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Abstract 

This paper describes an environment for supporting very 
large ontologies. The system can be used on single PCs, 
workstations, a cluster of workstations, and high-end paral- 
lel supercomputers. The architecture of the system uses the 
secondary storage of a relational data base system, efficient 
memory management, and (optionally) parallelism. This al- 
lows us to answer complex queries in very large ontologies 
in a few seconds on a single processor machine and in frac- 
tions of a second on parallel super computers. The main 
contribution of our approach is the open architecture of the 
system on both the hardware and the software levels allow- 
ing us easily to translate existing ontologies for our system’s 
use, and to port the system to a wide range of platforms. 

Introduction 
Ontologies have been a part of research in AI for a long 
time, for example, ontology-based thesauri have been an 
important part of research in Natural Language Processing. 
In the last few years, however, ontologies have become in- 
creasingly important throughout AI. Systems such as CYC 
(Lenat & Guha 1991) and ISI’s Sensus Project (Knight & 
Luk 1994) have shown the need for larger ontologies, as 
have newer research directions such as Knowledge Discov- 
ery in Databases (KDD) and intelligent internet-search en- 
gines, to name but two. With this growing interest, new 
efforts to make ontologies accessible to a larger user com- 
munity, and to scale the size of these ontologies, have been 
undertaken. In addition, projects such as the the Knowledge 
Sharing Effort, which facilitate the combination of differ- 
ent small ontologies into larger and more complex ones, 
increase the need for scalable ontology support tools. Cur- 
rently, most ontology-management systems cannot support 
the extremely large ontologies needed for such projects. 

In this paper, we focus on supporting the querying and 
management of significantly larger ontologies. The system 
described here was created to manage ontologies of essen- 
tially unlimited size. In the next section, we describe dif- 
ferent approaches to ontology management. The section 
after that provides some example ontologies used in prac- 
tical applications. We then describe the implementation of 
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our system and provide a series of performance results on 
single and multi processor machines showing that we can 
answer complex queries in very large ontologies in a few 
seconds on a single processor machine and in fractions of a 
second on pcrrcrllel supercomputers. 

Related Work: Large Bntologies 

There is some dispute in the KR community as to what ex- 
actly an “ontology” is. In particular, there is a question 
as to whether “exemplars,” the individual items filling an 
ontological definition count as part of the ontology. Thus, 
for example, does a knowledge base containing information 
about thousands of cities and the countries they are found in 
contain one assertion, that countries contain cities. or does 
it contain thousands of assertions when one includes all of 
the individual city to country mappings. While our system 
can support both kinds quite well, it is sometimes impor- 
tant to differentiate between the two. We will use the term 
trnditionnl orztolog), for the former, that is those ontologies 
consisting of only the definitions. We use the term h)hrid 
ontologies for the latter, those combining both ontological 
relations and the instances defined thereon. This second 
group may consist of a relatively small ontological part and 
a much larger example base, or as a dense combination of 
relations and instances(Stoffe1 et ~11. 1997). 

Currently, there is a significant amount of research be- 
ing done in the area of ontology development and manage- 
ment. Most of this work can be classified in three, often 
overlapping, categories: efforts to create large ontologies, 
to define expressive languages for representing ontologi- 
cal knowledge, and to implement systems which support 
ontology-based applications. 

Given page limitations, it is not feasible for us to give an 
exhaustive list of all projects currently dealing with the cre- 
ation of ontologies. Some significant examples include: ef- 
forts to create large ontology-based thesauri and dictionar- 
ies such as the Sensus project at IS1 (Knight & Luk 1994), 
or the WordNet project at Princeton (Miller 1996), efforts 
to develop domain specific ontologies such as those used 
in medicine (e.g. UMLS (UMLS 1994), SnoMed (Code 
1993)), and efforts to populate large common-sense ontolo- 
gies such as the US CYC project (Lenat & Guha 1991) and 
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the Japanese Knowledge Archive project (Inc. 1992). ’ 
As well as these efforts to create specific ontologies, an 

important concern in ontology research is to define expres- 
sive languages which can be used to define the ontologies. 
This will be very important if ontologies are to become 
easily accessible, reusable, and combinable. Examples of 
current efforts include work in OntoZingua(Gruber 1992), 
Kif(Gruber 1990), and Conceptual Graphs(Sowa 1984). 

A third set of projects are those focusing on imple- 
mentations of ontology management systems. One group 
of such systems are knowledge representation systems 
which also provide ontological support, such as Loom(Mac- 
Gregor 1994),Classic(Borgida & Patel-Schneider 1994), 
CYC(Lenat & Guha 1991), Sneps(Shapiro & Rapaport 
1992), and Kris(Baader et al. 1994) (among many others). 
While all of these systems support their own languages, and 
all are very expressive, they are currently not well suited 
to host very large ontologies because they lack secondary 
memory support, database integration and other such tech- 
niques critical for scaling KR systems to extremely large 
ontologies (and especially to the often even larger hybrid 
ontologies necessary for many current applications). 

Alternatively, there are some projects designed to di- 
rectly examine issues in scaling KR systems such as 
FramerD(Haase 1996), Lee and Geller’s (Lee & Geller 
1996) work, GKB(Karp & Paley 199S), SHRUTI(Shastri & 
Ajjanagadde 1993) and PARKA(Evett, Hendler, & Spector 
1994). All of these systems are scalable to a certain extent 
but most of them are still quite limited- FramerD is much 
closer to an Object Oriented Data Base System than to a KR 
system, GKB relies on Loom knowledge bases and is thus 
limited by the scalability of Loom, Lee and Geller’s system 
is limited to a restricted set of queries on specific parallel 
computers (the CM2 and CM5), and SHRUTI is very lim- 
ited in the number of conjunctions it can handle in a single 
query. 

The system we will describe here, is motivated by the 
PARKA research done at UMD. We are extending these al- 
gorithms into a system that does not require supercomput- 
ers. It supports a wide variety of computer systems from 
PCs to Workstations although it still does scale up to high 
end parallel computer systems. In our work, a well-defined 
low-level input language enables one to write simple trans- 
lators to reuse KBs/Ontologies defined for other systems. 
The use of secondary storage, realized by using a relational 
data base and efficient memory management allows us to 
host the largest existing ontologies. In addition, we show 
that the algorithms can be parallelized to provide even fur- 
ther scaling. (These parallel algorithms are defined using 
generic message passing primitives and scheduling mech- 
anisms to provide independence from specific machine ar- 
chitectures, but we will not discuss this in detail in this pa- 
per.(Stoffel, Hendler, & Saltz 1995)) 

‘The CYC ontology is part of a large system which includes 
inference algorithms and language definitions, thus spanning all 
three of the above categories. 

Motivating Examples 
In this section, we describe three ontologies we are using 
for various applications and for the testing of our system. 
We choose these three as all are publicly available to the re- 
search community.2 We will briefly describe their contents, 
structure, and how they are used. Based on the definitions 
in the previous section, two of these ontologies, UMLS and 
WordNet, are “Traditional Ontologies.” The third, Caper, is 
a hybrid ontology. 

UMLS (Unified Medical Language System) 

UMLS is a large medical ontology created by the National 
Library of Medicine. NLM developed this system to sup- 
port a wide range of medical applications including de- 
scriptions of biomedical literature, categorization of clinical 
records, development of patient databanks, and domain def- 
initions for knowledge-based systems. The main thesaurus 
of UMLS consists of 178,904 frames when represented as a 
semantic net. There are a total of7 relations (link types) de- 
fined over these providing a total of 1,729,8 17 assertions in 
all. We use this ontology in a project at the Johns Hopkins 
Hospital to create a high level interface for browsing sev- 
eral lab databases as well as to do some data mining tasks 
on these databases(Stoffe1 et al. 1997). 

Word Net 

“WordNet is an on-line lexical reference system whose 
design is inspired by current psycholinguistic theories 
of human lexical memory” ((Miller 1996),page I ). Al- 
though the system was primarily developed with natural 
language processing researchers in mind. the ontology it 
defines has been proposed as a standard one for com- 
paring knowledge-based systems. Like UMLS, the on- 
tology is comprised of concepts in a class-subclass hi- 
erarchy and a small number of attributes relating these. 
These attributes and their occurrences are: Sense ( 167,7 l6), 
Antonym (7,189), SimilarTo (20,050), ParticipleOfVerb 
(89), Attribute (636), AlsoSee (3,526), Pertainym (3,539), 
DerivedFromAdj (2,894), partHolonym (5,694), substance- 
Holonym (366), partMeronym (5,694), memberMeronym 
(1 1,47 l), memberHolonym (1 1,472), attribute (636), sub- 
stanceMeronym 366, Entailment (435), and Cause (204). 
The total number of frames is 217,623 and the ontology 
contains 385.77 1 assertions. 

Caper 

Caper is a large hybrid ontology used by a case-based 
AI planning system(Kettler 1995). While it is about the 
same size as UMLS, it has a very different structure. In 
particular, Caper has significantly more attributes ( I 12) 
and a shallower ontology. In all, these attributes relate 
I 16,297 frames, and I ,768,832 total links. Three large Ca- 

per knowledge bases are available on the World Wide Web 
at (http://www.cs.umd.edu/projects/parka ). 

OUI 

‘Other very large examples have been usecl in applications 01‘ 
system, but they contain private and/or liccnscd material. 
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System Structure 
We are developing a system which supports the storage, 
loading, querying and updating of very large ontologies 
such as those above. Although this paper concentrates 
mainly on the querying, as this is crucial in enabling these 
other capabilities, in this section we describe the overall 
structure of our approach. 

The system consists basically of three layers. The lowest 
level of the system is based on a relational data base man- 
agement system (RDBMS). This layer manages all I/O op- 
erations, as well as some simple relational operations such 
as selects, joins and projections used in processing the on- 
tology queries. This layer is also used to maintain (insert, 
delete, update) the relationships in the ontology and, in the 
case of hybrid ontologies, the lower-level instance data. 

The second level consists of a set of efficient inferenc- 
ing algorithms. As well as simple inheritance, these al- 
gorithms also support inferential distance ordering inher- 
itance (Horty, Thomason, & Touretzky 1987), transitive 
closures on arbitrary predicates, and transfer-through infer- 
ences(Lenat & Guha 1991). This level sends basic requests 
(I/O and relational operations) to the database level. The 
relational table returned is used by the inferencing modules 
and the result produced is is sent back to the first level for 
storage in the RDBMS. 

The third level is a general-purpose user interface. It al- 
lows the user to insert, delete and update information in the 
ontology and also to pose queries. These operations can be 
done through a graphical user interface. However, to allow 
large ontologies to be embedded in other computer systems 
(such as our datamining program (Stoffel et al. 1997)), the 
system also can be invoked via an API which allows front- 
end processes to access the system. The API offers a su- 
perset of the functionality of the graphical interface in the 
form of Remote Procedure Calls (RPCs). 

Internal Data Structures 
All information contained in the ontology is stored in the 
relational database system. In this section we describe the 
two important specialized datastructures used to maintain 
this information.’ 

For efficiency, we separate out those links used in the 
often-called inheritance algorithms, and load these di- 
rectly into memory as soon as an ontology is loaded into 
the system. These structural links, which encode the 
class/subclass hierarchy, are converted from a relational 
representation (table) into the first datastructure, a DAG (di- 
rected acyclic graph) which is kept in memory because it is 
repeatedly accessed during the inferencing, and it would be 
too inefficient to load it from disk repeatedly. The DAG 
is encoded as an array of integers which provides for ex- 
tremely efficient access. This is an example of how our ap- 
proach optimizes performance for ontological, as opposed 
to database, use. 

‘In the actual implementation there are also a number of other 
datastructures used to maintain indices, translation tables, and 
other such low-level data, but space precludes the discussion of 
these details. 

The second important datastructure maintains all the 
other, non-structural, attributes. These are stored in binary 
relational tables in the database. For each attribute. there 
exists a table with two columns with the first column con- 
taining an integer “ID” corresponding to a specific frame, 
and the second contains the ID for the value for this at- 
tribute. The advantage of keeping all attributes in separate 
binary tables is that only the minimal amount of data has 
to be loaded when information for a concept is requested. 
If multiple attributes were stored in a single relation, the 
whole table would have to be loaded even if only one at- 
tribute was of interest. Again, this is an optimization de- 
signed to support large ontologies. 

Serial Algorithm 
The serial algorithm to process ontological queries consists 
of two main parts. First, a preprocessing step divides a 
complex query into its underlying constituents and gener- 
ates a join tree specifying the order in which to execute and 
combine the subqueries that is expected to best optimize 
the performance. The preprocessor also schedules substring 
matches for queries in which variables specifying a partial 
string are used (an example of this is query UMLS2, defined 
below). 

Second, a loop is used to fetch the data needed for each 
join and to perform the requisite inferencing. This second 
part consists of three main steps. First, the relational tables 
needed for a particular subquery’s inferencing are loaded 
from the RDBMS. These tables can be the relations spec- 
ifying a particular attribute or may be intermediate results 
produced by a previous iteration. Following this, the in- 
ference algorithms (inheritance, closure, etc) are applied in 
core using the data loaded in the previous step. Finally, the 
resulting data is joined with previous intermediate results 
and stored back into the database. This algorithm repeats 
until all of the subqueries in the join tree are completed. 

A key feature of this algorithm, keeping it efficient fol 
very large ontologies, is this use of the relational database 
to store the ontology. Since these tables, which can be very 
large, are not kept in primary memory, the inferencing al- 
gorithms can be made very efficient. In particular, for very 
large ontologies we can exploit space/time tradeoffs by us- 
ing a maximal portion of the online memory to process in- 
ferencing instead of using it to store the ontology and/or the 
large intermediate datastructures which may be generated 
in the loop described above.4 

Example Queries and Results 
To test our system, we have run it on a wide range of queries 
over the large ontologies described above and a number of 
others. In this paper, we present a small sample of these 
that appear to be typical of our performance, but are easily 
described. These queries are expressed with respect to the 
terms and attributes described previously. Each query is 
a conjunctive query that consists of variable and constants 

41n practice, the efficiency gained by the algorithms more 
outweighs the overhead of moving data to and from the disk. 

than 
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that must unify against the ontology. For each query we 
present the number of variables in the query and the number 
of matches found in the ontology. 

UMLS queries are used in medical systems as described 
above. We choose two queries that are typical of the key- 
word search and ontological inferencing used in medical 
informatic systems. 

UMLS 1: Find everything that isA streptococcaceae 
and a sibling of lactococcu and is qualified by chem- 
istry. (1 variable, 4 results) 
UMLS2: Find everything that isA organism and that 
contains the string virus. (1 variable, 346 results) 

The WordNet system comes with a query engine which 
can be used for finding synonyms, hierarchical relations, 
etc. This query engine is significantly stressed by queries 
which must explore large subontologies. We demonstrate 
our system on two of these, particularly finding all animals 
and mammals respectively in WordNet. The third query 
demonstrates the efficiency of our algorithm on a complex 
query combining two attributes (hyponyms and member 
meronyms). Such queries are difficult to express to the 
WordNet query engine and extremely inefficient. 

WordNet 1: Find all senses of animal and all of their 
lzyponyms. (1 variable, 7691 results) 
WordNet2: Find all senses of nzanznzal and all of their 
hyponynzs ( 1 variable, 223 1 results) 
WordNet3: find all senses of tree and all of their h)l- 
ponynzs which are member merorz)lnzs of all senses of 
genus citrus. (1 variable, 62 results). 

The queries used in Caper were generated by a case- 
based planning system as part of its problem solving as re- 
ported in (Kettler 1995). These three queries are more com- 
plex than the previous in that they contain 5- 10 attributes 
relating up to 10 variables, which we believe is typical of 
useful queries in these sorts of hybrid ontologies. (For these 
queries we use a paraphrase rather than the form above, so 
we also specify the number of different attributes they in- 
clude.) 

Caperl: Find all plans in which a train delivered a 
package to a particular location. (5 variables, 6 at- 
tributes, 10 1 results). 
Caper2: Find all top-level plans using a Regular truck 
(6 variables, 7 attributes, 269 results). 
Caper3: Show me the cities in which a tanker has been 
used for delivering a liquid cargo. (7 variables, 8 at- 
tributes, 23 results). 

IResults Using our system, the queries above were run on 
an IBM RS6000 workstation. We report the timings in Ta- 
ble 1. We were able to issue queries WordNet 1 and Word- 
Net2 to the query engine supplied with the WordNet on- 
tology. The WordNet engine evaluated WordNet in 17 
seconds, as compared to our 3.2 seconds. For WordNet2, 
our system again takes about 3 seconds, while the WordNet 
query engine took 4 minutes, followed by a request to re- 
strict the query. Further, in our system the timings for these 
two queries are very similar differing by only .2 seconds 

Query Time Query Time 
WordNet 1 3315 Caper 1 713 
WordNet 2 3 123 Caper 2 1051 
WordNet 3 4440 Caper 3 1776 
UMLS 1 1845 UMLS 2 23 

Table 1: Sequential results (times in ms.) 

despite the large difference in number of results returned, 
while WordNet shows a great difference particularly when 
the subontology necessary to a query is also large. 

As can be seen, these single processor results are quite 
good, and they are significantly better than those reported in 
the literature for the systems discussed in the related work 
section. Unfortunatel;, direct comparisons are impossible 
because the cited papers do not report exactly what queries 
were used with WordNet, UMLS, or other publicly avail- 
able ontologies. 

Parallel Algorithms 
The most obvious way to parallelize the basic algorithm 
described above is a “task parallelization” approach, evalu- 
ating each subquery in parallel and combining all results as 
they become available (c.f. (Andersen et al. 1994)). How- 
ever, this parallelization tends to utilize only a small num- 
ber of processors and can leave other processors idle espe- 
cially when queries have fewer subqueries than the avail- 
able number of processors. (For example WordNet I and 2 
would only use one of n available processors). It is our ex- 
perience, however, that in handling large ontologies, these 
sorts of queries are quite prevalent. For example, all of the 
queries reported above would allow processors to go idle 
even on a 16-node machine. 

To get better utilization for large ontologies, we move 
to a “data parallel” approach. In particular, each processor 
only loads parts of the relational table for a given query, and 
subquery processing on these parts 
The algorithm, for n processors: 

can OCCUl in parallel. 

On one processor, preprocess the query and broadcast 
this to all other nodes 

For each subquery 
On processor P, load the Pth partition of the 

necessary relational tables (where a partition 
is l/n tuples) 

On processor P, execute the required inferences 
using data in partition P 

Processors all-to-all broadcast partial results 
for this subquery 

On processor P, for each partial result received 
join the result with previous intermediate 
result and write this into the database 
as a new intermediate result 

When no more subqueries, processors scatter partial 
results and guthev these on NodeO. 

Return the result gathered on NodeO. 
This approach has a significantly higher degree of paral- 

lelism then the former. In theory, the maximal number of 
processors that could be used is only limited by the size of 
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[ Query 1 2 4 8 16 
WordNet 1 3315 1756 981 655 497 
WordNet 3 123 1552 888 532 404 
WordNet 4440 3014 1405 917 739 
UMLS 1 1845 800 414 223 144 
Caper 1 713 542 434 381 363 
Caper2 1051 904 883 909 1201 
Caper3 1776 1293 1036 955 1058 

Table 2: Parallel Results (times in ms.) 

the largest relation. In practical applications, this number is 
typically much higher then the number of available proces- 
sors. There is, however, a trade-off between the degree of 
parallelism and the time for the all-to-all broadcast used to 
exchange partial results. The amount of data sent per pro- 
cessor is approximately (n--l)*Lesult’), which is roughly 
the same amount of data each node will receive in total. 
(This is only an approximation because we have no guaran- 
tee that the data is perfectly distributed.) Thus, for a given 
node the amount of data sent after each subquery grows 
with the number of processors and for large n is about the 
same size as the size of the whole result (i.e. as n gets large, 
nearly n2 data must be broadcast). On the other hand the 
amount of total disk I/O operations per processor is linearly 
reduced and these operations are often much more expen- 
sive than the broadcasts. In addition, the total inferencing 
part also speeds up, because the amount of data the infer- 
ence algorithms are applied to is reduced by a factor of YZ. 

Parallel Results 

The queries presented previously were evaluated by our 
system in parallel using 2, 4, 8, and 16 processors on an 
IBM SP2 parallel computer. We report the timings in Ta- 
ble 2.” For UMLS and WordNet, the “traditional ontolo- 
gies,” the query evaluation times decreased as the number 
of available processors increased. The times for WordNetS, 
for example, drop from 4.4 seconds to .74 seconds on 16 
processors (about 40% efficiency). 

The query times for the hybrid ontology, Caper, do not 
exhibit the same behavior. Our system performs well on 
the other two primarily because of the efficiency of our in- 
ferencing algorithms. For the examples on the hybrid ontol- 
ogy, our system speeds up through eight nodes but degrades 
slightly thereafter. This is because the hybrid ontologies 
require significantly more complex database-like process- 
ing. Since our system is currently optimized for larger on- 
tologies, the current database algorithms do not speed up 
enough to overcome the additional communication burden. 
This can be overcome by doing a better data distribution, 
and we are currently exploring this issue. 

5UMLS2, which took 23 milliseconds on a serial machine was 
not used as there is no parallel advantage for such simple queries. 

Conclusion and Future Work 
We have presented efficient algorithms for query processing 
in several existent very large ontologies. We have shown 
how using secondary storage in the form of a relational 
database, using efficient memory management and using 
high performance computing technology enabled us to han- 
dle very large ontologies for both single and parallel pro- 
cessing applications. We demonstrated the efficiency of 
these algorithms using three very large ontologies each con- 
taining hundreds of thousands of assertions, showing how 
we process queries in a few seconds on a single-processor 
and in fractions of seconds on a multi-processor system, 
showing the high degree of scalability for our work. 

The next steps in the development of the system will 
be to automate the translation of ontologies from/to some 
of the standard representation languages such as On- 
tolingua and Kif. We also intend to extend the num- 
ber of KBs and sample queries (with details and results) 
which we have already made available on the WWW 
(http://www.cs.umd.edu/projects/parka ). We are also con- 
tinuing to push the application of this technology, especially 
to the use of large ontologies in KDD. 

As discussed above, our system is efficient for hybrid on- 
tologies, but may not scale as well to very large parallel su- 
percomputers. To solve this problem, we are are exploring 
the integration of our system with other, more advanced, 
databases particularly parallel DB systems. (For example, 
the binary structure of the relations we use to record at- 
tributes is similar to those used by the parallel RDBMS 
MONET(Holsheimer, Kersten, & Siebes 1996), and thus 
map nicely onto that system.) Similarly, other aspects of 
our system resemble features of object-oriented databases 
and we are exploring OSQL and other such languages for 
integration with these. 
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