocks. The colorful-

ness, C(b), of a block, b, is then defined as the sum of

C(p) over all the pixels that in block b. The colorfulness,

Cimage, of the image is defined as the maximum among all

blocks b. An image is classified as color if Cimage is larger
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than a predetermined threshold; otherwise it is classified

as neutral.

3.5 Periodic halftone classifier

We partition the image into 32 × 32 blocks. For each

32 × 32 block, we examine every inner pixel, pinner , of

the block. We compare the luminance of pinner , N(pinner),

with luminance values of its four neighbor pixels: N(pleft),

N(pright), N(ptop), and N(pbottom). If N(pinner) is smaller

than any three of the four luminance values from its neigh-

bors, we replace N(pinner) with zero. On the other hand,

if N(pinner) is larger than any three of the four luminance

values from its neighbors, we replace N(pinner) with 255.

We let beh(x, y) denote the halftone-enhanced result of

processing a block b with this procedure where (x, y) is

the block coordinate. In addition, we let Beh(u, v) be the

discrete Fourier transform (DFT) of beh(x, y):

Beh(u, v) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

beh(x, y)e
−j2π(ux/M+vy/N), (6)

whereM = N = 32 in our case.

We define region R of the support of |Beh(u, v)| as the
union of the following two areas:

• Upper-left: u = (0, 1, . . . , 10) and v = (0, 1, . . . , 10),
• Upper-right: u = (21, 22, . . . , 31) and

v = (0, 1, . . . , 10).

We let NR denote the number of points in the region

R. Note that the the region R excludes the low frequency

components region which generally has large coefficients.

In our experiments, NR = 11 × 11 × 2 = 242. We define

Bmean and Bmax as the average andmaximum of |Beh(u, v)|
over region R.

We create a global histogram with NR bins, one bin for

every location (u, v) in region R. The value hist(u, v) is the

number of large maxima of |Beh(u, v)| at frequency (u, v)

over the 32 × 32 image blocks. The precise definition of

hist(u, v) is given in the pseudocode of Fig. 6.

The feature value of the periodic halftone detector is

defined as the maximum value over all the bins of the

histogram.

Fig. 6 Pseudocode for building the histogram of largemaxima of |Beh|

4 Experimental results
In terms of memory and time complexity, our approach

outperforms [1]. While the text edge and roughness fea-

tures in [1] require having two strips of data in memory,

there is only one strip needed in our algorithm—a 50 %

reduction in memory requirements. In addition, since

we remove the vertical computations, we also reduce the

running time. The average running time per image is

approximately 0.268 seconds on an Intel(R) Core(TM)

i7-4770 3.40 GHz desktop for the algorithm of Fig. 3a,

using our proposed features. The average running time

per image on the same machine for the algorithm of [1]

is 0.331 s. Thus, despite the new classification strategy

being somewhat more computationally complex than the

sequential strategy of [1], our new features reduce compu-

tation so much that the overall result is about 23 % savings

in running time. The average running time and the mem-

ory requirement for [1] and this work are summarized in

Table 2.

To analyze the classification accuracy of our method, we

use the same data set fromHewlett-Packard (HP) as in [1].

The data was carefully selected by HP engineers to include

a wide variety of difficult-to-classify scenarios. The entire

image database is randomly divided into two equally sized

sets, one used for training and the other for testing. All

decision parameters are trained using the training set,

while all the experimental results are obtained using the

test set. These results are summarized in Tables 3, 4, and 5.

Each entry in the tables represents the empirical condi-

tional probability P (classification result | ground truth)

for the test data set. These tables allow us to separately dis-

cuss the contributions to the overall performance of our

proposed new features and of our proposed new overall

classification strategy.

In Table 3, we give the classification rates, in percent,

for the hard-decision tree classifier of [1] and Fig. 1a. Each

entry in the table is of the form “A/B” where A is the clas-

sification rate using the features proposed in the present

paper, and B is the classification rate using the features

from [1].

We observe that the features proposed in the present

paper cause a reduction of the classification accura-

cies for text, mix, and photo documents. This is due

to the fact that our features avoid vertical computa-

tions while the ones in [1] do not. However, thanks to

our design of halftone noise triplets3, our new features

Table 2 The average running time and the memory requirement

for [1] and this work

Method Average running time Memory requirement

The proposed 0.268 s one strip

[1] 0.331 s two strips
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Table 3 Classification rates for the test data set, using the hard-decision tree classifier of Fig. 1a [1]

Ground truth Classification rates, %

color-text color-mix color-picture color-photo mono-text mono-mix mono-picture mono-photo

color-text 58/60 42/40 -/- 1/- -/- -/- -/- -/-

color-mix -/1 98/98 2/1 -/- -/- -/- -/- -/-

color-picture -/- 61/58 39/38 -/3 -/- -/- 1/1 -/-

color-photo -/- 42/36 -/- 58/64 -/- -/- -/- -/-

mono-text 13/14 9/6 -/- -/- 56/65 23/15 -/- -/-

mono-mix -/- 9/5 -/- -/- 3/1 86/89 1/5 -/-

mono-picture -/- 5/6 6/1 -/- -/- 40/63 49/30 -/-

mono-photo -/- 4/5 -/- 2/1 -/- 42/26 -/2 58/66

Each entry in the table is “A/B” where A and B are the classification percentages, respectively, for the feature set proposed in the present paper and for the feature set

obtained from [1]

improve the correct classification rates of picture doc-

uments. Specifically, features from [1] have 2, 6, 9, 3,

and 8 % higher classification accuracies for color-text,

color-photo, mono-text, mono-mix, and mono-photo,

respectively; while our proposed features have the cor-

rect classification gain of 1 and 19 % for color-picture and

mono-picture, respectively.

In Table 4, we present the classification results for our

proposed hard/soft classification strategy of Fig. 3a. These

are compared to the hard-decision tree classifier of Fig. 1a

and [1], applied to the features described in the present

paper. Two experimental results are shown in each entry

of the tables using the format“A/B", where A is the clas-

sification percentage using the hybrid hard/soft classifier

proposed in this paper, and B is the classification percent-

age for the hard-decision tree classifier.

We observe that, at the expense of a very slight reduc-

tion in the correct classification rate for color-mix images,

our new classification strategy results in significant

improvements of the correct classification rates of photo

and mono-text documents. Specifically, the hard decision

method has 2 % correct classification gain for color-mix,

while the proposed hybrid hard/soft method has 6, 6, and

22 % gains for color-photo, mono-text, and mono-photo,

respectively.

To compare the overall performance of our new clas-

sifier (i.e., the new features and the new classification

strategy) to that of the classifier in [1], we can compare

the first number in each cell of Table 4 with the second

number in the corresponding cell of Table 3. Six out of the

eight correct classification rate numbers are very similar

between the two algorithms. The two numbers that are

more than three percentage points apart are the correct

classification rates for mono-picture andmono-photo: the

former is 49 % for our algorithm and 30 % for the algo-

rithm in [1], and the latter is 80 % for our algorithm and

66 % for the algorithm in [1].

Figure 7 shows two mono-photo images that were mis-

classified by the hard decision method, but correctly clas-

sified by our proposed hybrid hard/soft decision method.

Table 4 Classification rates for the test data set, using the proposed features

Ground truth Classification rates, %

color-text color-mix clor-picture color-photo mono-text mono-mix mono-picture mono-photo

color-text 58/58 42/42 -/- -/- -/- -/- -/- -/-

color-mix -/- 96/98 2/2 2/- -/- -/- -/- -/-

color-picture -/- 61/61 39/39 -/- -/- -/- 1/1 -/-

color-photo -/- 36/42 -/- 64/58 -/- -/- -/- -/-

mono-text 13/13 9/9 -/- -/- 62/56 16/23 -/- -/-

mono-mix -/- 9/9 -/- -/- 1/3 86/86 3/1 -/-

mono-picture -/- 5/5 6/6 -/- -/- 40/40 49/49 -/-

mono-photo -/- 4/4 -/- 2/2 -/- 14/42 -/- 80/58

Each entry in the table is “A/B” where A and B are the classification percentages, respectively, for the proposed classifier of Fig. 3a and for the hard-decision tree classifier of

Fig. 1a, both used with the feature set proposed in the present paper
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Fig. 7 Two examples (a, b) that were misclassified by the hard decision classifier, but classified correctly by the hybrid hard/soft decision method

The hard decision classifier misclassifies them as mix

early on in the decision tree (see Fig. 1) and does not

even get to compute the roughness feature score which

greatly differs between mono-photo and the other mono

originals. On the other hand, the hybrid hard/soft deci-

sion method keeps these images from being misclassified

since the roughness feature score is considered simul-

taneously with the other features in the classification

process.

The classification results that include the periodic-vs-

stochastic classification, are presented in Table 5, for both

the hard-decision classifier of Fig. 1b and the hard/soft-

decision classifier of Fig. 3b. Observe that our periodic

halftone detector works without error for almost every

mode. A notable exception is the text mode. Several peri-

odic halftone text documents contain very limited peri-

odic halftone regions as illustrated in Fig. 8, and hence

our algorithm misclassifies them as stochastic halftone

documents. The overall accuracy of our halftone classi-

fier on the test suite is 97 %. The halftone classifier, in its

current form, is computationally heavy compared to the

rest of the algorithm.With the halftone classification node

added, the average per-image processing time increases

from 0.268 to 0.963 s on an Intel(R) Core(TM) i7-4770

3.40 GHz desktop.

The color-vs-mono classification task has been

addressed in numerous patents many of which use

ideas similar to ours [20–39]. As we mention in [1], the

mixed raster content (MRC) model [40] could be used to

improve our text-vs-nontext classifier as the expense of

prohibitive complexity. Similarly unaffordable complexity

would accompany improvements to our text/mix-vs-

picture/photo classifier based on, for example, [41].

Halftone detection techniques that may be used for

separating pictures from photos [42–46] are discussed in

[1]. Those of them that have low enough complexity to be

Table 5 Classification rates for the test data set, using the proposed features

Ground truth Classification rates, %

color- color- color- color- color- color- color- mono- mono- mono- mono- mono- mono- mono-

text-p text-s mix-p mix-s pic-p pic-s photo-s text-p text-s mix-p mix-s pic-p pic-s photo-s

color-text-p 35/35 21/19 39/39 6/8 - -/- -/- -/- -/- -/- -/- -/- -/- -/-

color-text-s -/- 63/61 -/- 37/39 -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-

color-mix-p -/- -/- 97/97 -/- 3/3 -/- -/- -/- -/- -/- -/- -/- -/- -/-

color-mix-s -/- -/- -/- 92/100 -/- 3/- 5/- -/- -/- -/- -/- -/- -/- -/-

color-pic-p -/- -/- 51/51 -/- 46/46 -/- -/- -/- -/- -/- -/- 3/3 -/- -/-

color-pic-s -/- -/- -/- 56/64 -/- 44/36 -/- -/- -/- -/- -/- -/- -/- -/-

color-photo-s -/- -/- -/- 30/42 -/- -/- 70/58 -/- -/- -/- -/- -/- -/- -/-

mono-text-p -/- -/- 8/8 -/- -/- -/- -/- 50/42 21/17 8/17 13/17 -/- -/- -/-

mono-text-s -/- 23/18 -/- 5/10 -/- -/- -/- -/- 68/55 -/- 5/18 -/- -/- -/-

mono-mix-p -/- -/- 8/8 -/- -/- -/- -/- 2/5 -/- 85/85 -/- 5/2 -/- -/-

mono-mix-s -/- -/- -/- 11/11 -/- -/- -/- -/- 5/- -/- 84/89 -/- -/- -/-

mono-pic-p -/- -/- 3/3 -/- 6/6 -/- -/- -/- -/- 40/40 -/- 51/51 -/- -/-

mono-pic-s -/- 2/- -/- 7/9 -/- 5/5 -/- -/- 2/- -/- 37/41 -/- 47/45 -/-

mono-photo-s -/- -/- -/- 4/4 -/- -/- 2/2 -/- -/- -/- 6/42 -/- -/- 88/52

Each entry in the table is “A/B” where A and B are the classification percentages, respectively, for the proposed classifier of Fig. 3b and for the hard-decision tree classifier of

Fig. 1b, both used with the feature set proposed in the present paper
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Fig. 8 a An example of text document that contains very limited periodic halftone region. b Zoomed-in version of the periodic region of a

appropriate for our application, are outperformed by our

method, as shown in [1].

There is also a vast amount of literature on construct-

ing classifiers [8–17]. There exist a myriad methods to

partition our multidimensional feature space into several

classification regions. In designing the overall structure of

our algorithm, there were two things we were striving for,

besides low complexity and high accuracy:

• Small number of parameters, in order to avoid

overfitting.
• Structural simplicity, so that the algorithm is easy to

understand and implement. This is greatly helped by

the modular structure of the algorithm where each

module only involves one or two features and is

mainly responsible for the classification into two or

three subclasses.

Interestingly, despite the relative simplicity of our algo-

rithm, both conceptual and computational, at the same

time it is able to produce very complex decision bound-

aries, as illustrated by Fig. 9. This figure shows a 3D

scatter plot of three features (luminance variability score,

text edge score, and unnaturalness score) for the images

that our algorithms classifies as mix (red X’s) and for the

images that our algorithm classifies as non-mix (blue O’s).

5 Conclusions
In this paper, we have presented an algorithm to auto-

matically classify documents into a set of categories. This

algorithm could be used as a copy mode selector uti-

lized to improve the copy quality and increase the copy

rate. Our method retains some of the features of the

method in [1], but both extends the number of classes to

identify periodic halftone and includes several important

modifications both in the feature extraction stage and in

the classification strategy. As compared to [1], the classi-

fication rate is improved by up to 22 % while the running

time and memory requirements are saved for 18 and 50 %,

respectively.

Endnotes
1All running times in this paragraph are for classifica-

tions that use the feature set developed in the present

paper.
2This value of T makes Eq. (2) redundant, as it then

follows from Eq. (3).
3Halftone noise triplets are used to alleviate false text

edge detection from halftone noise.

Fig. 9 The 3D scatter plot of three features for the images classified

as mix (red X’s) and as non-mix blue O’s. The three features used in the

plot are the luminance variability score, the text edge score, and the

unnaturalness score
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