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Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling

functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those

produced by insertional mutagenesis, but systematic cataloguing of mutations would further increase their utility. We examined the

suitability of multiplexed global exome capture and sequencing coupled with custom-developed bioinformatics tools to identify

mutations in well-characterized mutant populations of rice (Oryza sativa) and wheat (Triticum aestivum). In rice, we identified;18,000

induced mutations from 72 independent M2 individuals. Functional evaluation indicated the recovery of potentially deleterious

mutations for >2600 genes. We further observed that specific sequence and cytosine methylation patterns surrounding the targeted

guanine residues strongly affect their probability to be alkylated by ethyl methanesulfonate. Application of these methods to six

independent M2 lines of tetraploid wheat demonstrated that our bioinformatics pipeline is applicable to polyploids. In conclusion, we

provide a method for developing large-scale induced mutation resources with relatively small investments that is applicable to

resource-poor organisms. Furthermore, our results demonstrate that large libraries of sequencedmutations can be readily generated,

providing enhanced opportunities to study gene function and assess the effect of sequence and chromatin context on mutations.

INTRODUCTION

Phenotypic characterization across individuals in a heterogeneous

population provides a powerful approach to understanding gene

function. Populations of induced mutants are useful because their

genetic variation is typically superimposed on an otherwise uni-

form genetic background. For example, when seed of an inbred

plant variety is mutagenized, each individual in the population

carries lesions that are characteristics of the mutagen type. Alky-

lating agents such as ethyl methanesulfonate (EMS) act prefer-

entially on guanine residues inducing 2 to 10 mutations/Mb of

diploid DNA (Till et al., 2007). The effect of these mutations is

predictable: Knockout and missense alleles occur at known fre-

quencies and populations of a few thousand individuals enable

searches targeted to specific genes (Greene et al., 2003). This

approach, called targeting-induced local lesions in genomes

(TILLING), has gained popularity because it enables functional

genomic studies in species that have traditionally been refractory

or undeveloped from a genomic point of view (McCallum et al.,

2000; Wang et al., 2012). Once mutations are identified in a spe-

cific gene of interest, researchers can acquire seeds representing

the next generation and investigate their phenotypic con-

sequences. For heterozygous mutations, this first involves

screening sufficient M3 individuals to recover the mutation, pref-

erably in the homozygous state. Of course, each individual is ex-

pected to carry multiple mutations. An approach combining

analysis of several lines carrying independent mutations in the

same gene and repeated backcrosses to “clean” each line of

background mutations is required before conclusions can be

reached as to the actual link between phenotype and mutation

genotype. Traditionally, TILLING has been performed by scanning

amplicons derived from genes of interest, requiring an ad hoc in-

vestment of time and resources for each search, which is limited to
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those gene regions (Comai and Henikoff, 2006). A faster strategy

entails the genome-wide discovery and archiving of mutations

from a population of individuals, resulting in a searchable database

that, depending on the species, could achieve near saturation.

This strategy involves a considerable investment initially but results

in a long term resource available to all researchers.

Notwithstanding the decreasing cost of sequencing, se-

quencing the whole genome of thousands of individuals remains

expensive, particularly in species with large genomes (e.g.,

wheat). Sequence capture provides the means to restrict se-

quencing to the coding part of the genome, i.e., the exome. It

has been demonstrated to be effective in animal and plant

genomes and could constitute a powerful tool for mutation

discovery when applied to mutagenized populations (Ng et al.,

2009; Ng et al., 2010; Bolon et al., 2011). A limitation to its

adoption is the cost of each capture, which can offset the ad-

vantage of reduced sequencing cost in species with small ge-

nomes. Increased efficiency by multiplexing at the level of the

capture reaction and the sequencing has been demonstrated on

human and mouse genomes (Harakalova et al., 2011; Ramos

et al., 2012; Sun et al., 2012) and could constitute an excellent

alternative to current functional genomics approaches.

To test this possibility, we designed of a set of exome capture

targets for the rice (Oryza sativa) genome and applied it to DNA

from EMS-mutagenized individuals. We also used a recently de-

veloped exome capture platform to capture DNA from mutants of

tetraploid wheat (Triticum aestivum; Uauy et al., 2009) and test our

approach in a polyploid plant species. Mutagenized populations

of rice have been extensively and successfully used in the past

and recently, both in forward and reverse genetics approaches

(Abe et al., 2012; Nordström et al., 2013; Wang et al., 2013). We

chose the rice population developed by Till et al. (2007) and the

wheat population developed by Uauy et al. (2009) because they

have been extensively characterized, both in terms of mutation

rate and types of mutations observed and thus make for excellent

systems to provide a proof-of-concept of this approach. We also

performed exome capture on a few cultivated rice varieties and

African rice (Oryza glaberrima), a closely related species, in order

to be able to assess capture efficiency on polymorphic se-

quences. We describe a wealth of induced variation discovered in

72 EMS-mutagenized rice individuals and describe their location

and potential effect on gene function. We used the same bio-

informatics pipeline to characterize EMS-induced mutations in

tetraploid wheat, thus showing that it is also applicable to poly-

ploid species. This study demonstrates that exome capture of

TILLING mutants is an efficient means for large-scale mutation

discovery and that a useful long-term resource can be built for

a relatively small investment. Furthermore, the discovery of thou-

sands of mutations in the well characterized genome of rice provides

an opportunity to assess the effect of sequence and methylation

context on mutagenesis using EMS.

RESULTS

We tested the suitability of exome capture as a method to

rapidly and extensively describe the types and frequency of

mutations present in EMS-mutagenized rice and wheat plants.

The targeted exon space in rice was selected using the following

criteria: All genes were represented, and from each gene, the

exons containing the highest potential for the induction of

a deleterious mutation by EMS were given priority (see Meth-

ods). These targets were then arrayed into overlapping capture

probes by Nimblegen, resulting in target regions that covered

;39 Mb. These capture reagents were used for mutation dis-

covery in a population of EMS-mutagenized rice plants (O. sativa

ssp japonica cv Nipponbare). Briefly, M2 generation plants were

selected (Figure 1), genomic DNA was extracted from leaf tissue,

and genomic sequencing libraries were produced from each

individual (see Methods). To test the effect of multiplexing, i.e.,

performing the capture hybridization on pools of samples rather

than single samples, equimolar amounts of DNA from 10 to 32

libraries were pooled and subjected to exome capture using our

custom NimbelGen SeqCap Ez rice exome probes in a liquid

capture format (see Methods). Amplified postcapture DNA was

quantified and sequenced on an Illumina HiSeq apparatus (see

Methods and Table 1 for details). Reads were processed using

Figure 1. Production and Analysis of the EMS-Mutagenized Rice

Samples.

Independent M2 mutant individuals were produced by EMS treatment of

seeds followed by selfing of the M1 individuals. Indexed genomic li-

braries were produced independently from each M2 plant and pooled (up

to 32 plants per pool) prior to sequence capture. Captured sequences

were submitted for Illumina sequencing. Sequencing reads were as-

signed to specific M2 individual based on their index sequence. Mutation

detection and estimation of mutation density were performed for each

M2 individual.
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custom Python scripts for mutation detection as well as to as-

sess the efficiency of exome capture and describe the broader

genomic context of the mutations recovered (see Methods). We

performed a total of five capture experiments but the first one

(capture 1) failed at the sequencing level. Data from capture 1

are therefore not included in this report.

In wheat, we used an available capture platform (120426_Wheat_

WEC_D02) that includes a probe set covering 107 Mb of hexa-

ploid wheat gene regions available from Roche NimbleGen

(http://www.nimblegen.com/products/seqcap/ez/designs/).

We performed a single capture experiment including six M2

TILLING mutants and the respective parental wild-type line of

tetraploid wheat species Triticum turgidum subsp durum cv

Kronos (Uauy et al., 2009). Mutations were processed with the

same bioinformatics pipeline designed for rice to validate its

usefulness in a polyploid plant species. The wheat platform was

designed to include a single sequence per homoeologous copy

but is expected to capture different homoeologous copies of the

same gene in hexaploid wheat (2 to 4% divergence) with similar

efficiency.

Efficiency of Capture Targeting

Given the lack of a genomic reference for wheat, we opted to

focus on our rice samples for this first set of analyses. We first

assessed the overall trend in read coverage across and outside

the targeted space by examining variation in coverage across

each target tile and its flanking sequence (Figure 2). As expected,

coverage dropped rapidly outside of the target regions, attesting

to the specificity of the exon capture. Specifically, we observed

that in ;200 bp upstream or downstream of the target se-

quences, coverage dropped to;10% of the value across the tile.

Next, mean coverage was calculated for the regions covered

by the target probes and all other regions. Coverage on and off

target regions varied between libraries depending on sequencing

depths but targeted sequences on average benefited from a

much higher coverage than positions outside of the targeted

sequences. The fold increase was capture dependent, with

means varying from 2.7 to 22.9 for captures 3 and 5, respectively

(Table 1; Supplemental Figure 1). This capture-specific trend

suggests that capture efficiency was highly dependent on the

experimental conditions used for the capture reactions. Possible

sources of variation between our capture reactions include slight

variations in temperature and times of hybridization, amount of

total DNA present in each capture, and storage time of the cap-

ture reagents. This variation highlights the need for validation of

the efficiency of enrichment using either quantitative PCR or low

coverage sequencing prior to the final full-scale sequencing.

Consistency of the capture reactions across samples was

assessed by correlating read coverage per captured target se-

quence, on a pairwise basis (Supplemental Figure 2). Samples

that were pooled in the same capture were the most consistent,

with mean associated regression R2 values >0.84; by contrast,

regression R2 values for samples that were processed in dif-

ferent capture reactions were significantly lower (mean of 0.71).

As expected, samples from different genotypes also exhibited

less consistent capture targeting (mean regression R2 value of

0.71), presumably because the sequence polymorphisms pres-

ent in these genotypes affected the capture of specific se-

quences or the mapping of the sequencing reads onto the

Nipponbare reference sequence (Supplemental Figure 2). Con-

sistent with this, samples that were processed in different cap-

ture reactions and that originated from a different genotype

exhibited the least consistent capture efficiency although the

mean pairwise regression R2 value was still as high as 0.67

(Supplemental Figure 2).

To evaluate whether we had obtained sufficient reads for

mutation detection, we assessed the percentage of the target

Table 1. Summary of Mutations and Coverage Obtained for the EMS-Mutagenized Individuals in Each Capture Reaction

Capture Name 2 3 4 5 Wheat

EMS 20 10 14 28 6

EMS seed contaminant 0 0 0 2 0

No read obtained 0 0 0 2 0

Control 0 0 0 1 1

Genotype 0 0 8 0 0

Total 20 10 22 32 7

Percentage of base pairs on target 64.5 6 2.3 72.6 6 0.6 57.3 6 0.4 24.1 6 0.6 49.1 6 1.2

Mean no. of reads (million) 12.1 6 7.8 16.2 6 3.0 3.9 6 1.3 11.2 6 3.1 33.0 6 5.2

Sequencing lanesa 1 1 0.5 1 1

Fold increase coverage on versus off targeted regions 15.8 6 1.6 22.9 6 0.7 11.6 6 0.2 2.7 6 0.1 n/a

Mean no. of mutations/individual 246 6 176 316 6 378 70 6 59 508 6 361 1178 6 187b

Mean no. of het. mut./Mb 3.9 6 2.9 4.6 6 5.1 5.0 6 4.1 5.8 6 3.5 16.9

Mean no. of hom. mut./Mb 2.0 6 0.8 2.5 6 2.8 1.7 6 0.9 3.1 6 1.8 3.2

Overall mutation rate (no. of mut./Mb) 5.9 6 3.4 7.0 6 7.8 6.7 6 4.5 8.9 6 5.2 20.1

Percentage of deleterious mutations 18.4 6 2.5 19.4 6 3.6 21.3 6 6.2 11.7 6 3.0 n/a

All statistics are calculated per sample and averaged per capture reaction. Mean standard deviations are indicated. Control nonmutagenized samples,

genotypes, and individuals suspected to be seed contaminants are not included in the statistics (see Methods). n/a, not available.
a100 PE HiSeq 2000 sequencing lane.
bThe average number of mutations per wheat lines was calculated at a minimum mutant allele coverage of 4 for heterozygous mutations and a minimum

mutant allele coverage of 7 for heterozygous mutations (adjusted for 3% false positive rate, based on the Kronos control sample).
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sequence that was covered in each of the samples (Figure 3).

Specifically, we determined the percentage of targeted sequence

covered sufficiently for the detection of homozygous and het-

erozygous mutations (see below for a description of coverage

thresholds). For the rice samples, percentages were extremely

variable (from 0 to ;90%) depending on the number of se-

quencing reads obtained (Figure 3). These results confirmed that

capture efficiency was low for capture 5 and that it affected more

markedly the detection of heterozygous mutations. Based on;39

Mb of targeted space and assuming efficient capture reactions,

we concluded that a minimum of 20 million reads should be ob-

tained from each sample to achieve adequate coverage on most

of the targeted regions. None of the samples exhibited coverage

over the full targeted space, irrespective of coverage or capture

efficiency (Figure 3; values never reach 100%). Possible causes

for this include errors in the reference genome sequence, poor

read mapping (for repeated regions, for example), or biased am-

plification or sequencing of genomic DNA. GC content is known

to affect PCR amplification efficiency (Strien et al., 2013). Con-

sistent with such bias in our data (Supplemental Figure 3), target

regions with an overall GC content higher than 60% or lower than

30% exhibited a significantly lower coverage. This bias may be

addressed by avoiding these regions when designing the target

regions or, alternatively, by using DNA polymerases and protocols

designed for PCR amplification with higher tolerance for extreme

GC content (Strien et al., 2013).

Finally, we assessed whether multiplexing samples in the

same capture reaction was detrimental to the efficiency of

capture or the detection of downstream mutations. Specifically,

it is possible that too few DNA fragments are contributed from

each library, resulting in low complexity sequencing reads. We

did not detect any evidence from our data that multiplexing was

detrimental, even in capture 4, which contained a pool of 30

individuals (Supplemental Figure 4).

Mutation Discovery

To identify mutations and determine mutation rates in our EMS-

mutagenized samples, we performed mutation discovery using

our bioinformatics pipeline called MAPS (mutations and poly-

morphisms surveyor; see Methods for details). In brief, samples

that were processed in the same capture and therefore se-

quenced together were also processed together though MAPS.

The main principle of MAPS is that each sample serves as

a control for all others. In other words, a mutation is identified as

such if it can only be found in one of the samples. This criterion

is particularly critical when analyzing polyploid species, as it

prevents polymorphisms between homoeologous chromo-

somes to be mislabeled as potential mutations since they are

present in all samples. A second advantage of MAPS is the

flexibility it offers in terms of threshold parameters for mutation

detection (Figure 4). Indeed, optimal parameters for mutation

detection can change depending on data quality, efficiency of

capture, sample type and the specific goal of the experiment.

Here, we used two independent strategies to estimate how often

mutations were called erroneously (false positive mutations).

First, assuming that all mutations detected in the wild-type

samples are false positives, we could estimate the percentage of

false positive mutations by dividing the number of mutations

found in the control sample by the number of mutations found in

the EMS-mutagenized samples. Second, EMS preferentially al-

kylates G residues, inducing preponderantly C-to-T and G-to-A

transitions (CG > TA; Greene et al., 2003; Till et al., 2007; Tsai

et al., 2011; Monson-Miller et al., 2012). The percentage of CG > TA

mutations is thus also indicative of the robustness of our method.

These two approaches were used to select optimal parameters to

ensure the best balance between number of mutations de-

tected and the percentage of false positives observed (Figure

4). Specific final parameters for mutation detection are detailed

in Methods.

In rice, the numbers of false positive mutations detected using

the Nipponbare control sample were very low, irrespective of the

threshold coverage used (Figure 4B). Using varying mutant allele

coverage thresholds for mutation discovery (MAPS; see Meth-

ods) resulted in increasing percentages of CG > TA transitions.

We therefore set the threshold coverage values such that at

least 70% of the recovered mutations were CG > TA transitions,

in order to reach a compromise between the level of potential

false positives and the number of actual mutations recovered.

These thresholds corresponded to coverage thresholds of at

least 3 for homozygous mutations and at least 4 for heterozy-

gous mutations (Figure 4A). Using these thresholds, most (88%)

of the point mutations identified in our rice screen belong to the

expected CG > TA categories (Figure 4A). If these thresholds

were too low, one could expect that false-positive mutations,

resulting from PCR or sequencing errors for example, could be

Figure 2. Variation in Coverage across Targeted and Flanking Regions

of the Rice Genome.

For each targeted region, the mean coverage was calculated and vari-

ation in coverage along the length of the region was plotted. Coverage

on the regions flanking the targeted region was calculated relative to that

average. Means for all target regions of a certain size were averaged. As

expected, coverage drops rapidly outside of the targeted region. We

were unable to explain the bimodal nature of the coverage curve cor-

responding to longer targets (visible in the 601 to 800 bp and even more

pronounced for the 801 to 1000 bp category). Only captures 2, 3, and 4

were used for this analysis as probe targeting was not successful for

capture 5 (<10-fold enrichment in target sequences; Table 1; Supplemental

Figure 1) and capture 1 failed at the level of sequencing.
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retained erroneously. The fact that the mean coverage level of

the CG > TA mutations was not higher than that of non CG > TA

mutations and that 30% noncanonical mutations was reported

previously for this population (Till et al., 2007) suggest that these

noncanonical transitions may be genuine. From all EMS-

mutagenized samples analyzed (n = 72), a total of 18,398 muta-

tions were identified. At these threshold levels, only three mutations

remained in the control sample.

To evaluate the applicability of the MAPS pipeline to polyploid

plant species, we applied it to the capture described above for

six mutant lines and one parental control of tetraploid wheat

(Uauy et al., 2009; Tsai et al., 2011). Because wheat is polyploid,

mutation detection is complicated by the presence of natural

polymorphisms between homoeologous sequences, possibly

resulting in higher percentage of false positives. The observed

percentage of CG > TA mutations was indeed lower unless

higher coverage thresholds were used (Figure 4A). For example,

the same thresholds as selected for rice resulted in ;55%

CG > TA for both homozygous and heterozygous mutations

(Figure 4A). All 36 mutations previously validated in the tetra-

ploid TILLING population were all CG > TA transitions (Uauy

et al., 2009; Chen et al., 2013), suggesting that EMS is poten-

tially more specific in wheat than in rice and that mutation de-

tection should aim to reach higher percentages of CG > TA.

Indeed, using a higher coverage threshold resulted in >96%

CG > TA transitions. To further confirm that higher coverage

thresholds were needed for robust mutation detection, we used

the data from our parental nonmutagenized control to obtain an

estimate of the level of true positives in our mutation sets. Rates

increased rapidly to above 90% for mutant allele coverage

threshold of 7 and 5 for heterozygous and homozygous muta-

tions, respectively (Figure 4B).

Taken together, our results confirm that mutations can be

detected in wheat using our MAPS pipeline. The number of

mutations detected varies depending on the threshold cover-

age values applied (Figure 4B). For example, using lower mu-

tant allele coverage threshold (4 and 5 for homozygous and

heterozygous mutations, respectively), the number of muta-

tions observed after adjusting for the estimated percentage of

false negatives observed in the control was on average 179 6

99 and 1251 6 483 mutations per sample for homozygous and

heterozygous mutations, respectively. Using more conserva-

tive thresholds (5 and 7 for homozygous and heterozygous

mutations respectively) generated a smaller number of more

robust mutations (140 6 83 and 812 6 300 per EMS sample

for homozygous and heterozygous mutations, respectively).

Coverage information for each mutation is available in the final

files output by MAPS, such that researchers can first focus on

the more robust mutations and investigate the others if they

elect to do so.

Mutations were categorized by MAPS as homozygous or

heterozygous based on the allele calls available although we

expect that a small proportion of the mutations labeled as

homozygous are in fact heterozygous mutations for which, by

chance, no wild-type allele was recovered. In our M2 pop-

ulations, 66% of the mutations are expected to be hetero-

zygous. In rice, we found considerably more homozygous

mutations than expected largely due to a decreased power of

detecting heterozygous mutations at lower coverage. This ratio

was closest to expected, with 53.6% 6 6.4% heterozygous

mutations for the capture 3 samples, which exhibited the highest

coverage per sample. The number of mutations recovered and

the number of positions sufficiently covered for mutation de-

tection were taken into account to derive a measure of the ho-

mozygous, heterozygous, and overall mutation rate in each of

the samples (see Methods for details). The ratio of homozygous

to heterozygous mutation rates was close to the expected 1:2

ratio (Table 1). The mean mutation rate was 4.76 3.8 mutations/

Mb for heterozygous mutations and 2.1 6 1.5 mutations/Mb for

homozygous mutations, adding up to a total mean mutation rate

of 6.8 6 4.9 mutations/Mb. The median mutation rate for the

whole population was 5.2 mutations/Mb with wide variation

between samples, ranging from 1.6 to 31.9 mutations/Mb (Fig-

ure 4C). These estimates are consistent with prior data from this

Figure 3. Percentage of the Rice Target Sequence Covered by Each Sample.

For each sample, the percentage of target sequence that was assayed for homozygous (left panel) and heterozygous (right panel) mutation detection

was calculated and the relationship between target coverage and number of 100-bp sequencing reads is shown. Each sample is represented by one

data point, and samples processed in the same capture experiment are colored similarly. For capture 5, EMS samples and samples from different

genotypes are depicted in a different color. Capture 1 failed at the sequencing level and is therefore not included in this figure.
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population based on traditional TILLING and on amplicon se-

quencing (Till et al., 2007; Tsai et al., 2011) and which generated

an estimate of ;4.0 mutations/Mb.

In wheat, the situation was opposite, with a percentage of

heterozygous mutations much higher than expected: 86% (at

threshold mutant allele coverage of 5 and 7 for homozygous and

heterozygous mutations, respectively). This is not unexpected

because the capture target sequence, which was also used as the

reference, often contains a single sequence to simultaneously

target two homoeologs. Homozygous mutations in one homoeo-

log will therefore appear heterozygous in the context of the du-

plicated genome of wheat. On the other hand, the detection of

homozygous mutations indicates that some genes are either

functionally diploid in the Kronos genome or that both homoeo-

logous copies are represented in the capture (and reference).

Because of this complication, the mutation rate in wheat cannot

be calculated directly as done for rice. By extrapolating the

numbers of true heterozygotes and estimating the fraction of the

sequence reference that acts as a pure diploid (see Methods), an

estimate of 20.1 6 0.2 mutations/Mb was obtained, consistent

with the previously reported mutation rate (Uauy et al. 2009)

Detection of Seed Contaminants

Preventing seed and pollen contamination throughout the pro-

duction of large-scale seed populations is challenging, and both

types of contaminants are often found in final populations. It is

crucial to ensure proper detection of contaminants prior to seed

dispersal for research or other purposes. In our EMS M2 pop-

ulation, seed contaminants are expected to contain no EMS-

induced mutations but can exhibit polymorphic sequences if

they contain a different cultivar among their ancestry. We used

Figure 4. Mutation Detection Using the MAPS Pipeline.

(A) Percentage of expected mutations (CG > TA) depending on varying threshold of mutant allele coverage. Data for wheat and rice are shown and

mutations are divided based on whether they were detected as homozygous (no wild-type allele detected) or heterozygous. Mutations detected in all

samples are pooled.

(B) Number of mutations detected using varying minimum threshold of mutant allele coverage in rice and wheat. The numbers of mutations obtained

from each library are averaged. The mean and standard errors are represented. In order to be able to compare mutation numbers, only samples for

which similar number of reads were obtained and originating from the same capture experiment were selected. For wheat, all six samples are rep-

resented. For rice, only samples that were run in the same capture experiment as the Nipponbare control sample (capture 5) and for which the number

of aligned reads fell within 10% of the number of aligned read obtained for the Nipponbare sample were retained (n = 5). The percentage of true positive

mutations (top data points, blue in the online version, and left y axis) was estimated by dividing the number of mutations found in the control samples

(Kronos for wheat and Nipponbare for rice) by the number of mutations found in the EMS-mutagenized samples.

(C) Distribution of observed mutation rates in the EMS-mutagenized population of rice. For each EMS-mutagenized sample, the mutation rate (total

mutations/Mb) was calculated based on the number of mutations observed and the number of base pairs sufficiently covered to be assayed for

mutations (see Methods for details). The mean and median are indicated, as well as the position of the control nonmutagenized Nipponbare sample.

[See online article for color version of this figure.]
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EMS specificity, described above, to screen our population for

potential seed contaminants by calculating the percentage of

CG > TA transition for each individual.

In our rice samples, the mean value for the population was

82% 6 9%. Two samples were clear outliers with values of 50

and 49%, suggesting that these samples were potentially seed

contaminants from a different genotype. Examination of the dis-

tribution of the mutations detected for one of these individuals

was consistent with this hypothesis as mutations tended to

cluster to specific regions of the genome, rather than be uniformly

distributed (Supplemental Figure 5). Too few mutations were

identified from the second sample to perform the same analysis.

Both samples were discarded from further analyses.

Functional Analysis of the Recovered Mutations

To assess the effect of the mutations on gene function, the

impact of each mutation was estimated with respect to the gene

models associated with the Oryza sativa germplasm ‘Nippon-

bare’ reference genome, using SnpEff (Cingolani et al., 2012).

The type of mutations and frequency categories are summarized

in Figure 5A. As expected given the strong targeting on exons,

most of the mutations were located in genic regions (;53% in

exons and ;20% in introns for a total of ;73% in genic regions).

For functional genomic analysis, complete loss-of-function

mutations are most useful. Mutations predicted to be either

nullimorphic or highly deleterious for gene function are thus

desirable. From the categories presented above, only nonsense

mutations (stop gained), splice-site loss, as well as insertions or

deletions causing frameshifts (lengths not a multiple of 3) can be

considered as most likely deleterious because they are pre-

dicted to result in truncation of the encoded polypeptide. In our

data set, we identified a total of 376 genes affected by such

mutations (23 deletions in exons, 119 splice-site loss, and 234

nonsense mutations).

The most common category of mutation obtained corre-

sponded to nonsynonymous mutations (32%), which can be

detrimental depending on the specific amino acid substitution the

mutation causes. To estimate its effect on gene function, each

mutation was assigned a SIFT (sorting intolerant from tolerant)

score (Ng and Henikoff, 2003; Sim et al., 2012). For each rice

gene, a SIFT score table was derived by comparing possible

to observed amino acid substitutions at all polypeptide positions

in related public sequences. Substitutions found in a homolog

are less likely to be detrimental. Based on the authors’ recom-

mendations (Sim et al., 2012), we considered mutations with

a SIFT score of 0.05 or lower as “deleterious.” A total of 2376

missense mutations fitting the criterion were detected (Figure 5B).

Taking mutations predicted to result in polypeptide trunca-

tions together with those predicted to result in deleterious amino

acid substitutions, we obtained 2752 potentially severe muta-

tions (15.4% of all mutations). The deleterious mutations iden-

tified in the 72 EMS mutants collectively affected 2601 genes (on

average 37 per individual). As expected for random events, the

affected genes were not enriched for any functional category

and instead reflected the general genomic categorization.

A complete list of all mutations identified in the rice EMS

samples and their functional characterization can be found in

Supplemental Data Set 2.

Mutation Validation

To validate our mutation detection pipeline, a set of 22 predicted

nonsense mutations were selected. Sequences flanking the mu-

tation sites were amplified from the samples in which the mutation

had been detected and the presence or absence of the mutant

allele was verified by Sanger sequencing. Mutations from our

initial capture experiment were selected first. Of those, 4/6

homozygous and 2/3 heterozygous mutations were confirmed.

Because our library bar-coding scheme for that capture was

confusing, it is possible that some of the samples were mis-

labeled and mutations were assigned to the wrong individual.

Therefore, we selected another set of mutations from our second

capture experiment. Of those, all mutations were confirmed (five

homozygous and eight heterozygous mutations). Even taking the

first set into account, our overall rate of validation was high (19/22:

86%), suggesting that our mutation detection pipeline is robust

and generates a low percentage of false positives (Supplemental

Table 2). Consistent with these results, only three mutations were

detected in a wild-type Nipponbare individual, the variety that was

used to create the EMS-mutagenized population and from which

the genome reference sequence was derived.

EMS Mutagenesis Can Result in Large Structural Variation

To determine if EMS mutagenesis also induced large structural

variations, variation in copy number across the rice genomic

Figure 5. Functional Characterization of the Mutations Found in the Rice

Samples.

(A) The location of each mutation site with respect to the gene models in

the OsMSU6.1 genomic reference was obtained using the SnpEff soft-

ware (see Methods).

(B) For EMS mutations corresponding to nonsynonymous amino acid

substitution, the effect of the mutation on gene function was estimated

using a SIFT score (see Methods). SIFT scores lower than 0.05 are es-

timated to correspond to changes deleterious to gene function.
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reference was assessed as previously described (Henry et al.,

2010). In short, variation in coverage across adjacent genomic

regions, compared with control individuals, was used to detect

instances of large deletions and insertions. Coverage was cal-

culated for each 10-kb genomic region and at least three con-

secutive regions with altered coverage were required for an indel

to be called. Three instances of large deletions and one of a

large insertion were detected in the 72 EMS samples analyzed

(Figure 6). While it is unclear how many of the gene functions

affected are expected to be dosage-sensitive, a total of 31

genes are present in the regions covered by the homozygous

deletion event (Figure 6A), representing additional instances of

complete loss-of-function mutations.

Specificity of Sequence and DNA Methylation around the

EMS Targets

Because our study provides a genome-wide view of the effects

of EMS mutagenesis, we were able to address whether EMS

exhibits preferences in terms of target sequence. First, we

wondered if mutations shared a common local sequence con-

text, i.e., if EMS preferentially targets specific sequence motifs.

To address this question, we measured nucleotide frequencies

in 20-bp regions flanking the mutated G nucleotides (i.e., GC

pairs). To account for possible local bias in nucleotide compo-

sition due to neighboring nucleotides, we compared this set of

sequences to a same-size pool of random sequences centered

on G nucleotides, which were chosen randomly 40 to 50 bp to

the left and right of each mutation site. For each nucleotide

position, the difference in percentage of each of the nucleotides

(A, C, G, and T) between the mutated sites and the control sites

was calculated (Figure 7). The pattern obtained suggests a

strong bias for an RGC triplet (where R represents G or A) as the

preferred target for EMS mutagenesis, as well as more modest

preferences for G and R bases in the 6 and 5 bp flanking the

triplet on the left and right side, respectively.

EMS targets G nucleotides and the conserved sequence motif

identified above is centered on a GC pair, a potential target of

CHH cytosine methylation (Law and Jacobsen, 2010). Therefore,

we next investigated whether DNA methylation influenced the

spectrum of EMS targets. First, we measured the level of

methylated, partially methylated, and fully methylated cytosine

residues in four different sets of sequences: the target tiles, the

whole genome, the positions of the mutations recovered in the

EMS mutagenized samples, and the positions where natural

variation was observed between O. sativa Nipponbare and

O. glaberrima, a closely related species present (Figure 8A).

To detect natural variants between the two species, we treated

O. glaberrima as another EMS mutant and variant positions were

positions that were different between O. glaberrima and all

Nipponbare samples present in capture 5. We further limited our

variant detection to positions that were homozygous in both

species and for which the coverage was at least 10 for both

species. This analysis generated ;90,000 variant positions.

Both the EMS targets and the targeted space as a whole ex-

hibited lower methylation levels than the whole genome, attesting

that the capture tiles were focused on gene space. In contrast,

positions that exhibit natural variation were significantly enriched

in methylated positions, as previously reported (reviewed in

Gaut et al., 2011). Additionally, the percentage of fully methyl-

ated cytosines associated with the guanines targeted by EMS

was significantly lower than the percentage of fully methylated

cytosines in the target tiles as a whole (P value < 0.0001),

suggesting a protective effect of cytosine methylation against

EMS action (Figures 8A and 8B, top panel).

Figure 6. Identification of Indels in EMS-Treated Rice Individuals.

Examples of large-scale deletions and insertions following EMS muta-

genesis. The reference genome was divided into successive bins of

10 kb, and normalized coverage was calculated for each bin and each

sample. Data for each bin are represented by a dot and normalized such

that values for diploid segments oscillate around 2.0. The presence of

adjacent bins with low (around 1.0) or high (around 3.0) values indicates

the presence of deletions or insertions, respectively.

(A) A homozygous deletion in chromosome 9 spans ;150 kb.

(B) A heterozygous deletion in chromosome 4 spans ;760 kb.

(C) A heterozygous insertion in chromosome 7 spans ;500 kb.

(D) A deletion (of unclear zygosity) in chromosome 11 spans ;50 kb.
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In order to dissect whether this pattern was general or

sequence-specific, we investigated the effect of the identity and

methylation status of the base immediately preceding or

following the mutated guanine on EMS targeting (Figure 8B;

Supplemental Figure 6). From these data, it became apparent

that the depletion of methylated cytosines opposite to the tar-

geted guanine was visible in all dinucleotide combinations

tested but that the effect was particularly strong when the tar-

geted guanine was immediately followed by a cytosine. The

percentage of methylated cytosines both on the EMS targets

and on the captured space as a whole was highly context de-

pendent, with higher methylation levels in CG dinucleotides as

can be expected from the action of CpG methylating enzymes.

Yet, the levels of cytosine methylation surrounding the EMS

targets exhibited significantly different patterns than the overall

captured space as well. Specifically, the cytosine directly fol-

lowing the targeted guanine exhibited strongly reduced levels

of methylation compared with similar dinucleotides within the

captured space (Figure 8B; Supplemental Figure 6). Similarly,

cytosine opposite to a guanine directly downstream of the tar-

geted guanine exhibited elevated methylation levels compared

with similar dinucleotides within the captured space. Taken to-

gether, these observations suggest that specific patterns of

nucleotides and methylation directly surrounding guanine resi-

dues strongly affect their probability to be alkylated by EMS or

to be repaired.

DISCUSSION

We described the use of molecular and computational methods

based on exome capture that result in efficient, genome-wide

discovery of induced mutations in a mutagenized population of

rice; additionally, we tested the applicability of our method in

tetraploid wheat. The method’s usefulness is enhanced by the

ability to multiplex the capture reaction 10- to 30-fold: Genomic

libraries prepared from single individuals were combined and

subjected to capture resulting in a proportional decreases in

capture reagent cost and, to a lesser degree, in labor (Figure 1).

Furthermore, we observed that multiplexing enhanced unifor-

mity of capture and sequencing (Supplemental Figure 2) but was

not associated with any detectable loss of complexity, at least at

the coverage levels that we produced (Supplemental Figures 1

and 4). Multiplexed exome capture has been described before,

although either with a smaller number of multiplexed samples

(Cummings et al., 2010; Kenny et al., 2011; Wesolowska et al.,

2011) or a much smaller targeted space (for example, Rohland

and Reich [2012] demonstrated multiplexing with 96 individuals

on a 2.2-Mb targeted space). The effectiveness of exome capture

for resequencing of ;20 Mb of exon space was also recently

demonstrated in Populus trichocarpa, for which multiplexing was

used at the level of sequencing but not at the level of the capture

reaction (Zhou and Holliday, 2012). Most notably, exome capture

has been used for genome-wide mutation detection in a pop-

ulation of N-ethyl-N-nitrosourea–mutagenized rats (Nijman et al.,

2010) either using by multiplexing up to 20 samples per capture

on a small target size (1.4 Mb), by multiplexing three to five

samples on a larger target size (up to 50 Mb) (Nijman et al., 2010),

or by multiplexing up to six samples on an even larger target size

(92 Mb) in barley (Hordeum vulgare; Mascher et al., 2013). Our

results confirm that high multiplexing is possible with larger target

sizes as well (almost 40 Mb).

In the inbred and homozygous rice genome, we demonstrate

that efficient mutation discovery was possible at a range of

sequence coverages. We further show that efficient mutation

discovery was possible in the more complex genome of allote-

traploid durum wheat even when using a reference that does

not, for the most part, discriminate homoeologous genes.

Our MAPS mutation discovery pipeline compares sequence

changes for each sampled position across multiple individuals

factoring the expectations of uniqueness of change, high fre-

quency of GC > AT changes (Figure 4A), and no mutations in

control nonmutagenized samples (Figure 4B). The method ef-

fectively addresses noise, such as resulting from the presence

of polymorphic copies of the same gene. It is therefore well

suited to cope with polyploidy, as demonstrated here, and,

we expect, with heterozygosity. Because of the assumption of

uniqueness, analyzing hundreds of samples simultaneously could

result in the loss of rare coincident mutations. Therefore, we rec-

ommend analyzing samples in batches of 20 to 50 samples. This

would have the additional advantage of spreading the computa-

tional burden to several runs of fewer samples.

By comparing the ratio of GC > AT transitions to other changes,

we could establish coverage thresholds for efficient mutation

calling in rice: Three and four copies of the mutant allele for ho-

mozygous and heterozygous mutations, respectively, resulted in

at least 70% GC > AT changes (Figure 4B). In wheat, similar

treatments define higher thresholds corresponding to the in-

creased challenge posed by the polyploidy genome. Our calcu-

lations indicate that 15 million reads per individual rice line will

detect ;80% homozygous and 60% heterozygous mutations,

while 30 million reads results in the detection of 90% homozy-

gous and 80% heterozygous mutations (Figure 3). The corre-

sponding calculation for wheat is complicated by the imperfect

nature of the reference sequence used here, but we expect

that proportionally higher read numbers will be needed for the

Figure 7. Analysis of the Nucleotide Frequencies around EMS Mutations

in the Rice Samples.

For each GC > TA transition identified, 40 bp of sequence surrounding

the mutation site were retrieved from the reference genomic sequence.

Another 40 bp centered on the same nucleotide (G or C) were selected at

random from the flanking sequence and retrieved as well. At each po-

sition, the percentage of the four nucleotides was calculated, and the

difference in percentages between the mutation sites and the random

flanking sites are shown here.
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indicated efficiencies. When mutations are used for reverse ge-

netics, i.e., they are evaluated phenotypically one locus at a time,

finding all gene-affecting mutations in any given individual is not

critical and sequencing coverage can be chosen to optimize ef-

ficiency. We estimate from Figure 3 that under the experimental

conditions used here, aiming for a minimum of 20 million reads

per sample optimizes discovery and costs for rice.

The method presented here enables the construction of global

in silico databases of mutations for functional genomics. In

rice and potentially in most diploid species, the combined se-

quencing in a single Illumina HiSeq lane of 20 to 30 individuals

averaged the discovery of 37 deleterious mutations per in-

dividual. Based on our results and assuming 30,000 gene tar-

gets, we calculate that the probability of not hitting a gene is

0.99877. The degree of saturation for a given population of N

individuals can be calculated as PexpN. The exome of 2000 in-

dividuals would therefore provide 92% saturation. Of course,

this is an estimate since it is solely based on our observed mean

mutation rate per individual and we have observed significant

variation between individuals. In our experience, researchers

attempting to understand the function of a specific locus are

most interested in complete loss-of-function mutations. If the

same calculation as above is restricted to predicted knockouts

(truncations), the degree of saturation is lower, but still valuable

at 31% from 2000 individuals. Because of the high mutation

density achieved in wheat, the same efficiency is achieved with

approximately one-fifth the population size. When this consid-

eration is combined with the gain in efficiency and economy

achieved by exome capture, construction of a saturated func-

tional genomic resource is possible in durum wheat with a

population of <2000 individuals.

With the modest rice population presented here (n = 72), we

have described >2700 mutations that are predicted to be

detrimental to gene function (Figure 5). The method provides

efficient quality controls: Individuals where validated discovery

parameters still resulted in deviation from the expectation, i.e.,

had a reduced GC>AT frequency, were determined to originate

either from seed or pollen contamination by polymorphic

Figure 8. Relationship between Cytosine Methylation and EMS Targeting in Rice.

(A) Comparison of cytosine methylation levels in different sets of positions. The mean percentages over all sites are represented by the height of the

bars. The different sets of positions compared are: positions of all mutations identified in the rice EMS-mutagenized individuals (EMS), all positions in

the targeted space, all positions in the rice genome, and positions of naturally variant positions between O. glaberrima and O. sativa variety Nipponbare.

(B) Observed (thick vertical bars) and expected (distribution of values) percentages of fully, partially, and nonmethylated cytosines opposite and/or

flanking the mutated guanines. The top panel shows data for all mutated guanines at once. The bottom two panels depict how these percentages vary

depending on the nucleotide context.

For both panels, the percentages of fully methylated (Fully), partially methylated (Partially), and unmethylated (Not) cytosines were calculated. Data for

all possible dinucleotides are represented in Supplemental Figure 6, while this figure is limited to those that are significantly different from the controls.

For each graph, the thick vertical line represents the observed percentages from the mutated positions. The number of positions included in the

calculation of those percentages depended on the number of observed mutations (N) for which methylation data were available. The distribution of

expected percentages upon random selection of N nucleotides or dinucleotides for which methylation data are available is shown (100,000 random

samplings). G*, guanine residues that were found to be mutated in our captured individuals. The cytosine residue for which the methylation state is

evaluated is surrounded by a black square. ***, Less than 10/100,000 random samples exhibited values further from the mean of the distribution than the

observed mean (line).

[See online article for color version of this figure.]
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varieties. Thus, this problem, which commonly affects studies

employing large populations, was easily addressed as well.

In terms of cost-effectiveness, we calculated that exome

capture in rice, as it was performed in this report, was cheaper

than whole-genome sequencing, given similar target average

coverage levels and a genome size bigger than 230 Mb (Table

2). This estimate is based on a population of 2000 individuals

assayed in 100 capture reactions of 20 individuals each. The

cost of the capture probes and associated reagents for this

setup would currently be $40 per individual. Based on the re-

sults presented here, we estimate that 20 million reads per in-

dividual provides a mean of ;203 coverage over the targeted

space given that the sequence capture is not 100% efficient,

and reduced complexity libraries might contain more clonal

reads that need to be removed. We also assume a relatively low

cost of $2000 for one HiSequation 2000 lane of PE100 se-

quencing, which translates into $267/sample for sequencing

and a total cost per sample (post library construction) of $307.

Comparatively, for rice as an example, an average coverage of

203 over the whole genome (;380 Mb) would require a mini-

mum of 38 million 100 paired-end reads ($507). Of course, the

benefit of obtaining information about the whole genome rather

than just the targeted exons and the cost of designing the exon

targets probably results in similar cost versus benefits for the

two approaches in the case of rice. For species for which the

genome size is bigger though, exome capture becomes rapidly

advantageous. In the case of the 13-Gb genome of durum

wheat, the economy of exome capture is compelling.

Global genome analysis of multiple individuals enabled probing

the range and spectrum of induced mutations in many ways.

Mutation density varied in different individuals from 1 to 20

mutations/Mb even if the mutagenic treatment was applied uni-

formly (Figure 4C). This variation suggests that differences could

exist in EMS permeability, mutagenesis, and DNA repair, perhaps

stemming from physiological differences between embryonic cells

that form the shoot apical meristem. Gametes forming the M2

generation could owe their different mutation loads to their clonal

derivation. We also asked whether EMS induced deletions: We

were able to identify copy number variants by binning read counts

over segments spanning several genes. We found a homozygous

deletion spanning ;150 kb and resulting in the complete loss

of function of 31 genes. We also found one large heterozygous

insertion and two large heterozygous deletions, cumulatively re-

sulting in dosage variation in 188 genes (Figure 6), some of which

might be sensitive to dosage variation (Birchler and Veitia, 2010) or

could provide additional loss-of-function mutations upon selfing

and selection of progeny carrying homozygous indels.

The identification of >18,000 mutations also allowed for detailed

examination of the local sequence context of EMS-induced muta-

tions. Our results indicate a preference for [G]C sequences (mutated

site is bracketed) immediately surrounded by purine-rich DNA (Fig-

ure 7). The motif gggrraR[G]CGrgg (R is for purine, caps for major

preference) identified here is similar to the G[G]CA and R[G]YW (Y is

for C or T) hot spots identified for somatic mutations in bacterial

(Singer, 1984) and vertebrate genes (Rogozin et al., 2001), re-

spectively. This remarkable conservation suggests that a common

mechanism, perhaps biochemical properties of the DNA sequence

or repair enzyme specificity (Rogozin et al., 2001), is at play. The

action of EMS on G residues raises the possibility that cytosine

methylation on the opposite strand or on flanking nucleotides may

Table 2. Comparison of the Cost of Whole-Genome Sequencing and Exome Capture Based on Genome Size

Species Analysis Size of Target (Mb) Reads for 203 Coverage (Million) Capture Cost Total Costa

All speciesb Exome capture 40 20.0 40 307

Arabidopsis thaliana WGS 135 13.5 0 180

Sorghum WGS 230 23.0 0 307

Flax WGS 350 35.0 0 467

Rice WGS 380 38.0 0 507

Poplar, banana WGS ;500 50.0 0 667

Cassava WGS 750 75.0 0 1,000

Tomato WGS 900 90.0 0 1,200

Soybean WGS 1,115 111.5 0 1,487

Maize WGS ;2,300 230.0 0 3,067

Tobacco WGS ;3,000 300.0 0 4,000

Tetraploid wheat WGS ;11,000 1,100.0 0 14,667

Hexaploid wheat WGS ;15,960 1,596.0 0 21,280

Northern Spruce WGS ;20,000 2,000.0 0 26,667

aSequencing cost is based on 203 coverage over the targeted space. For whole-genome sequencing (WGS), the amount of sequence data required is

calculated directly from the genome size space. For exome capture, efficiency is expected to be lower since not all reads are expected to be on target.

Based on the results presented in this article, we estimated that 203 coverage of a 40-Mb targeted space would require 20 million reads. The current

cost of one 100 PE HiSeq lane is estimated at $2000 and generates ;150 million aligned reads (thus ;$13.3/M reads). For exome capture, the cost per

sample was based on the sequencing of 2000 individuals and amounts to ;$40 per sample to account for the cost of the capture reagents (currently

$72,000 for 96 reactions for the Nimblegen SeqEZ developer library, $330 for Hybridization and Washing reagents [96 reactions], and $500 of Cot-1-

equivalent DNA and $3000 of Adaptor Blockers).
bCost of exome capture in polyploid species is expected to be higher than in diploid species because higher sequence coverage is needed to be able

to detect mutations in a polyploid background and because the targeted space can be larger if homoeologous sequences cannot be targeted

simultaneously.
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influence susceptibility of the base pair. We also demonstrate that

EMS preferentially targets unmethylated GC base pairs, as the

percentage of methylated cytosines opposite to the mutated G is

lower than that found in the targeted exome as a whole (Figure 8).

This is in contrast to natural variation polymorphisms, whose

spectrum is heavily influenced by the mutagenic action of sponta-

neous deamination of methylated cytosine (Duncan and Miller,

1980), a trend that was readily detected by examining natural vari-

ation polymorphisms in our data set as well. We further demonstrate

that EMS exhibits strong biases toward targeting very spe-

cific combination of bases and levels of methylation (Figure

8B; Supplemental Figure 6). Taken together, our data indicate

the preference for a local consensus, and very specific patterns of

cytosine methylation.

In conclusion, we demonstrated the suitability of mutation

discovery through exome capture following EMS mutagenesis

both in a diploid small genome species such as rice and in

a polyploid, large genome species such as wheat. We applied

our method to well-characterized populations of rice and wheat

as a proof-of-concept that mutation detection on an exome-

wide basis can be high-throughput and cost-effective. There-

fore, this approach can be applied to mutant populations in

other species, regardless of the size and complexity of their

genomes. This method is also particularly well suited for poly-

ploids, in which high mutation density can be achieved, enabling

saturation with one or two thousand individuals (Tsai et al.,

2013). Even if a reference sequence is not currently available,

a transcriptome assembly can be performed at relatively low

cost and can serve as a starting point for the design of capture

targets for any species. Mutagenesis is a long-proven method

for generating variation and an excellent tool for reverse ge-

netics (Wang et al., 2012). The tools and methods presented

here allows for the rapid production of valuable resources for

functional genomics, including in organisms where transgenic

inactivation of genes is not facile or desirable, such as is the

case for multiple crop plants important for human survival.

METHODS

Plant Materials, Growth, and EMS Mutagenesis

Seeds from the Oryza sativa variety Nipponbare were subjected to EMS

mutagenesis and propagated as previously reported (Till et al., 2007). The

plants analyzed in the context of this publication correspond to the

M2 generation of EMS-mutagenized O. sativa var Nipponbare samples

(Figure 1). In addition, samples from the following genotypes were also

included: temperate japonica varieties L-202 (PI 483097), Lebonnet (CIor

9882), M-205 (PI 615535), M-206 (PI 632999), and indica, Milyang 23 (PI

412912), as well as a cultivated African riceOryza glaberrima (International

Rice Germplasm Collection No. 103544). These varieties have been

maintained for several years as stocks in the laboratory of Thomas Tai and

may differ subtly from the collections in the stock centers. Seeds of Desert

durum variety ’Kronos,’ which was developed by Arizona Plant Breeders

from a male sterile population (selection D03–21), were subjected to

mutagenesis and propagated as previously reported (Uauy et al., 2009).

Capture Probe Design

For the exome capture reactions performed in the context of this article,

target regions were selected as follows. Description of the gene models

and annotations (all.gff3) and corresponding coding sequences (all.cds)

were obtained from the MSU Rice Genome Annotation Project, version

6.1 (ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/

annotation_dbs/pseudomolecules/version_6.1/all.dir/). The first genemodel

from each gene in the GFF annotation file (all.gff3.gz) that was not labeled

as a transposon was considered. Using these criteria, all of the targets

spanned 42 Mb of target space. To reduce target space, exons were se-

lected as follows. Each exon sequence was scored individually, with points

accruing for any occurrence of a codon where a CG > AT transition would

cause the formation of a stop codon (mis-sense mutation). Specifically, the

occurrence of codons CAG and CAA were awarded one point and TGG

codons two points. One point was also awarded at the splice site locations.

Since mis-sense of splice-site variations are more likely to be deleterious

when occurring at the beginning of the gene, each of these points were

weighted based on the position of the base change in reference to the gene

sequence. Specifically, for the first half of the coding sequence, points

received full value. The weight value was linearly reduced from one to zero

over the length of the second half of the coding region. After a score was

obtained for each exon, it was divided by the length of the exon to obtain

a score density per base pair. Exons were selected such that priority was

given to higher scoring exons but retaining aminimum number of exons per

gene as follows: If a gene contained 10 or more, 6 to 9, 4, or <4 exons, the

top 30%, the top 50%, the top three, or all of the exons were retained,

respectively. Due to a scripting error, if a gene contained five exons, all were

retained. Using thismethod, the targetwas reduced to 35Mb. These targets

were then arrayed into overlapping targeting probesbyNimblegen, resulting

in target regions that covered 39 Mb of exonic space.

Preparation of Rice Capture Libraries

Genomic DNA fromM2 individuals and different rice varieties was isolated

using the FastDNA kit (MP Biomedicals). Approximately 500 ng to 1 mg of

DNA was obtained from 15 to 20 mg of dried leaf tissue. DNA was

quantified using Nanodrop and Qubit fluorometer (Invitrogen). Exome

enrichment was performed using the Roche/NimbleGen Seq-EZ kit fol-

lowing NimbleGen’s protocol with some modifications. Briefly, 500 ng to

1 mg of genomic DNA from individual sample was fragmented using

double-stranded DNA Fragmentase (New England Biolabs). DNA frag-

ments were purified using AMPure beads (Beckman Coulter) with

a sample to AMPure ratio of 1 to 1.8. After end repair using End Repair

enzyme (New England Biolabs), a deoxyadenosin was added at the 39 end

of the fragments using 39 to 59 Exo-Klenow fragment (New England Bio-

labs). Custom synthesized six base bar-coded adapters were ligated to

libraries in captures 1, 2, and 3 (Supplemental Data Set 1). NEXTflex DNA

bar-coded adapters (Bioo Scientific) were used for captures 4 and 5

(Supplemental Data Set 1). The adapter ligated libraries were size selected

for an average insert size of 300 bp using AMPure beads using standard

AMPure size selection protocol and eluted in 30 mL of elution buffer. The

precapture amplification step was performed using the standard NimbleGen

protocol with varied number of PCR cycles for each capture prior to hybrid-

ization: We used 14 for captures 1 and 2 and 9 for captures 3, 4, and 5. Equal

amounts of library products from 10 to 32 genomic libraries (Supplemental

Data Set 1) were pooled to obtain total of 1 mg DNA for the hybridization.

Hybridization was performed for 72 h using a biotinylated custom

oligonucleotide library corresponding to selected exons of O. sativa var

Nipponbare (baits). Genomic DNA-bait hybrids were captured using

Streptavidin magnetic beads, washed, and amplified by PCR using

postcapture primers (eight cycles). Quality of the final captured libraries

was assessed using a Bioanalyzer (Agilent Technologies). The final pooled

libraries were sequenced according to the manufacturer’s recom-

mendations on either one or a half lane of the Illumina HiSequation 2000

(Illumina), to obtain 100 bp paired-end reads, as well as 6 bp indexed

reads for library demultiplexing (Table 1). Capture 1 failed at the se-

quencing level and was discarded from further analyses.
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Preparation of Wheat Capture Libraries

High-quality DNA stocks from a previously characterized mutant pop-

ulation of tetraploid wheat Triticum turgidum cultivar Kronos (Uauy et al.,

2009; Tsai et al., 2011) was used along with a wild type (K0) to generate

DNA libraries as follows. One microgram of genomic DNA was sheared

with the Covaris S220 Focused Ultrasonicator to fragments of an average

of 300 bp. The NEBNext DNA Library PrepMaster Mix set for Illumina from

New England Biolabs and Illumina TruSeq indexed (bar-coded) adapters

were used to prepare genomic libraries according to NewEngland Biolabs

protocol with the following modifications. The PCR Enrichment Adapter

Ligated DNA step in the New England Biolabs protocol was replaced with

a ligation-mediated PCR (LM-PCR). The LM-PCR products were purified

with the QIAquick PCR purification kit (Qiagen) and size selected using

Agencourt AMPure XP beads (Beckman Coulter). The library quality was

assessed on the 2100 Bioanalyzer (Agilent Technologies) and NanoDrop

spectrophotometer (Thermo Scientific).

To block repetitive regions in the wheat (Triticum aestivum) genome, 1mg

of pooled genomic libraries was mixed with 10 mL of SeqCap EZ developer

reagent (Roche NimbleGen) in a 0.2-mL thin-wall tube. To increase capture

specificity, 1 mL of 1000 µM TruSeq Hybridization Enhancing Universal

Oligos 1 and 1 mL of a mixture of the appropriate TS-INV-HE Index Oligos

were added into the reaction. The mixture was dried out in a SpeedVac

(Thermo Fisher) at 60°C followed by addition of 7.5 mL of 23 hybridization

buffer and 3 mL of Hybridization Component A from the SeqCap EZ Hy-

bridization and Wash kit, v. 01 (Roche NimbleGen). The reaction was in-

cubated at 95°C for 10 min, cooled down on ice for 2 min, mixed with 4.5 mL

of Wheat Exome Capture probes corresponding to the gene-rich 107-Mb

target design from Roche Nimblegen (120426_Wheat_WEC_D02m;

http://www.nimblegen.com/products/seqcap/ez/designs/index.html),

and incubated at 47°C for 64 to 72 h in a thermocycler with a heated lid set to

maintain 57°C.Captured sampleswerewashed, amplified using LM-PCR, and

purified according to the Plant Sequence Capture Illumina Optimized User’s

Guide (Roche NimbleGen). The postcapture LM-PCR products were analyzed

using the Bioanalyzer DNA 7500 chips and quantified with the Qubit DNA

Broad Range assay kit. The A260/280 and A260/230 ratios were measured on the

NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Samples diluted

to 2 nM concentration were submitted for sequencing.

Read Processing for the Rice Data

Sequencing reads were divided into their original genomic libraries based

on the sequenced index reads with one mismatch allowed, using custom

Python scripts (available at http://comailab.genomecenter.ucdavis.edu/

index.php/Barcoded_data_preparation_tools). Reads were also trimmed

for quality (minimum mean PHRED score of 20 over a 5 -bp sliding

window), and reads containing adaptor sequences or N bases or reads

that were shorter than 35 bp after trimming were discarded. The number

of reads obtained for each library is summarized in Supplemental Data

Set 1. The resulting reads were aligned to the OsMSU6.1 reference

sequence for O. sativa Nipponbare (http://rice.plantbiology.msu.edu/) using

BWA (Li and Durbin, 2009) and default parameters. The resulting SAM

file, containing information about mapping position(s) for each read, was

screened for clonal reads, i.e., reads that are the product of PCR am-

plification of a single original DNA fragment in the following way: If several

reads mapped to the same starting position, and in the same direction,

only one of those reads was retained for downstream analysis. This step

prevents the identification of false positive mutations due to PCR errors. It

was performed using a custom Python script available on our laboratory

website (current version of overamp.py at http://comailab.genomecenter.

ucdavis.edu/index.php/Bwa-doall). The overall percentage of nonclonal

reads for each sample is also indicative of sufficient starting material and

library quality: A low percentage of nonclonal reads indicates too many

cycles of PCR amplification, resulting in the potential amplification of the

signal from PCR errors. The resulting files (nonclonal SAM files) were

used for all downstream analyses. Finally, to assess the effect of library

pooling and be able to compare libraries with each other, subsets of

the same number of reads (2.5 million) from each of the samples were

screened for clonal reads to compare library complexity between samples

(Supplemental Figure 4).

For each capture reaction and associated sequencing run, a single

mpileup file was created containing all basecalls for all libraries using BWA

Samtools (Li et al., 2009) and minimum mapping and sequence qualities

of 20. Each mpileup file was parsed to obtain percentages of each

basecall at each position and for each individual using a custom Python

script (http://comailab.genomecenter.ucdavis.edu/index.php/Mpileup for

download and documentation). This file was input into our mutation

discovery pipeline (MAPS; see below).

Coverage Analysis

Coverage per base pair information, found in thempileup files (see above),

was used to assess capture efficiency in two ways. First, to assess the

specificity of capture, coverage was compared between target regions

and regions flanking those targets. For each target tile, coverage on the

target sequence and on the flanking region was calculated as follows:

First, the mean coverage over the entire target region was calculated

(mean cov./bp). Next, the target region was divided into 20 adjacent bins,

each covering 5% of the target region and the mean coverage over each

of these bins was calculated. Finally, mean coverage over twenty adjacent

25-bp bins corresponding to the 250 bp directly downstream and the 250

bp directly upstream of the target sequence were calculated as well. For

each target, these mean coverages were then normalized by the mean

coverage over the whole target sequence (excluding the flanks). This

normalization step allowed us to aggregate data from different captures

and different libraries, irrespective of the number of sequencing reads

obtained per library. Finally, targets were categorized according to their

length andmean values were calculated for each bin within and outside of

the target by averaging values from all target sequences in each length

category (Figure 2). This was performed for all samples in captures 2, 3,

and 4. Samples from capture 5 were not included because capture ef-

ficiency was previously determined to be particularly low for that capture

reaction (see above). Second, to assess the overall targeting efficiency of

the capture reactions, the genome-wide coverage (per base pair) over the

entire target region and the rest of the genome were calculated for each

capture experiment (Supplemental Figure 1).

Finally, for each capture experiment, the number of reads mapping to

each of the capture sequences was calculated. Read mapping position

was based on the location of the beginning of the read, as indicated in

the SAM file. To assess the consistency of the capture reactions, read

coverage over all capture targets was correlated between each pair

of samples (pairwise regression analysis). For each comparison, the

goodness of fit (R2 value) was calculated and mean R2 values for different

comparisons are shown in Supplemental Figure 2. Pairwise comparisons

were divided into four categories, depending on whether the two samples

were processed in the same capture and whether they were samples of

the same genotype (Nipponbare for all EMS mutants or other).

Data in the mpileup files were also used to investigate the effect of GC

content on target coverage (Supplemental Figure 3).

Identification of Large Indels

Dosage analysis across chromosomes was performed as previously

described (Henry et al., 2010). Briefly, the genome reference sequence

was divided into adjacent but nonoverlapping 10-kb bins, and the per-

centage of reads mapping to each bin was recorded for each sample. To

reduce the noise due to uneven coverage originating from PCR, se-

quencing, and mapping biases, percentages per bin were normalized to
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the mean percentage of reads mapping to that bin for all samples. Finally,

all values were multiplied by 2 such that values for bins that belong to

chromosomes present in two copies (diploid) would oscillate around 2.0.

A minimum of three adjacent bins with values oscillating around 3.0 or

1.0 indicate the presence of a large insertion or deletion respectively

(Figure 6).

Mutation Discovery in Rice

For each capture reaction, mutations were identified using our custom

mutation discovery pipeline called MAPS (http://comailab.genomecenter.

ucdavis.edu/index.php/MAPS). For each capture reaction, all samples

were analyzed at once. Specific parameters were as follows and as in-

dicated in Supplemental Table 1. Specific thresholds for minimum cov-

erage of mutant alleles were determined as described in Figure 4. In short,

the percentage of noncanonical mutations (non GC > AT transitions) was

recorded for each coverage level. Next, minimum coverage thresholds

were chosen that produced at least 70% of GC > AT transitions. Spe-

cifically, the mutant allele, i.e., the allele that is specific to the sample

carrying the mutation and completely absent from all other samples, had

to be present 4 times for a heterozygous mutation and three times for

a homozygous mutation to be called.

Mutation rate was inferred from the number of positions that could be

assayed, i.e., sufficiently covered in the sample itself and in all other

samples serving as controls together, as well as from the number of

mutant alleles recovered. For homozygous mutations, this was

straightforward as all allele calls were mutant. Therefore, all positions

covered at least 3 times in the specific sample and at least cumulatively 20

times over a total of at least four samples were considered assayed. For

heterozygous mutations, all positions covered at least 4 times in the

specific sample and at least 20 times cumulatively from a total of at least

four samples were initially recorded. Next, the number of positions at each

coverage level was adjusted for random sampling effects on nonmutant

bases in a heterozygous background, based on the criteria that the

mutant allele had to be covered at least 4 times for a mutation to be

retained. For example, for positions covered 5 times, the probably of

observing 4/5 mutant alleles is 5/32 = 0.15625. In other words, positions

for which less than four mutant alleles were observed were not retained

and positions for which 5/5 mutant alleles were observed were classified

as homozygous mutations. Therefore, if 1000 positions were covered

5 times, only 156 were considered as assayed for the purpose of de-

termining mutation rate. If five mutations were found in these 1000

positions, the mutation rate would be 5/156 instead of 5/1000 to account

for the fact that most mutations would not be visible at that coverage.

Similar calculations were made for all positions covered <20 times. For

positions covered at least 20 times, all sites were considered assayed

(probability of observing less than four mutant alleles out of 20 = 0.0013).

The total size of the assayed space for the purpose of heterozygous

mutation detection was calculated by summing the assayed space

corresponding to each coverage level. Mutation rate per Mb for homo-

zygous and heterozygous mutations were calculated separately, by di-

viding the number of mutations identified by the assayed space. The rate

of heterozygous mutations is expected to be slightly underestimated and

that of homozygous mutations to be slightly overestimated since het-

erozygous mutations for which no wild-type allele was observed are

indistinguishable from homozygous mutations.

Mutation Discovery in Wheat

Seven mutant lines and one wild-type parental line were pooled together,

processed as one capture, and sequenced on a single Illumina

HiSequation 2000 lane. One of the mutant lines was later identified as

a contaminant and removed from the analyses. The readswere trimmedusing

Scythe (https://github.com/vsbuffalo/scythe) and Sickle (https://github.

com/najoshi/sickle) software and aligned back to the design with BWA-

SW (Li and Durbin, 2009). Alignments were processed with Samtools (Li

et al., 2009), and duplicate reads mapping to the same genomic locations

were removed using Picard tools (http://picard.sourceforge.net/). Muta-

tions were identified using the MAPS pipeline analyzing all seven samples

at once and using the parameters described in Supplemental Table 1.

The ratio of heterozygous to homozygous mutations detected in wheat

(average of 7.96 0.1, across coverage 3 to 10) was significantly higher than

2:1, which is expected because in many cases only one of the two wheat

homoeologs is present in the reference; therefore, both A and B genome

reads map to the same reference. To calculate the mutation rate, we used

the expected 2:1 ratio of homozygotes to heterozygotes to estimate that the

excess heterozygotes (i.e., those detected bymapping both homoeologs to

a single reference) represents on average 75% of the total heterozygous

mutations. Therefore, when calculating mutation density, the reference

space at a particular coverage needs to be increased by 75% to account for

the second homoeolog. Using this adjustment for the reference space at

a particular coverage, the averagemutation density in wheat was estimated

to be 20.16 0.2 mutations/Mb, which is very similar to the 19.6 mutations

per Mb estimated for this population using CelI screens and validation by

sequencing (Uauy et al., 2009).

Assessment of Mutation Severity

The position of each mutation was determined with respect to the gene

models associated with the Nipponbare reference genome, using SnpEff

v2.0.5 (Cingolani et al., 2012). Output files were set to vcf format. Default

parameters were used except that the upstream/downstream distance

was set to 0, in order to avoid assigning a single mutation to more than

one gene. The resulting possible classifications were: exon, intron, 39

untranslated region, 59 untranslated region, and intragenic. When the

mutation site fell in exonic space, SnpEff also output the associated

amino acid change and whether it corresponded to a mis-sense, non-

sense, or synonymous mutation.

For missense mutations, the deleterious effect of the mutation was es-

timated by assigning it a SIFT scores, using version 4.0.5 of SIFT (Ng and

Henikoff, 2003; Sim et al., 2012) and the following parameters: Median

conservation was set to 2.75, sequences with 90% similarly or more were

discarded, and the database used was the National Center for Biotechnology

Information “Nr” database. Default valueswere used for the other parameters.

Mutation Validation

A total of 22 rice mutations that resulted in predicted loss-of-function

mutations were selected at random for validation. PCR primers flanking

the mutation site were designed and used to amplify the selected frag-

ments for Sanger sequencing.

Methylation Analysis

Data regarding the methylation state of cytosines throughout the rice ge-

nome was obtained from a previous study by Chodavarapu et al. (2012).

Specifically, the authors collected fully expanded leaves from 6-week-old

Nipponbare plants and constructed bisulfite sequencing libraries. Reads

aligned to OsMSU6.1 reference sequence for O. sativa Nipponbare (http://

rice.plantbiology.msu.edu/) were obtained directly from the National Center

for Biotechnology Information Gene Expression Omnibus database (ac-

cession number GSE38480). Bisulfite sequencing data were processed in

the following manner in order to only retain positions with unambiguous

basecalls. For non-GC pairs, only positions for which at least 95% of the

basecalls were consistent with A-T pairs were retained. For G-C pairs, only

positions for which at least 95% of the basecalls were C or T on one strand

and G on the other strand were considered. Of those, for the strand

containing C and Ts, if between the percentages of C was below 25%,
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between 25 and 95% or above 95% were considered as unmethylated,

partially methylated and fully methylated, respectively. Numbers of meth-

ylated, partially methylated, and unmethylated Cs were recorded for each

chromosome, and the associated percentages were calculated. For each

set of positions, the average percentage over the 12 chromosomes was

calculated. The different sets of positions were as follows: All positions

present in the file (whole genome), all positions that overlapped with the

target sequences, all recovered mutation positions provided that they

overlapped with the target sequences, and positions identified as poly-

morphic betweenO. sativa var Nipponbare andO. glaberrima, provided that

they overlapped with the target sequences (Figure 8A).

Next, to determine the pattern of cytosine methylation immediately

flanking aswell as across the targeted guanine, data for pairs of nucleotides

were obtained for all the mutated guanines that were on the targeted space

and resulted in an expected change (CG > AT). For each dinucleotide pair,

the level of methylation of the cytosine opposite to the targeted guanine

and, when appropriate, the level of methylation of the cytosine next to

and/or opposite of the targeted guanine was recorded as well. The number

of instances in each category (fully, partially, or nonmethylated) was

recorded. To assess whether the distribution of percentages obtained were

significantly different from those that could be expected from the targeted

space as a whole, the same total number of dinucleotides were randomly

selected from the targeted space and the percentage of the same three

categories were recorded. This random sampling was repeated 100,000

times to obtain an expected distribution representative of the targeted

space (Figure 8B; Supplemental Figure 6). For example, we registered 1616

G*A dinucleotides with a mutatedG that were on the targeted space and for

which bisulfite sequence information was available for both bases. We thus

randomly sampled 1616 instances from all GA dinucleotides present in the

targeted space and for which bisulfite sequence information was available

for both bases, recorded the numbers of fully, partially, and nonmethylated

cytosines across the targeted guanine and repeated this sampling 100,000

times. Significance levels were determined based on how many of the

random sampling exhibited values more divergent from the mean than the

one observed from our mutated set of positions.

Accession Numbers

Next-generation sequencing data generated in the context of this article can

be found in the GenBank Sequence Read Archive (SRA) database under

BioProject number PRJNA209892 and SRA ID SRP032937 for rice and

BioProject ID PRJNA237319 for the wheat data. Seeds from the EMS-

mutagenized lines characterized in the context of this study are available

from the Genetic Stocks Oryza Collection at the USDA–Agricultural Re-

search Service Dale Bumpers National Rice Research Center in Stuttgart,

Arkansas (https://www.ars.usda.gov/Main/docs.htm?docid=18992andpage=5).

Additional seeds can also be obtained from T.H.T. directly.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Mean Coverage Statistics for Targeted and

Nontargeted Regions of the Rice Genome for Each Sample.

Supplemental Figure 2. Consistency of Capture between Rice

Samples.

Supplemental Figure 3. Effect of GC Content on Rice Target

Coverage.

Supplemental Figure 4. Effect of Sample Pooling Prior to Sequence

Capture on the Presence of Clonal Reads.

Supplemental Figure 5. Distribution of Mutations along the 12 Rice

Chromosomes in an EMS-Mutagenized Sample and a Potential Seed

Contaminant.

Supplemental Figure 6. Relationship between Cytosine Methylation

and EMS Targeting Depending on Sequence Context in Rice.

Supplemental Table 1. Parameters Used for Mutation Detection

Using the MAPS Bioinformatics Pipeline for Each of the Capture

Reactions.

Supplemental Table 2. List of Mutations Selected for PCR Validation.

Supplemental Data Set 1. Index Sequences and Summary Statistics

per Sample.

Supplemental Data Set 2. List of Mutations Identified in the EMS

Samples.
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