
Efficient Management of Very Large Ontologies*

Kilian Stoffel, Merwyn Taylor and Jim Hendler
University of Maryland

Computer Science Department
College Park, MD, 20742

{stoffel, mtaylor, hendler}@cs.umd.edu

Abstract

This paper describes an environment for supporting very
large ontologies. The system can be used on single PCs,
workstations, a cluster of workstations, and high-end paral-
lel supercomputers. The architecture of the system uses the
secondary storage of a relational data base system, efficient
memory management, and (optionally) parallelism. This al-
lows us to answer complex queries in very large ontologies
in a few seconds on a single processor machine and in frac-
tions of a second on parallel super computers. The main
contribution of our approach is the open architecture of the
system on both the hardware and the software levels allow-
ing us easily to translate existing ontologies for our system’s
use, and to port the system to a wide range of platforms.

Introduction
Ontologies have been a part of research in AI for a long
time, for example, ontology-based thesauri have been an
important part of research in Natural Language Processing.
In the last few years, however, ontologies have become in-
creasingly important throughout AI. Systems such as CYC
(Lenat & Guha 1991) and ISI’s Sensus Project (Knight &
Luk 1994) have shown the need for larger ontologies, as
have newer research directions such as Knowledge Discov-
ery in Databases (KDD) and intelligent internet-search en-
gines, to name but two. With this growing interest, new
efforts to make ontologies accessible to a larger user com-
munity, and to scale the size of these ontologies, have been
undertaken. In addition, projects such as the the Knowledge
Sharing Effort, which facilitate the combination of differ-
ent small ontologies into larger and more complex ones,
increase the need for scalable ontology support tools. Cur-
rently, most ontology-management systems cannot support
the extremely large ontologies needed for such projects.

In this paper, we focus on supporting the querying and
management of significantly larger ontologies. The system
described here was created to manage ontologies of essen-
tially unlimited size. In the next section, we describe dif-
ferent approaches to ontology management. The section
after that provides some example ontologies used in prac-
tical applications. We then describe the implementation of

Copyright @ 1997 American Association
ligence (www.aaai.org). All rights reserved

for Artificial Intel-

our system and provide a series of performance results on
single and multi processor machines showing that we can
answer complex queries in very large ontologies in a few
seconds on a single processor machine and in fractions of a
second on pcrrcrllel supercomputers.

Related Work: Large Bntologies

There is some dispute in the KR community as to what ex-
actly an “ontology” is. In particular, there is a question
as to whether “exemplars,” the individual items filling an
ontological definition count as part of the ontology. Thus,
for example, does a knowledge base containing information
about thousands of cities and the countries they are found in
contain one assertion, that countries contain cities. or does
it contain thousands of assertions when one includes all of
the individual city to country mappings. While our system
can support both kinds quite well, it is sometimes impor-
tant to differentiate between the two. We will use the term
trnditionnl orztolog), for the former, that is those ontologies
consisting of only the definitions. We use the term h)hrid
ontologies for the latter, those combining both ontological
relations and the instances defined thereon. This second
group may consist of a relatively small ontological part and
a much larger example base, or as a dense combination of
relations and instances(Stoffe1 et ~11. 1997).

Currently, there is a significant amount of research be-
ing done in the area of ontology development and manage-
ment. Most of this work can be classified in three, often
overlapping, categories: efforts to create large ontologies,
to define expressive languages for representing ontologi-
cal knowledge, and to implement systems which support
ontology-based applications.

Given page limitations, it is not feasible for us to give an
exhaustive list of all projects currently dealing with the cre-
ation of ontologies. Some significant examples include: ef-
forts to create large ontology-based thesauri and dictionar-
ies such as the Sensus project at IS1 (Knight & Luk 1994),
or the WordNet project at Princeton (Miller 1996), efforts
to develop domain specific ontologies such as those used
in medicine (e.g. UMLS (UMLS 1994), SnoMed (Code
1993)), and efforts to populate large common-sense ontolo-
gies such as the US CYC project (Lenat & Guha 1991) and

442 KNOWLEDGE REPRESENTATION

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

the Japanese Knowledge Archive project (Inc. 1992). ’
As well as these efforts to create specific ontologies, an

important concern in ontology research is to define expres-
sive languages which can be used to define the ontologies.
This will be very important if ontologies are to become
easily accessible, reusable, and combinable. Examples of
current efforts include work in OntoZingua(Gruber 1992),
Kif(Gruber 1990), and Conceptual Graphs(Sowa 1984).

A third set of projects are those focusing on imple-
mentations of ontology management systems. One group
of such systems are knowledge representation systems
which also provide ontological support, such as Loom(Mac-
Gregor 1994),Classic(Borgida & Patel-Schneider 1994),
CYC(Lenat & Guha 1991), Sneps(Shapiro & Rapaport
1992), and Kris(Baader et al. 1994) (among many others).
While all of these systems support their own languages, and
all are very expressive, they are currently not well suited
to host very large ontologies because they lack secondary
memory support, database integration and other such tech-
niques critical for scaling KR systems to extremely large
ontologies (and especially to the often even larger hybrid
ontologies necessary for many current applications).

Alternatively, there are some projects designed to di-
rectly examine issues in scaling KR systems such as
FramerD(Haase 1996), Lee and Geller’s (Lee & Geller
1996) work, GKB(Karp & Paley 199S), SHRUTI(Shastri &
Ajjanagadde 1993) and PARKA(Evett, Hendler, & Spector
1994). All of these systems are scalable to a certain extent
but most of them are still quite limited- FramerD is much
closer to an Object Oriented Data Base System than to a KR
system, GKB relies on Loom knowledge bases and is thus
limited by the scalability of Loom, Lee and Geller’s system
is limited to a restricted set of queries on specific parallel
computers (the CM2 and CM5), and SHRUTI is very lim-
ited in the number of conjunctions it can handle in a single
query.

The system we will describe here, is motivated by the
PARKA research done at UMD. We are extending these al-
gorithms into a system that does not require supercomput-
ers. It supports a wide variety of computer systems from
PCs to Workstations although it still does scale up to high
end parallel computer systems. In our work, a well-defined
low-level input language enables one to write simple trans-
lators to reuse KBs/Ontologies defined for other systems.
The use of secondary storage, realized by using a relational
data base and efficient memory management allows us to
host the largest existing ontologies. In addition, we show
that the algorithms can be parallelized to provide even fur-
ther scaling. (These parallel algorithms are defined using
generic message passing primitives and scheduling mech-
anisms to provide independence from specific machine ar-
chitectures, but we will not discuss this in detail in this pa-
per.(Stoffel, Hendler, & Saltz 1995))

‘The CYC ontology is part of a large system which includes
inference algorithms and language definitions, thus spanning all
three of the above categories.

Motivating Examples
In this section, we describe three ontologies we are using
for various applications and for the testing of our system.
We choose these three as all are publicly available to the re-
search community.2 We will briefly describe their contents,
structure, and how they are used. Based on the definitions
in the previous section, two of these ontologies, UMLS and
WordNet, are “Traditional Ontologies.” The third, Caper, is
a hybrid ontology.

UMLS (Unified Medical Language System)

UMLS is a large medical ontology created by the National
Library of Medicine. NLM developed this system to sup-
port a wide range of medical applications including de-
scriptions of biomedical literature, categorization of clinical
records, development of patient databanks, and domain def-
initions for knowledge-based systems. The main thesaurus
of UMLS consists of 178,904 frames when represented as a
semantic net. There are a total of7 relations (link types) de-
fined over these providing a total of 1,729,8 17 assertions in
all. We use this ontology in a project at the Johns Hopkins
Hospital to create a high level interface for browsing sev-
eral lab databases as well as to do some data mining tasks
on these databases(Stoffe1 et al. 1997).

Word Net

“WordNet is an on-line lexical reference system whose
design is inspired by current psycholinguistic theories
of human lexical memory” ((Miller 1996),page I). Al-
though the system was primarily developed with natural
language processing researchers in mind. the ontology it
defines has been proposed as a standard one for com-
paring knowledge-based systems. Like UMLS, the on-
tology is comprised of concepts in a class-subclass hi-
erarchy and a small number of attributes relating these.
These attributes and their occurrences are: Sense (167,7 l6),
Antonym (7,189), SimilarTo (20,050), ParticipleOfVerb
(89), Attribute (636), AlsoSee (3,526), Pertainym (3,539),
DerivedFromAdj (2,894), partHolonym (5,694), substance-
Holonym (366), partMeronym (5,694), memberMeronym
(1 1,47 l), memberHolonym (1 1,472), attribute (636), sub-
stanceMeronym 366, Entailment (435), and Cause (204).
The total number of frames is 217,623 and the ontology
contains 385.77 1 assertions.

Caper

Caper is a large hybrid ontology used by a case-based
AI planning system(Kettler 1995). While it is about the
same size as UMLS, it has a very different structure. In
particular, Caper has significantly more attributes (I 12)
and a shallower ontology. In all, these attributes relate
I 16,297 frames, and I ,768,832 total links. Three large Ca-

per knowledge bases are available on the World Wide Web
at (http://www.cs.umd.edu/projects/parka).

OUI

‘Other very large examples have been usecl in applications 01‘
system, but they contain private and/or liccnscd material.

ONTOLOGIES 443

System Structure
We are developing a system which supports the storage,
loading, querying and updating of very large ontologies
such as those above. Although this paper concentrates
mainly on the querying, as this is crucial in enabling these
other capabilities, in this section we describe the overall
structure of our approach.

The system consists basically of three layers. The lowest
level of the system is based on a relational data base man-
agement system (RDBMS). This layer manages all I/O op-
erations, as well as some simple relational operations such
as selects, joins and projections used in processing the on-
tology queries. This layer is also used to maintain (insert,
delete, update) the relationships in the ontology and, in the
case of hybrid ontologies, the lower-level instance data.

The second level consists of a set of efficient inferenc-
ing algorithms. As well as simple inheritance, these al-
gorithms also support inferential distance ordering inher-
itance (Horty, Thomason, & Touretzky 1987), transitive
closures on arbitrary predicates, and transfer-through infer-
ences(Lenat & Guha 1991). This level sends basic requests
(I/O and relational operations) to the database level. The
relational table returned is used by the inferencing modules
and the result produced is is sent back to the first level for
storage in the RDBMS.

The third level is a general-purpose user interface. It al-
lows the user to insert, delete and update information in the
ontology and also to pose queries. These operations can be
done through a graphical user interface. However, to allow
large ontologies to be embedded in other computer systems
(such as our datamining program (Stoffel et al. 1997)), the
system also can be invoked via an API which allows front-
end processes to access the system. The API offers a su-
perset of the functionality of the graphical interface in the
form of Remote Procedure Calls (RPCs).

Internal Data Structures
All information contained in the ontology is stored in the
relational database system. In this section we describe the
two important specialized datastructures used to maintain
this information.’

For efficiency, we separate out those links used in the
often-called inheritance algorithms, and load these di-
rectly into memory as soon as an ontology is loaded into
the system. These structural links, which encode the
class/subclass hierarchy, are converted from a relational
representation (table) into the first datastructure, a DAG (di-
rected acyclic graph) which is kept in memory because it is
repeatedly accessed during the inferencing, and it would be
too inefficient to load it from disk repeatedly. The DAG
is encoded as an array of integers which provides for ex-
tremely efficient access. This is an example of how our ap-
proach optimizes performance for ontological, as opposed
to database, use.

‘In the actual implementation there are also a number of other
datastructures used to maintain indices, translation tables, and
other such low-level data, but space precludes the discussion of
these details.

The second important datastructure maintains all the
other, non-structural, attributes. These are stored in binary
relational tables in the database. For each attribute. there
exists a table with two columns with the first column con-
taining an integer “ID” corresponding to a specific frame,
and the second contains the ID for the value for this at-
tribute. The advantage of keeping all attributes in separate
binary tables is that only the minimal amount of data has
to be loaded when information for a concept is requested.
If multiple attributes were stored in a single relation, the
whole table would have to be loaded even if only one at-
tribute was of interest. Again, this is an optimization de-
signed to support large ontologies.

Serial Algorithm
The serial algorithm to process ontological queries consists
of two main parts. First, a preprocessing step divides a
complex query into its underlying constituents and gener-
ates a join tree specifying the order in which to execute and
combine the subqueries that is expected to best optimize
the performance. The preprocessor also schedules substring
matches for queries in which variables specifying a partial
string are used (an example of this is query UMLS2, defined
below).

Second, a loop is used to fetch the data needed for each
join and to perform the requisite inferencing. This second
part consists of three main steps. First, the relational tables
needed for a particular subquery’s inferencing are loaded
from the RDBMS. These tables can be the relations spec-
ifying a particular attribute or may be intermediate results
produced by a previous iteration. Following this, the in-
ference algorithms (inheritance, closure, etc) are applied in
core using the data loaded in the previous step. Finally, the
resulting data is joined with previous intermediate results
and stored back into the database. This algorithm repeats
until all of the subqueries in the join tree are completed.

A key feature of this algorithm, keeping it efficient fol
very large ontologies, is this use of the relational database
to store the ontology. Since these tables, which can be very
large, are not kept in primary memory, the inferencing al-
gorithms can be made very efficient. In particular, for very
large ontologies we can exploit space/time tradeoffs by us-
ing a maximal portion of the online memory to process in-
ferencing instead of using it to store the ontology and/or the
large intermediate datastructures which may be generated
in the loop described above.4

Example Queries and Results
To test our system, we have run it on a wide range of queries
over the large ontologies described above and a number of
others. In this paper, we present a small sample of these
that appear to be typical of our performance, but are easily
described. These queries are expressed with respect to the
terms and attributes described previously. Each query is
a conjunctive query that consists of variable and constants

41n practice, the efficiency gained by the algorithms more
outweighs the overhead of moving data to and from the disk.

than

444 KNOWLEDGE REPRESENTATION

that must unify against the ontology. For each query we
present the number of variables in the query and the number
of matches found in the ontology.

UMLS queries are used in medical systems as described
above. We choose two queries that are typical of the key-
word search and ontological inferencing used in medical
informatic systems.

UMLS 1: Find everything that isA streptococcaceae
and a sibling of lactococcu and is qualified by chem-
istry. (1 variable, 4 results)
UMLS2: Find everything that isA organism and that
contains the string virus. (1 variable, 346 results)

The WordNet system comes with a query engine which
can be used for finding synonyms, hierarchical relations,
etc. This query engine is significantly stressed by queries
which must explore large subontologies. We demonstrate
our system on two of these, particularly finding all animals
and mammals respectively in WordNet. The third query
demonstrates the efficiency of our algorithm on a complex
query combining two attributes (hyponyms and member
meronyms). Such queries are difficult to express to the
WordNet query engine and extremely inefficient.

WordNet 1: Find all senses of animal and all of their
lzyponyms. (1 variable, 7691 results)
WordNet2: Find all senses of nzanznzal and all of their
hyponynzs (1 variable, 223 1 results)
WordNet3: find all senses of tree and all of their h)l-
ponynzs which are member merorz)lnzs of all senses of
genus citrus. (1 variable, 62 results).

The queries used in Caper were generated by a case-
based planning system as part of its problem solving as re-
ported in (Kettler 1995). These three queries are more com-
plex than the previous in that they contain 5- 10 attributes
relating up to 10 variables, which we believe is typical of
useful queries in these sorts of hybrid ontologies. (For these
queries we use a paraphrase rather than the form above, so
we also specify the number of different attributes they in-
clude.)

Caperl: Find all plans in which a train delivered a
package to a particular location. (5 variables, 6 at-
tributes, 10 1 results).
Caper2: Find all top-level plans using a Regular truck
(6 variables, 7 attributes, 269 results).
Caper3: Show me the cities in which a tanker has been
used for delivering a liquid cargo. (7 variables, 8 at-
tributes, 23 results).

IResults Using our system, the queries above were run on
an IBM RS6000 workstation. We report the timings in Ta-
ble 1. We were able to issue queries WordNet 1 and Word-
Net2 to the query engine supplied with the WordNet on-
tology. The WordNet engine evaluated WordNet in 17
seconds, as compared to our 3.2 seconds. For WordNet2,
our system again takes about 3 seconds, while the WordNet
query engine took 4 minutes, followed by a request to re-
strict the query. Further, in our system the timings for these
two queries are very similar differing by only .2 seconds

Query Time Query Time
WordNet 1 3315 Caper 1 713
WordNet 2 3 123 Caper 2 1051
WordNet 3 4440 Caper 3 1776
UMLS 1 1845 UMLS 2 23

Table 1: Sequential results (times in ms.)

despite the large difference in number of results returned,
while WordNet shows a great difference particularly when
the subontology necessary to a query is also large.

As can be seen, these single processor results are quite
good, and they are significantly better than those reported in
the literature for the systems discussed in the related work
section. Unfortunatel;, direct comparisons are impossible
because the cited papers do not report exactly what queries
were used with WordNet, UMLS, or other publicly avail-
able ontologies.

Parallel Algorithms
The most obvious way to parallelize the basic algorithm
described above is a “task parallelization” approach, evalu-
ating each subquery in parallel and combining all results as
they become available (c.f. (Andersen et al. 1994)). How-
ever, this parallelization tends to utilize only a small num-
ber of processors and can leave other processors idle espe-
cially when queries have fewer subqueries than the avail-
able number of processors. (For example WordNet I and 2
would only use one of n available processors). It is our ex-
perience, however, that in handling large ontologies, these
sorts of queries are quite prevalent. For example, all of the
queries reported above would allow processors to go idle
even on a 16-node machine.

To get better utilization for large ontologies, we move
to a “data parallel” approach. In particular, each processor
only loads parts of the relational table for a given query, and
subquery processing on these parts
The algorithm, for n processors:

can OCCUl in parallel.

On one processor, preprocess the query and broadcast
this to all other nodes

For each subquery
On processor P, load the Pth partition of the

necessary relational tables (where a partition
is l/n tuples)

On processor P, execute the required inferences
using data in partition P

Processors all-to-all broadcast partial results
for this subquery

On processor P, for each partial result received
join the result with previous intermediate
result and write this into the database
as a new intermediate result

When no more subqueries, processors scatter partial
results and guthev these on NodeO.

Return the result gathered on NodeO.
This approach has a significantly higher degree of paral-

lelism then the former. In theory, the maximal number of
processors that could be used is only limited by the size of

ONTOLOGIES 445

[Query 1 2 4 8 16
WordNet 1 3315 1756 981 655 497
WordNet 3 123 1552 888 532 404
WordNet 4440 3014 1405 917 739
UMLS 1 1845 800 414 223 144
Caper 1 713 542 434 381 363
Caper2 1051 904 883 909 1201
Caper3 1776 1293 1036 955 1058

Table 2: Parallel Results (times in ms.)

the largest relation. In practical applications, this number is
typically much higher then the number of available proces-
sors. There is, however, a trade-off between the degree of
parallelism and the time for the all-to-all broadcast used to
exchange partial results. The amount of data sent per pro-
cessor is approximately (n--l)*Lesult’), which is roughly
the same amount of data each node will receive in total.
(This is only an approximation because we have no guaran-
tee that the data is perfectly distributed.) Thus, for a given
node the amount of data sent after each subquery grows
with the number of processors and for large n is about the
same size as the size of the whole result (i.e. as n gets large,
nearly n2 data must be broadcast). On the other hand the
amount of total disk I/O operations per processor is linearly
reduced and these operations are often much more expen-
sive than the broadcasts. In addition, the total inferencing
part also speeds up, because the amount of data the infer-
ence algorithms are applied to is reduced by a factor of YZ.

Parallel Results

The queries presented previously were evaluated by our
system in parallel using 2, 4, 8, and 16 processors on an
IBM SP2 parallel computer. We report the timings in Ta-
ble 2.” For UMLS and WordNet, the “traditional ontolo-
gies,” the query evaluation times decreased as the number
of available processors increased. The times for WordNetS,
for example, drop from 4.4 seconds to .74 seconds on 16
processors (about 40% efficiency).

The query times for the hybrid ontology, Caper, do not
exhibit the same behavior. Our system performs well on
the other two primarily because of the efficiency of our in-
ferencing algorithms. For the examples on the hybrid ontol-
ogy, our system speeds up through eight nodes but degrades
slightly thereafter. This is because the hybrid ontologies
require significantly more complex database-like process-
ing. Since our system is currently optimized for larger on-
tologies, the current database algorithms do not speed up
enough to overcome the additional communication burden.
This can be overcome by doing a better data distribution,
and we are currently exploring this issue.

5UMLS2, which took 23 milliseconds on a serial machine was
not used as there is no parallel advantage for such simple queries.

Conclusion and Future Work
We have presented efficient algorithms for query processing
in several existent very large ontologies. We have shown
how using secondary storage in the form of a relational
database, using efficient memory management and using
high performance computing technology enabled us to han-
dle very large ontologies for both single and parallel pro-
cessing applications. We demonstrated the efficiency of
these algorithms using three very large ontologies each con-
taining hundreds of thousands of assertions, showing how
we process queries in a few seconds on a single-processor
and in fractions of seconds on a multi-processor system,
showing the high degree of scalability for our work.

The next steps in the development of the system will
be to automate the translation of ontologies from/to some
of the standard representation languages such as On-
tolingua and Kif. We also intend to extend the num-
ber of KBs and sample queries (with details and results)
which we have already made available on the WWW
(http://www.cs.umd.edu/projects/parka). We are also con-
tinuing to push the application of this technology, especially
to the use of large ontologies in KDD.

As discussed above, our system is efficient for hybrid on-
tologies, but may not scale as well to very large parallel su-
percomputers. To solve this problem, we are are exploring
the integration of our system with other, more advanced,
databases particularly parallel DB systems. (For example,
the binary structure of the relations we use to record at-
tributes is similar to those used by the parallel RDBMS
MONET(Holsheimer, Kersten, & Siebes 1996), and thus
map nicely onto that system.) Similarly, other aspects of
our system resemble features of object-oriented databases
and we are exploring OSQL and other such languages for
integration with these.

Acknowledgments
This research was supported in part by grants from
ONR (NO00 14-J-9 1 - 145 1), ARPA (NO00 14-94- 1090,
DAST-95-C003, F30602-93-C-0039), and the ARL
(DAAH049610297). Dr. Hendler is also affiliated with the
UM Institute for Systems Research (NSF Grant NSF EEC
94-02384).

References
1994. Proceedings of the 12th National Conference of
the American Association for Artificial Intelligence, AAAI
Press, MIT Press.

Andersen, W.; Evett, M.; Hendler, J.; and Kettler,
B. 1994. Massively Parullel Matching of Knowledge
Structures. Massively Parallel Artificial Intelligence.
AAAI/MIT Press.
Baader, F.; Hollunder, B.; Nebel, B.; Profitlich, H.-J.; and
Franconi, E. 1994. An empirical analysis of optimiza-
tion techniques for terminological representation systems
or “making KRIS get a move on”. Applied Intelligence
4(2): 109-l 32.

446 KNOWLEDGE REPRESENTATION

Borgida, A., and Patel-Schneider, P. 1994. A semantics
and complete algorithm for subsumption in the classic de-
scription logic. Journal of Artificial Intelligence Research
1.
Code, R. 1993. Systemized Nomenclature of Human and
Veterinary Medicine: SNOMED. College of American
Pathologists, American Veterinary Medical Association.
Evett, M.; Hendler, J.; and Spector, L. 1994. Parallel
knowledge representation on the connection machine. In-
ternational Journal of Parallel and Distributed Computing
22(2).
Gruber, T. 1990. he development of large, shared
knowledge-bases: Collaborative activities at Stanford.
Technical report, Knowledge Systems Laboratory.
Gruber, T. R. 1992. Ontolingua: A mechanism to support
portable ontologies. Technical report, Knowledge Sys-
tems Laboratory.
Haase, K. 1996. Framerd: Repersenting knowledge in the
large. IBM Systems Journal.
Holsheimer, M.; Kersten, M. L.; and Siebes, A. 1996.
Data surveyor: Searching for nuggets in parallel. In
Fayyad, U. M.; Piatetski-Shapiro, G.; Smyth, P.; and
Uthurusamy, R., eds., Advance in Knowledge Discovery
and Data Mining. AAAIIMIT Press.
Horty, J.; Thomason, R.; and Touretzky, D. 1987. A
skeptical theroy of inheritance in nonmonotonic semantic
networks. Technical Report CMU-CS-87- 175, Carnegie
Mellon, Department of Computer Science, Pittsburgh, PA,
USA.
http://www.cs.umd.edu/projects/parka.
1995. Proceedings of the 14th International Joint Con-

ference on Artificial Intelligence, Morgan Kaufmann, San
Francisco, CA.
Inc., E. D. R. 1992. A plan for the knowledge archives
project. Technical report, Technical Report distributed by
the Japan Society for the Promotion of Machine Industry,
English language addition.
Karp, P. ID., and Paley, S. M. 1995. Knowledge represen-
tation in the large. In IJCAI-95 (1995) 75 l-758.
Kettler, B. B. 1995. Case-based Planning with High-
Per$ormance Parallel Memory. Ph.D. Dissertation, Uni-
versity of Maryland, College Park.
Knight, K., and Luk, S. 1994. Building a large knowledge
base for machine translation. In AAAI-94 (1994).
Lee, E., and Geller, J. 1996. Parallel transitive reasoning
in mixed relational hierarchies. In Aiello, L. C.; Doyle, J.;
and Shapiro, S., eds., Principles of Knowledge Represen-
tation and Reasoning.
Lenat, D. B., and Guha, R. 1991. Building Large
Knowledge-Based Systems. Addison-Wesley.
MacGregor, R. M. 1994. A description classifier for the
predicate calculus. In AAAI-94 (1994).
Miller, G. A. 1996. Human language technology. Techni-
cal report, Psychology Department, Green Hall, Princeton
University.

Shapiro, S. C., and Rapaport, W. J. 1992. The sneps fam-
ily. Computers & Mathemutics with Applicutions 243-
275.
Shastri, L., and Ajjanagadde, V. 1993. From simple as-
sociations to systematic reasoning. Behavioral and Bruin
Sciences 16(3):417-494.
Sowa, J. F. 1984. Conceptual Structures: Infc~rmcnion
Processing in Mind and Machine. Addison-Wesley.
Stoffel, K.; Saltz, J.; Hendler, J.; Dick, J.; Merz, W.; and
Miller, R. 1997. Semantic indexing for efficient grouping.
In submitted.
Stoffel, K.; Hendler, J.; and Saltz, J. 1995. Parka on
mimd-supercomputers. In 3rd International Wortkshop on
Pctrullel Processing in AI. Montral, Canada: IJCAI.
UMLS. 1994. Unified Medicul Lunguugc System. Na-
tional Library of Medicine.

ONTOLOGIES 447

