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1. Introduction

Einstein’s paper, “Cosmological Considerations in the General Theory of Relativ-
ity” (Einstein 1917b), is rightly regarded as the first step in modern theoretical
cosmology. Perhaps the most striking novelty introduced by Einstein was the
very idea of a cosmological model, an exact solution to his new gravitational field
equations that gives a global description of the universe in its entirety. Einstein’s
paper inspired a small group of theorists to study cosmological models using his
new gravitational theory, and the ideas developed during these early days have
been a crucial part of cosmology ever since. We will see below that understanding
the physical properties of these models and their possible connections to astro-
nomical observations was the central problem facing relativistic cosmology in the
20s. By the early 30s, there was widespread consensus that a class of models de-
scribing the expanding universe was in at least rough agreement with astronomical
observations. But this achievement was certainly not what Einstein had in mind in
introducing the first cosmological model. Einstein’s seminal paper was not simply
a straightforward application of his new theory to an area where one would ex-
pect the greatest differences from Newtonian theory. Instead, Einstein’s foray into
cosmology was a final attempt to guarantee that a version of “Mach’s principle”
holds. The Machian idea that inertia is due only to matter shaped Einstein’s work
on a new theory of gravity, but he soon realized that this might not hold in his
“final” theory of November 1915. The 1917 paper should thus be read as part of
Einstein’s ongoing struggle to clarify the conceptual foundations of his new theory
and the role of Mach’s principle, rather than treating it only as the first step in
relativistic cosmology.

Einstein’s work in cosmology illustrates the payoff of focusing on foundational
questions such as the status of Mach’s principle. But it also illustrates the risks.
In the course of an exchange with the Dutch astronomer Willem De Sitter, Ein-
stein came to insist that on the largest scales the universe should not evolve over
time—in other words, that it is static. Although he originally treated this as only
a simplifying assumption, Einstein later brandished the requirement that any rea-
sonable solution must be static to rule out an anti-Machian cosmological model
discovered by De Sitter. Thus Einstein’s concern with Mach’s principle led him
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to introduce the first cosmological model, but he was also blind to the more dra-
matic result that his new gravitational theory naturally leads to dynamical models.
Even when expanding universe models had been described by Alexander Fried-
mann and Georges Lemâıtre, Einstein rejected them as physically unreasonable.
Einstein’s work in cosmology was also not informed by a thorough understanding
of contemporary empirical work. The shift in theoretical cosmology brought about
by Einstein’s work occurred at the same time as a shift in the observational as-
tronomer’s understanding of the nature of spiral nebulae and large scale structure
of the cosmos. Others with greater knowledge of contemporary astrophysics, in-
cluding Arthur Eddington, De Sitter, Lemâıtre, and Richard Tolman, made many
of the more productive contributions to relativistic cosmology.

This paper describes the early days of relativistic cosmology, focusing on Ein-
stein’s contributions to the field. Section 2 gives an overview of the “Great Debate”
in observational astronomy during the 10s and 20s. Section 3 describes Einstein’s
“rough and winding road” to the first cosmological model, with an emphasis on
the difficulties with Newtonian cosmology and the importance of Mach’s principle.
Conversations and correspondence with De Sitter forced Einstein to consider the
status of Mach’s principle in his new theory, leading to the introduction of his
cosmological model. Although Einstein hoped that this would insure the validity
of Mach’s principle, De Sitter quickly produced an apparent counterexample, a
new model in which Mach’s principle did not hold. Einstein’s attempts to rule
out this counterexample drew him into a tangle of subtle problems regarding the
nature of singularities that also ensnared his correspondents Hermann Weyl and
Felix Klein. Throughout the 20s, theoretical cosmology focused for the most part
on understanding the features of the models due to Einstein and De Sitter and
attempting to find some grounds on which to prefer one solution to the other.
Section 4 takes up these debates, which came to an end with the discovery that
several other viable solutions had been overlooked. This oversight can be blamed
on Einstein’s influential assumption that the universe does not vary with time,
which was elevated from a simplifying assumption to a constraint on any physi-
cally reasonable cosmological model. This assumption kept Einstein, and many
of the other leading lights of theoretical cosmology, from discovering expanding
universe models. Section 5 describes the expanding models, and their relation to
observational evidence in favor of expansion. In the concluding section I briefly
discuss the fate of the consensus formed in the early days of relativistic cosmology
in the ensuing decades, focusing on debates regarding the status of the so-called
“cosmological principle.”

2. The Great Debate

The first three decades of the twentieth century were a period of active debate
within the astronomical community regarding the overall structure of the cos-
mos.1 At the turn of the century, two leading observational cosmologists, the



Einstein’s Role in the Creation of Relativistic Cosmology 3

influential Dutch astronomer Jacobus Kapteyn and the German Hugo von Seel-
iger, had embarked on the ambitious project of determining the architecture of the
Milky Way. Astronomers working in this line of research used sophisticated statis-
tical techniques to overcome the fundamental problem facing the project, namely
that of determining distances to the stars, in order to convert observational data
into a three-dimensional map of the stellar system. The program culminated in
the “Kapteyn Universe,” according to which the galaxy is a roughly ellipsoidal
distribution of stars, with the sun near the center.2 Starting in 1918, Kapteyn and
others had to contend with the alternative “Big Galaxy” view introduced by the
American astronomer Harlow Shapley. Based on studies of large, dense groups
of stars called globular clusters, Shapley argued that the Milky Way was a factor
of ten larger than in Kapteyn’s model, with the sun placed some distance from
the center. Partially as a result of Shapley’s challenge, the focus of observational
cosmology shifted from determining stellar distributions in the Kapteyn tradition
to using other objects (globular clusters and nebulae) as indicators of large scale
structure. This era has been called the “second astronomical revolution” to reflect
the impact of the new ideas and techniques introduced during this period. I will
set the stage for Einstein’s work by focusing on two aspects of this revolution, the
debates regarding the spiral nebulae and related debates in cosmogony.

By 1930 astronomers had abandoned much of the turn-of-the-century conven-
tional wisdom regarding “spiral nebulae.” Around 1900 many astronomers held
that the Milky Way galaxy was a unique system encompassing all observed objects,
including the enigmatic spiral nebulae. The English astronomer Agnes Clerke, for
example, confidently asserted that “no competent thinker” could accept that any
spiral nebula is comparable to the Milky Way (Clerke, 1890, 368). But by 1930,
few competent thinkers still held Clerke’s opinion. A majority of astronomers in-
stead accepted the “island universe” theory, according to which the spiral nebulae
are similar in nature to the Milky Way.3

The nature of the spirals had been the subject of speculation and debate for
over 150 years. The speculative proposal of Kant, Lambert, and Wright that the
nebulae are “island universes,” composed of stars and similar to the Milky Way
in structure, first garnered support from the observations of William Herschel and
Lord Rosse in the early to mid-19th century. Yet by the turn of the century,
there were three major objections to this idea.4 In 1885 a nova flared in the
Andromeda Nebula, and at its brightest this star reached a luminosity of roughly
one tenth that of the entire nebula. Faced with the implausible idea that a single
star could outshine millions of others, many astronomers concluded instead that
the Andromeda Nebula was not a group of stars like the Milky Way. Second, the
technique of spectroscopy revealed bright emission lines in the spectra of some
nebulae, characteristic of luminous gas rather than starlight. This suggested that
the nebulae are regions of hot gas within the Milky Way, rather than groups of
unresolved stars at a great distance. Although some nebulae have starlike spectra,
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this could be explained as the consequence of reflected starlight. Finally, the
positions of the nebulae seemed to be related to the Galaxy itself: the nebulae
shunned the plane of the Galaxy and clustered near the poles. Such a correlation
would be unsurprising if the spirals were within the Galaxy, but it appeared to be
inexplicable based on the island universe theory.

The fortunes of the island universe theory improved dramatically by the mid-
teens. In his influential Stellar Movements and the Structure of the Universe
(1914), the British astrophysicist Arthur S. Eddington argued that, despite the
paucity of direct evidence in its favor, the island universe theory should be accepted
as a useful “working hypothesis,” whereas the idea that the spirals lie within
the galaxy should be rejected because it led to an unproductive dead end. As
Eddington emphasized, the classification of distinct types of nebulae undercut the
second criticism above: the spiral nebulae might lie well beyond the galaxy even
though other nebulae are part of the Milky Way. However, the other criticisms
remained unanswered. Island universe advocates had to admit that novae could
somehow produce tremendous energy, yet at least the novae discovered in spirals
appeared to be significantly dimmer than those within the Milky Way.5 The
clustering of spirals near the Galactic poles remained a mystery throughout the
20s, but it was eventually explained as an observational selection effect due to the
absorption of light by interstellar dust (Trumpler, 1930).6

Critics of the island universe theory marshalled two new and apparently quite
damaging results in the late 10s. Two of the most prominent critics, Harlow
Shapley and Adriaan van Maanen, attempted to put the final nails in the coffin of
the island universe theory. As Shapley put it in a letter to van Maanen, “Between
us we have put a crimp in the island universe, it seems—you in bringing the spirals
in and I by pushing the Galaxy out” (quoted in Smith, 1982, 105). Starting in
1914, van Maanen measured what he took to be the rotational motion of objects
within several spiral nebulae. These measurements only made sense if the nebulae
were relatively small, nearby objects; if the nebulae were as large as the Milky
Way and far away, as the island universe theory required, the motions would
dramatically exceed reasonable physical limits. Shapley, for his part, argued that
the Milky Way was much larger than had previously been assumed (by a factor
of ten), leaving plenty of room for the spirals within the galaxy. Shapley reached
the “Big Galaxy” view based on a novel astronomical yardstick: he used Cepheid
variable stars as “standard candles.” Henrietta Leavitt had established that the
period of the variation in the brightness of these stars bears a fixed relationship to
their intrinsic brightness (absolute magnitude). After calibrating the scale using
nearby Cepheids, Shapley could then directly calculate the distances of remote
Cepheids by determining their period.7

The decade closed with the so-called “Great Debate” between Shapley and a de-
fender of the island universe theory, Heber Curtis. The event did not live up to its
billing, since Shapley chose to avoid tackling the island universe theory directly.8
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In fact, Shapley’s “Big Galaxy” view was not directly incompatible with the is-
land universe theory, as Shapley’s own shifting views on the matter in the years
leading up to the debate indicate.9 Shapley did not present a detailed attack on
the island universe theory in the published exchange (Shapley, 1921), although he
briefly mentioned the clustering of the spirals around the galactic poles and the in-
compatibility of the island universe theory with van Maanen’s measurements. The
appeal to van Maanen’s measurements of internal motion in the spiral nebulae
had little chance of persuading Curtis, who responsed that van Maanen’s mea-
surements would only be convincing once they had been successfully reproduced
(Curtis, 1921, 214). Controversy regarding van Maanen’s measurements continued
throughout the twenties, until they were eventually rejected as artifacts of subtle
systematic errors.

For his part in the debate, Curtis focused on the crucial issue of how to reli-
ably measure distance to astronomical objects. Shapley had pioneered the use of
Cepheid variables to establish distances to globular clusters, but Curtis questioned
the internal consistency of this method as well as its relative reliability compared to
other distance measures. Ironically, this controversial method would bring about
the resolution of the debate within a few short years of Curtis and Shapley’s ex-
change. Edwin Hubble observed a Cepheid variable in the Andromeda Nebula in
1923 with the powerful 100-inch telescope on Mount Wilson. Based on observa-
tions of variables in a number of galaxies, Hubble concluded that the spiral nebulae
were much farther away than opponents of the island universe theory allowed.10

This groundbreaking observational work convinced almost all astronomers of the
validity of the island universe theory by the mid-20s. Hubble’s work provided what
had been lacking in earlier stages of the debate: a way of measuring distance to the
spirals that island universe advocates and opponents both considered reliable.11

The great debate concerning the nature of the spiral nebulae was entangled
with controversies in cosmogony.12 This field focused on describing the origins and
evolution of various astronomical structures, ranging in scale from the Earth-moon
system to the solar system and beyond. After the turn of the century the Laplacian
nebular hypothesis was under attack. Laplace had suggested that structures such
as the solar system resulted from the condensation of gaseous nebulae, an account
augmented by Herschel’s claim that the spiral nebulae are proto-solar systems at an
earlier stage of evolution. Theoretical development of the Laplacian idea drew on
increasingly sophisticated mathematical treatments of a problem that is simple to
state, if not to solve: what are the stable configurations of a rotating fluid according
to Newtonian gravitational theory, and how do different configurations evolve over
time?13 The Americans Thomas Chamberlin and Francis Moulton coupled forceful
criticisms of the nebular hypothesis with a new theory of the formation of the solar
system proposed in 1905. Their account had two striking features: first, the planets
were formed by the accretion of smaller hard fragments (planetesimals) rather than
by condensation of a gaseous cloud, and second, an encounter with another star
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triggered formation of the planets. The Chamberlin-Moulton theory triggered
refinements of the nebular hypothesis. James Jeans incorporated the second idea
within a modified nebular hypothesis, according to which an encounter with a
nearby star triggered the condensation of the hot gaseous cloud into the solar
system.

The debate between the nebular hypothesis and Chamberlin-Moulton’s alterna-
tive continued throughout the teens and twenties. Both theories appealed to a wide
variety of astronomical phenomena to justify a number of speculative assumptions.
In a 1913 review of two books on cosmogony, Karl Schwarzschild complained that
the field was “heterogeneous” and “impenetrable” due to “prolixity, pretension,
confusion, and the general lack of mathematical control” (Schwarzschild, 1913,
294). Many of the cosmogonists followed Herschel in appealing to observations of
spiral nebulae, taken to be proto-solar systems at an earlier stage of evolution, to
vindicate aspects of their accounts.14 Schwarzschild singled out this idea as partic-
ularly dubious, and the developments described above vindicated his skepticism.
But more significantly, the new understanding of the spiral nebulae dramatically
increased the scale of the known universe. The concerns of cosmogony appear more
parochial, although still important, once these differences of scale are recognized.
Rather than appealing to results regarding the evolution of rotating fluids or the
interactions of planetesimals, progress in the study of the structure and evolution
of the universe at these largest scales came from an unexpected direction: a new
theory of gravitation.

3. Relativistic Cosmology

The debates just described form the background for the reception and further
development of relativistic cosmology. However, Einstein’s foray into cosmology
was not motivated by the problems described above, and he apparently had not
kept abreast of new results regarding spiral nebulae and the ensuing controversies.
Instead his groundbreaking 1917 paper began by highlighting an apparently em-
barrassing dilemma for Newtonian cosmology. Einstein emphasized this alleged
flaw to cast his own newly minted gravitational theory in a better light, but the
motivations for his first foray into cosmology lay elsewhere. Einstein’s “rough and
winding road” to cosmology was a continuation of the path he followed to the
discovery of general relativity. Einstein created the field of relativistic cosmology
as a final effort to guarantee that his new gravitational theory satisfied Machian
ideas.15

3.1. Paradoxes of Newtonian Cosmology. Einstein (1917b) opened with the
following dilemma. If matter is uniformly distributed throughout an infinite uni-
verse, Newtonian gravitational theory does not consistently apply, for reasons that
we will consider shortly. Newtonian cosmology seems to allow only an alternative
picture: an “island” of stars clumped together in an otherwise empty universe.
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Einstein argued that even this possibility can be ruled out, since the island would
be unstable. Einstein presented this as an inescapable dilemma for Newtonian cos-
mology, and his discussion of it served the dual purpose of exposing the inconsis-
tencies of a preceding theory and preparing readers of his paper for a modification
of his own gravitational theory.16

The problem Einstein noted regarding Newtonian cosmology can be stated quite
simply. Einstein discovered the problem independently, but it has a long history
stretching back to shortly after the publication of Newton’s Principia, and Hugo
von Seeliger had recently given a systematic exposition of the problem (Seeliger,
1895).17 Einstein gave a characteristically straightforward formulation of the prob-
lem in a popular work (Einstein, 1917a, 71–72): the number of lines of gravitational
force passing through a sphere around a point mass O enclosing a uniform matter
distribution is given by ρ0V , where ρ0 is the mass density and V the volume of the
sphere. The force per unit area is then proportional to ρ0R, where R is the radius
of the sphere. As R → ∞, the force also diverges—a result Einstein called “im-
possible.” Although Einstein did not elaborate further, the failure of convergence
can be elucidated more clearly by considering cases such as that illustrated in Fig.
1 (following Norton, 1999). The gravitational force on O at the origin is given
by the sum of forces due to hemispherical shells of thickness d surrounding O.
Since the increase of mass (∝ r2) cancels the decrease in gravitational force with
distance (∝ r−2), the force due to each shell is the same—it is given by F = Gρπd,
where G is Newton’s gravitational constant and ρ is the mass density. The total
gravitational force is then given by an infinite sum of equal terms with opposite
signs, and this sum fails to converge.

Einstein carried the argument one step further by applying statistical physics.
The divergence described above can be avoided if the mass density falls off outside
a central “island” of matter. To see this, consider the gravtational potential φ, a
solution to Poisson’s field equation for gravitation:

(1) ∇2φ = 4πGρ,

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, φ is the gravitational potential, and ρ is
the mass density. If the mass density function is well-behaved, then the potential
is given by:

(2) φ(r) =

∫

G
ρ(r)

r
dV.

This integral converges if ρ(r) falls off faster than 1/r2 as the distance r from the
central concentration increases. However, Einstein argued that this alternative is
not viable since an “island of matter” is not stable. The stars composing the island
can be treated like the molecules of an ideal gas. The island would “evaporate”
as individual stars acquired enough kinetic energy to escape the gravitational at-
traction of the other stars, just as water molecules evaporate into the air. If the
potential φ converged to a small, finite value at infinity, at thermal equilibrium
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Figure 1. The total gravititional force on the point mass O is given
by the sum of forces due to each hemispherical shell. Each half-shell
contributes a force of equal magnitude, F = Gρπd, and the sum does not

converge.

the ratio between mass at the center and mass at infinity must take a finite value.
Einstein concluded that requiring the mass distribution to vanish at infinity im-
plied that it also vanished at the center, ruling out an “island” of concentrated
matter.

Seeliger and his contemporaries had considered several ways to avoid the dilemma,
from denying the universality of gravitation to ruling out an infinite, uniform mat-
ter distribution by fiat. Einstein and Seeliger both advocated a modification of
Newton’s inverse square law, effected in Einstein’s case by simply adding a term
to eqn. (1):18

(3) ∇2φ − Λφ = 4πGρ.

The modified field equations admit a uniform field as a solution for a constant
mass density ρ0,

(4) φ = −
4π

Λ
Gρ0.

However, Einstein and Seeliger did not have the same attitude towards a solution
of the dilemma along these lines. Seeliger took the proposal seriously enough
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to suggest that astronomical measurements could constrain his modification of
Newton’s law. Einstein, on the other hand, commented that his solution “does
not in itself claim to be taken seriously; it merely serves as a foil for what is to
follow” (Einstein, 1917b, 543). Einstein was not primarily concerned with resolving
the paradoxes of Newtonian cosmological theory, but the addition of a constant to
Poisson’s equation paves the way for the introduction of the infamous cosmological
constant a few pages later.

Einstein’s presentation of the dilemma facing Newtonian cosmology is at first
compelling, but on closer examination the argument falls apart due to two signif-
icant oversights. First, a way between the horns of the dilemma had already been
found. A decade before Einstein’s paper, the Swedish astronomer Carl Charlier
had explicitly constructed a “hierarchic cosmos,” inspired by the speculations of
Fournier D’Albe, that neatly avoided both problems discussed above (Charlier,
1908). The crucial trick was to produce a mass distribution which both avoided
the divergences and lacked a preferred center. Charlier’s model had a fractal
structure: stars are grouped into spherical galaxies, galaxies into spherical meta-
galaxies, and so on (see Fig. 2). Charlier derived constraints on how densely the
systems at one level could be “packed” into a system of the next level up without
producing divergences. He showed that it was possible to build up a uniform cos-
mos in this way with an infinity of total mass, an average mass density of zero,
and a convergent gravitational potential.19 Newtonian gravitational theory could
be consistently applied to such a hierarchic universe without leading to either of
Einstein’s problems.

Second, and more significantly, several later cosmologists have argued that the
apparent inconsistency only reveals a shortcoming of a particular formulation of
Newtonian cosmology. Some took Einstein’s argument to establish only the incom-
patiblity of Newtonian cosmology with a static distribution of matter (see, e.g.,
Heckmann, 1942, 14). The “Neo-Newtonian” cosmological models developed in the
30s described a matter distribution that changed over time, and thus they seem-
ingly avoided the inconsistency.20 Geometric formulations of Newtonian theory,
first introduced in the 20s, support the stronger claim that the apparent inconsis-
tency can be avoided even for a uniform, static matter distribution.21 There is a
class of solutions to eqn. (1) for a uniform matter distribution with the following
form,

(5) φ(r) =
2

3
πGρ|r − r0|

2,

with distinct solutions corresponding to different choices of an arbitrary point r0.
22

The force F acting on a test particle with unit mass is then given by the gradient
of the potential:

(6) F = −∇φ = −
4

3
πGρ(r − r0),



10 Chris Smeenk

Figure 2. Charlier’s hierarchical universe has a fractal-like structure,
and it avoids divergences without introducing a preferred central region.

which represents a spherically symmetric field of force directed at the “center
point” r0, where the force vanishes. The original problem resurfaces, in that a
completely uniform matter distribution mysteriously leads to a nonuniform force
field with an arbitrary preferred central point at r0. However, these peculiar prop-
erties of the solutions have no directly observable consequences. The geometric
formulation modifies Newtonian theory to incorporate what Norton (1995) aptly
called the “relativity of acceleration”: the choice of how to decompose a given free-
fall trajectory into inertial motion and gravitational deflection is conventional. The
indeterminacy noted by Einstein is just a consequence of this feature, since there
appears to be a physical difference between different choices of the decomposition.
In the geometrical formulation the choice of a particular decomposition has as
little significance as the choice of a rest frame within special relativity.

Einstein’s response to the unravelling of his dilemma for Newtonian cosmology
illustrates its relatively minor role in his thinking. Franz Selety (1922) spelled out
how Charlier’s hierarchic model avoided the dilemma in painstaking detail. In
his brief response, Einstein (1922) conceded the point before reiterating the line
of reasoning leading to his own cosmological model, giving Mach’s principle the
leading role.23

3.2. Mach’s Principle. Einstein turned to cosmology after conversations with
De Sitter in the fall of 1916 convinced him that an idea that had played a crucial
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role in his discovery of general relativity was at stake. “Mach’s principle” (as
Einstein later dubbed it) is difficult to formulate precisely, but Einstein hoped to
capture Mach’s idea that inertia derives from the distribution of matter rather
than space itself. Einstein also called this the “relativity of inertia,” which he put
as follows: “In a consistent theory of relativity, there can be no inertia relative to
‘space,’ but only an inertia of masses relative to one another” (Einstein, 1917b, 145,
original emphasis).24 The discussions and correspondence with De Sitter forced
Einstein to consider the status of this principle more carefully, and he struggled
to give it a sharper formulation and to insure that it held in his new gravitational
theory.25 Einstein’s famous cosmological model, and the infamous cosmological
constant, were both by-products of this effort.

One threat to Mach’s principle came from the need to stipulate boundary
conditions in order to solve the gravitational field equations.26 For example,
Schwarzschild derived his expression for the gravitational field of a single body
such as the sun by requiring (among other things) that the solution resembles
Minkowski space-time, the flat space-time of special relativity, at infinity. This
boundary condition captures the natural requirement that at great distances from
the source the gravitational field should approach the “empty space” solution to
the field equations. There is nothing unusual about imposing boundary conditions
in order to find a solution to a set of field equations. But for Einstein introducing
boundary conditions meant allowing a vestige of absolute motion to creep back
into the theory. The inertia of a particle far from the sun in Schwarzschild’s solu-
tion would be fixed by the space-time structure imposed at infinity as a boundary
condition rather than just its relation with other matter. For Einstein this was con-
trary to the spirit, if not the letter, of his theory. The structure at infinity could be
used to distinguish states of motion absolutely, without reference to other matter.
On Einstein’s view, there should be no such structures attributed to space itself
in his new theory. Vacuum solutions clearly violated this requirement, because
they possess structure that cannot be due to matter. But boundary conditions
also violated this requirement by introducing spatial structure “at infinity” that
is independent of the matter distribution.27

Einstein proposed two ways to banish this last remnant of “absolute space” in
letters to De Sitter from 1916 and 1917. His first proposal was to stipulate that at
infinity the metric field takes on “degenerate values” (all components equal to 0
or ∞) rather than approaching a flat, Minkowski metric. Einstein (1917b) argued
that the degenerate boundary values follow from requiring that the inertia of a
body drops to zero as it approaches infinity. This was intended to capture the idea
that there would be no “inertia” relative to space itself.28 A fundamental problem
with this proposal is the difficulty with specifying the nature of a solution “at
infinity” in a manner that does not depend on the choice of coordinates. A more
obvious problem led Einstein to abandon this line of thought fairly quickly. A flat
Minkowski metric appeared to be compatible with stellar motions on the largest
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scale yet observed. Einstein’s proposal required postulating “distant masses” that
would somehow reconcile degenerate values of the metric field “at infinity” with
these observations. De Sitter did not share Einstein’s Machian intuitions, and the
lack of a Machian explanation of inertia did not bother him as much as this ad
hoc introduction of such unobserved distant masses (CPAE 8, Doc. 272). Einstein
soon dropped this first proposal in favor of a more radical way of handling the
problem of boundary conditions.

Einstein’s ingenious suggestion was to do away with the problem of boundary
conditions by getting rid of boundaries entirely. He introduced a cosmological
model built up from spatial sections that describe the universe at a given cosmic
time. These spatial sections are three-dimensional analogs of a two-dimensional
sphere such as the Earth’s surface. Like the Earth’s surface, each spatial section
is finite yet unbounded, leaving no place to assign boundary conditions. This
cosmological model satisfied two strong idealizations. First, the model describes
a simple uniform mass distribution without the lumps and bumps observed by
astronomers.29 Second, Einstein argued that the model should be static, which
means that the properties of the model do not vary with time; each spatial section
“looks like” any other.30 This second requirement was justified with an appeal to
astronomical observations. Since the observed relative velocities of the stars are
much smaller than the speed of light, Einstein argued that there is a coordinate
system such that all the stars are permanently at rest (at least approximately).
This is a weak justification for such a crucial assumption. As De Sitter promptly
objected in correspondence, “we cannot and must not conclude from the fact that
we do not see any large changes on this photograph [our observational “snapshot”
of stellar distributions] that everything will always remain as at that instant when
the picture was taken” (CPAE 8, Doc. 321, original emphasis).31 With the benefit
of hindsight it is easy to fault Einstein for so quickly ruling out solutions that
change over time on such weak grounds. Yet many of his contemporaries followed
his lead in limiting consideration to static models. Even De Sitter, despite recog-
nizing the weakness of Einstein’s argument, nonetheless failed to study dynamical
models until 1930. In any case, Einstein was not primarily interested in a de-
tailed comparison between his cosmological model and observations. He frankly
explained his motives in introducing the model in a letter to De Sitter: he called it
“nothing but a spacious castle in the air,” built to see whether his Machian ideas
could be consistently implemented (CPAE 8, Doc. 311).

The castle in the air came at a price. Einstein was forced to modify the field
equations of general relativity in order to admit this cosmological model as a
solution. All that was required was the straightforward addition of a cosmologi-
cal constant term, Λ, a modification Einstein had foreshadowed with the similar
change to Poisson’s equation discussed above:32

(7) Rµν − Λgµν = −κ

(

Tµν −
1

2
gµνT

)

.
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This equation specifies the relationship between the space-time geometry (the left
hand side) and the distribution of matter and energy (the right hand side).33

Einstein showed that if these modified field equations are to hold in his model,
the cosmological constant Λ is fixed by the mean density of matter ρ, namely
Λ = κρ/2. The value of Λ is also related to the radius of the spatial sections R by
the equation Λ = 1/R2. Combining the two equations made it possible to estimate
the “size of the universe” based on the mean density of matter.

The addition of the cosmological constant is a fairly natural generalization of
the original field equations, and it satisifies the formal and physical constraints
that Einstein had used in deriving the original equations.34 Physically, a positive Λ
term represents a “repulsive force” that counteracts the attraction of gravitation.35

Observations available to Einstein could have been used to show that Λ must be
incredibly close to zero, since even a slight deviation from zero affects the general
relativistic predictions for motions within the solar system. (De Sitter argued that
Λ was certainly less than 10−45cm−2 and probably less than 10−50cm−2 (CPAE 8,
Doc. 327), and later calculations such as those reported in Tolman (1934) gave
even tighter constraints.) However, even a very small nonzero value of Λ changes
the space of solutions to the field equations. Einstein’s static universe is a solution
of the modified field equations, and a non-zero Λ term also rules out solutions of
the original field equations such as Minkowski space-time, a welcome result for
Einstein.36

Einstein did not have long to rest easy with the modified field equations and
his ingenious way of saving Mach’s principle. The introduction of Λ was not
actually necessary for Einstein’s way of eliminating boundary conditions to work;
it was only necessary given the additional assumption that the model must be
static. Einstein (1917b) concluded with a remark suggesting that it might be
possible to construct time-varying models with closed spatial sections without
the Λ term.37 Such models would do away with the need to specify boundary
conditions without Λ, undermining the rationale for its introduction. But Einstein
must have been surprised to discover that the introduction of Λ was also not
sufficient to guarantee that Mach’s principle holds in general relativity. After
learning of Einstein’s solution, De Sitter promptly produced a second solution to
the modified field equations. Since it was a vacuum solution (with non-zero Λ)
it apparently violated Mach’s principle. As we will see in the next section, until
1930 much of the literature in relativistic cosmology focused on understanding the
properties of these two models.

4. Cosmological Models: A versus B

Einstein and De Sitter’s published papers brought their debate to the wider scien-
tific community. Eddington had invited De Sitter to provide a précis of Einstein’s
new gravitational theory in the Monthly Notices, and De Sitter responded with
a series of three clear articles that introduced Einstein’s theory—along with De



14 Chris Smeenk

Sitter’s own cosmological model—to the English-speaking world. By the mid 20s
a handful of mathematical physicists had begun to study the properties of the
Einstein and De Sitter solutions. Part of this literature focused on the question of
whether the De Sitter solution could be dismissed on the grounds that it included a
“singularity,” with a debate regarding both the content of that charge and whether
it applied. This topic was part of the broader debate regarding what properties
a cosmological model should have to qualify as physically reasonable. The major
conceptual innovation introduced by Einstein was the very possibility of a math-
ematical description of the universe as a whole, but it was not immediately clear
what observational and physical content these abstract models possessed. With
the benefit of hindsight, this early exploration of cosmological models was limited
by illicit assumptions regarding what counts as physically reasonable. In particu-
lar, it was over a decade before the community overcame Einstein’s insistence on
static models. Several theorists followed De Sitter’s lead in seeking out a stronger
connection between cosmological models and astronomical observations. With his
strong empiricist bent, De Sitter actively explored the connection between his
model and observations, suggesting in particular an explanation of the redshift in
the spectral lines of the spiral nebulae. This point of contact became far more
important on the heels of Hubble’s observational results published in 1929.

In the course of these explorations of cosmological models, this first genera-
tion of relativists encountered a number of the most striking novelties introduced
by Einstein’s theory of gravitation. To determine a particular solution’s physical
properties, and to find out whether it harbored any singularities, relativists had
to differentiate artificial features due to the coordinates being used from genuine
features of the space-time. This was no simple matter, given that they lacked
the mathematical tools developed later for isolating the intrinsic features of a
space-time. In addition, as Eisenstaedt (1989) has emphasized, in cosmology the-
orists faced a variety of situations far removed from familiar problems studied in
Newtonian theory. (In fact, Newtonian cosmology and Newtonian analogs of the
expanding universe models were studied systematically several years later, based
on insights from general relativity.)

4.1. The Many Faces of Model B. De Sitter derived his solution as a variation
on Einstein’s theme: rather than taking only the spatial sections to be closed
spheres, de Sitter treated the entire space-time manifold as a closed space.38 In
his letter to Einstein introducing the solution (CPAE 8, Doc. 313) as well as his
publications (de Sitter, 1917a,c), De Sitter laid out the two solutions side by side—
labeling Einstein’s model “A” and his own model “B” in the published papers—to
emphasize their similarities. However, B differed from A in several crucial respects.
Perhaps most importantly, De Sitter’s solution proved to be much harder to grasp,
leaving most theorists to rely too heavily on particular coordinate representations;
Eddington (1923) characterized Einstein’s solution as “commonplace” compared
to the complex geometry of De Sitter’s solution.39 De Sitter’s solution was a
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vacuum solution of the modified field equations, with Λ = 3/R2 and ρ = 0.
Unlike Einstein’s solution, the cosmological constant is not related to the matter
density. For De Sitter this counted as an advantage of his solution, since he took
Einstein’s model to include “world matter” (responsible for producing the Λ term)
in addition to ordinary matter. However, Einstein insisted that the uniform matter
distribution in his own model was merely an approximation to ordinary matter.
A more realistic model would be inhomogeneous but still static, and such a model
would be to the cylinder universe as “the surface of a potato to the surface of
a sphere” (CPAE 8, Doc. 356). De Sitter’s attitude towards his own solution
was at first fairly skeptical, and he professed a preference for model C, his label
for flat Minkowski space-time, over both A and B, since model C was a solution
of the original field equations without Λ. This initial skepticism eventually faded
somewhat, and De Sitter took his model seriously enough to study its observational
consequences, as we will see below.

The De Sitter solution appeared in a variety of guises over the following decade,
as Einstein, De Sitter, and others used different coordinates to study its proper-
ties.40 In retrospect it is easy to fault these discussions for failing to disentangle
properties of the De Sitter solution from properties that reflect a particular co-
ordinate representation of it. The participants in the debates were aware of the
need to focus on invariant quantities that do not depend upon the choice of coordi-
nates, but in practice this fundamental principle was often not heeded. The issue
is a more subtle analogue of a familiar problem with maps of the Earth’s surface.
Representing the Earth’s surface on a two-dimensional map inevitably produces
distortions. Knowledge of the underlying geometry of the Earth’s surface makes
it easy to avoid confusing these distortions due to the map with actual features of
the surface. For example, a Mercator projection breaks down at two points (such
as the north and south poles), but it is easy to see that this is due to the projection
and not to some special feature of the surface at those points. Einstein, De Sitter,
and other cosmologists did not have a similar grasp of the geometry of the De
Sitter solution to fall back on in assessing odd features of the solution revealed in
different coordinate systems.

Einstein and De Sitter’s discussion of model B eventually focused on a partic-
ular, and quite misleading, choice of coordinates. After originally presenting the
solution geometrically, De Sitter wrote his solution in a static form to facilitate
comparison with Einstein’s model (CPAE 8, Doc. 355). The transition to this set
of coordinates appears to have been driven by Einstein’s preference for a static
model, and in this guise the De Sitter solution appears to represent, like Einstein’s
model, a static space-time with uniform spatial sections. But this impression is
misleading. Suppose that we consider freely falling particles that are initially at
rest with respect to the background matter distribution. In Einstein’s model the
distance between such particles measured on successive spatial sections remains
constant. This is just to say that the trajectories followed by the freely falling
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particles (timelike geodesics) coincide with the curves defined by fixed values of
the spatial coordinates. This is not the case in De Sitter space-time. In De Sit-
ter space-time, the distance between the particles changes over time—they either
scatter or move closer together rather than staying at a fixed distance. This is
a consequence of the fact that the curves defined by fixed values of the spatial
coordinate, using static coordinates, are not timelike geodesics.41

Unlike Einstein, De Sitter and later Lemâıtre (1925) took the non-static charac-
ter of the De Sitter solution to be a positive feature, since this might explain the
receding motion of the spiral nebulae (an idea we will return to below). Lemâıtre’s
paper introduced a set of coordinates independently discovered by Robertson
(1928). The De Sitter solution appears strikingly different in these two coordinate
systems. The contrast between the static coordinates and the new coordinates
is illustrated in Fig. 3. The global geometry of the De Sitter solution can be
represented as the surface of a hyper-hyperboloid embedded in a five-dimensional
Minkowski space (see Fig. 9 of Janssen’s contribution).42 The static coordinates
used by De Sitter and Einstein only covered two wedge-shaped portions of the sur-
face (see Fig. 3a). The spatial sections are bounded and overlap at two points in
the diagram (corresponding to a 2-dimensional surface in the full solution), called
the “mass horizon.” The resulting degeneracy of the time coordinate reflects on
the choice of coordinates rather than on the underlying geometry of the solution—
the hyperboloid is entirely regular at these points. The solution takes on a very
different guise in the Lemâıtre-Robertson coordinates. These coordinates cover
only the upper half of the hyperboloid (see Fig. 3b). The diagram illustrates a
striking contrast between the properties of spatial sections for the two cases: in
the static coordinates, the spatial sections have finite volume, whereas in Lemâıtre
and Robertson’s coordinates the spatial sections have infinite volume. Historically
the Lemâıtre-Robertson coordinate system served as much more than a reminder
of the need to focus on invariant quantities in assessing the properties of a solution.
For both Lemâıtre and Robertson, careful study of the De Sitter solution played
a part in the discovery of more general non-static cosmological models.

4.2. Singularities. Starting with his first response to the new model, Einstein
gave a series of arguments intended to rule out the De Sitter solution on physical
grounds. Clearly Einstein hoped to do away with this counter-example to Mach’s
principle by revealing some fatal flaw unrelated to the fact that it was a vacuum
solution. The most important and interesting charge was that model B harbored
a “singularity,” roughly a point or region where the metric field is ill-behaved.43

If the metric field “blows up” to an infinite value or drops to zero, quantities
appearing in the field equations would no longer be well-defined. In this sense a
singularity would signal the breakdown of the theory, a result Einstein regarded
as clearly unacceptable.

In order for the existence of singularities to be used as a criterion for separat-
ing physically reasonable cosmological models from the unclean, the concept of
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Figure 3. Coordinate representations of the De Sitter solution. (a)
Static coordinates. These cover only the two wedge-shaped regions of
the hyperboloid. The spatial slices have finite volume, and they overlap
at the “mass horizon,” the point p (and a point on the opposite side of
the hyperbola). (b) Lemâıtre-Robertson coordinates. These cover only
the upper half of the hyperboloid, and the spatial sections have infinite

volume.

a “singularity” had to be defined more precisely. Giving such a definition has
turned out to be a surprisingly subtle problem, and a widely accepted and useful
definition of singularity was not in place until the mid 60s.44 A difficult first step
towards a satisfactory definition involves distinguishing coordinate effects from
true singularities. For example, the apparent singularity at the origin of polar
coordinates is clearly an artifact of the coordinates. Einstein took this first step in
Einstein (1918c): for a space-time to qualify as non-singular, he required that for
every point lying in regions within a “finite distance,” there must be a coordinate
system in which the metric is well-behaved.45 More intuitively, for a space-time
satisfying the definition, all the regions within a finite distance from some starting
point could be covered by a patchwork of coordinate systems in which the metric
is continuous. The metric for the De Sitter solution in static coordinates fails to
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satisfy this definition because it breaks down at the “mass horizon,” the points
in Fig. 3a (surfaces in the full solution) where the spatial sections intersect.46

Einstein argued that the De Sitter solution should be rejected as unphysical due
to this alleged singularity.

Einstein called this surface the “mass horizon” since he expected that the sin-
gular behavior of the metric indicated the presence of matter. Anticipating results
about to appear in Weyls book Raum-Zeit-Materie, which he was reading in proof,
Einstein suggested that the De Sitter solution was after all not a vacuum solution
(Einstein 1918c, 272). Weyl constructed a general solution by combining three
different solutions, including one representing an incompressible fluid, and argued
that the original De Sitter solution could be recovered in the limit as the fluid
zone goes to zero volume.47 Einstein welcomed this result, since it insured that
the De Sitter solution could no longer be regarded as a counterexample to Mach’s
Principle. The De Sitter solution was no vacuum solution—the mass had just been
“swept away into unobserved corners,” as Eddington (1923) put it.

Einstein’s claims regarding the singularity in the De Sitter solution provoked
a number of critical responses. Klein’s analysis brought out the central defect of
Einstein’s assessment quite clearly (at least for those familiar with projective geom-
etry): in Klein’s geometrical representation of the solution, the hyperboloid is an
entirely regular surface without any kinks or discontinuities that would correspond
to a genuine singularity. Thus the alleged singularity had to be an artifact of a poor
choice of coordinates. This point was not clear to Klein’s contemporaries. Edding-
ton, for example, gave a geometrical description of the de Sitter solution similar
to Klein’s, followed with an inconclusive discussion of the mass horizon idea and
singularities (Eddington, 1923, 164–166). Eddington suggested incorrectly that
the De Sitter solution could not be fully covered by a single, entirely regular co-
ordinate system. The young Hungarian physicist Cornelius Lanczos, drawing on
Klein’s work, showed that Eddington was mistaken by explicitly writing the De
Sitter solution in a form that was globally singularity free (Lanczos, 1922).48 Klein
did convince Einstein of the error of his ways, and although Einstein admitted the
mistake in letters to Klein and to De Sitter’s colleague Paul Ehrenfest (CPAE 8,
Doc. 664), he never publicly retracted his earlier criticism.

However, accepting that the De Sitter solution was free of singularities did not
mean that Einstein accepted it as a physically reasonable model. Instead he re-
jected the De Sitter solution because it was non-static. The requirement that any
physically reasonable model must be static seems to have emerged opportunisti-
cally as a way to rule out De Sitter’s anti-Machian solution. At least, Einstein
gives no indication of a deeper or more plausible motivation for this requirement.
What started as a weakly motivated simplifying assumption in deriving his own
model had thus turned into a substantive constraint, a constraint that Einstein
did not critically examine for the next decade. If he had, he would have discovered



Einstein’s Role in the Creation of Relativistic Cosmology 19

that non-static models are much more natural in general relativity than the static
model he preferred.

This early study of singularities shows the first generation of relativists grap-
pling with difficult problems raised by Einstein’s new theory, and the study of
the De Sitter solution shaped other areas of research. Lemâıtre (1932) gave an
insightful study of the alleged singularity in the Schwarzschild solution that drew
on his earlier work regarding the De Sitter solution, as Eisenstaedt (1993) has
emphasized, and the study of alternate coordinate representations of the De Sitter
solutions was also connected with Lemâıtre’s discovery of expanding models, as it
was for H. P. Robertson. Furthermore, with the benefit of hindsight we can see in
these early debates the first steps towards differentiating two distinct features of
cosmological models. The odd behavior of the metric that Einstein took to signal
the presence of a singularity instead shows that there is an “event horizon” in the
De Sitter solution. De Sitter’s initial response to Einstein, in which he emphasized
that the alleged singularity could be ignored since it was physically inaccessible,
contained a kernel of truth. The event horizon demarcates regions from which
light signals can and cannot reach a given observer; regions beyond the event hori-
zon are thus physically inaccessible to the observer. The event horizon is not an
intrinsic feature of space-time, since it is defined relative to a given observer.49

The study of horizons has been an important part of cosmology since its earliest
days, and the presence of horizons in the standard cosmological models is one of
the puzzles used to motivate a recent modification of the standard cosmological
models known as inflationary cosmology.

4.3. Redshift. The previous sections focused on general criteria for what might
count as a reasonable cosmological model. De Sitter, with his strong empiricist
bent, added another way of comparing models A and B in one of his early discus-
sions (de Sitter, 1917b): he predicted a redshift in the spectral lines of light emitted
from distant objects, with the amount of redshift a function of the distance. In
addition to calculating the effect, De Sitter took an important step in suggesting
that the movements of the spiral nebulae rather than the stars (which Einstein
had focused on) should be used as gauges of cosmic structure on the largest scales.
The nature of the redshift effect and the precise functional dependence of redshift
on distance for the De Sitter model were both matters of substantial controversy
for the following decade and a half. But by 1930, Hubble’s observational work
had both convinced many astronomers that a linear relationship between redshift
and distance obtained and promoted the idea that De Sitter’s model explained the
effect.

De Sitter recognized that the redshift effect would be a useful way to compare
observations with the new cosmological models. Spectral lines have precise wave-
lengths that can be measured in the laboratory, making it possible to detect a
systematic displacement towards either the red or blue end of the spectrum in
light received from distant objects. One cause of such displacement is the Doppler
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effect, due to the relative motion of the emitter and receiver of a light signal. Light
received from an object moving towards the receiver is shifted towards the blue
end of the spectrum (by an amount that depends on the relative velocity of the
emitter), whereas light from an object moving away from the receiver is shifted
towards the red end of the spectrum. (The changing frequency of the siren of an
ambulance approaching and receding illustrates this effect for sound waves.) Cos-
mology textbooks typically include a stern warning not to confuse Doppler shifts
with cosmological redshift. The Doppler shift is caused by the motion of the emit-
ter, whereas the cosmological redshift results from the stretching of the wavelength
of light with the expansion of space (see Fig. 4). The nature of the cosmological
redshift was, however, not so clear to De Sitter and his contemporaries.

The disputes regarding cosmological redshifts can be traced back to two basic
problems.50 The most important is that calculations of the redshift effect re-
quire choosing the worldlines representing the observer and the observed object,
or more generally a set of worldlines for several objects. Without this specification
a cosmological model is fundamentally incomplete. From a modern point of view
choosing the appropriate wordlines is often completely straightforward; one might
choose, for example, worldlines for freely falling test particles. These particles
follow geodesics, lines of extremal length, through the space-time.51 Weyl recog-
nized the need to specify the class of curves traced out by objects in a cosmological
model, and proposed using a set of geodesics that converge at a point in the past to
represent the worldlines of galaxies, based on a fairly obscure causal argument (see
Goenner, 2001). In the early debates these choices were not always clearly stated,
and the confusion was exacerbated by the different coordinate representations of
the models being considered. For example, in the static coordinates frequently used
by De Sitter, the worldlines for particles at rest with respect to the coordinates are
not geodesics. Particles following worldlines that appeared to be “at rest” with
respect to static coordinates were in fact undergoing acceleration as they departed
from geodesic motion. Second, within general relativity the cosmological redshift
(or blueshfit) can be calculated for a specific cosmological model given a choice of
curves traversed by the observer and emitter. While the result of this calculation
is independent of the choice of coordinates, as it should be, identifying the causes
of the calculated redshift does depend upon this choice. There are six distinct
causes of redshift in a cosmological model.52 In different coordinate frames, the
calculated redshift effect will be traced back to different causes. Theorists at the
time often did not take all of these different causes into account, failed to draw
the appropriate distinctions among them, and did not appreciate how their argu-
ments and calculations depended on the choice of coordinates. Calculations of the
redshift effect in the same model often led to conflicting results due to these two
problems. De Sitter initially argued that the redshift should increase quadratically
with distance in his model B, whereas Weyl and Robertson (1928) later derived a
linear redshift-distance relation.
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Figure 4. Contrast between Doppler effect and cosmological redshift.
The Doppler effect is due to the motion of the emitter, which effectively
“stretches” the wavelength of the emitted light. Cosmological expan-
sion also leads to redshift, because light emitted from distant objects is
“stretched” by the expanding space.

These disputes regarding how to calculate and understand the redshift occurred
even among those who accepted general relativity and its cosmological models.
There were also many astronomers who threw out cosmological redshifts with
general relativity. The relativistic account of cosmological redshifts, such as it
was, met with widespread skepticism among astronomers, leading to a variety of
alternative explanations (such as Fritz Zwicky’s “tired light” hypothesis). None of
these alternative explanations has been successful.

On the observational side, the main difficulty was finding a way to reliably mea-
sure distances to the spiral nebulae. Vesto Slipher had begun measuring redshifts
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in the teens, and Eddington (1923) reported that of Slipher’s 40 nebulae, 36 ex-
hibited redshifts, on average quite large. Slipher made his observations with a
small 24-inch refractor at the Lowell Observatory, and in 1928 Hubble and his
collaborator M. L. Humason turned the 100-inch Mount Wilson telescope to the
task of measuring redshifts. But in addition to the telescope power, Hubble was
able to add another crucial component—reliable distances to the nebulae based
on observations of Cepheid variables. By the time he published his results Hubble
had redshift and distance measurements (of varying quality) for 46 nebulae, and
the data fit a linear redshift-distance relation (Hubble, 1929).53 Hubble had made
one of the outstanding discoveries of twentieth century astronomy.

5. The Expanding Universe

After a decade of study and debate focused mainly on the Einstein and De Sit-
ter models, several cosmologists belatedly re-examined their options. De Sitter’s
presentation to the Royal Astronomical Society in January of 1930 aptly summed
up the sorry state of affairs (R.A.S., 1930). Rather than making a decisive case
for one model or another, De Sitter concluded that neither model was completely
satisfactory.

On the one hand, Einstein’s static model failed to account for the observed red-
shifts of the spiral nebulae. Eddington had recently uncovered another serious de-
fect of the model. Einstein’s model treated the distribution of matter (represented
by the cosmological constant) as perfectly uniform, and Einstein had assumed that
it would be possible to construct a more realistic model that treated “normal”
matter as lumps or condensations within this uniform background.54 However,
Eddington showed that Einstein’s solution was unstable: a slight departure from
uniformity would trigger runaway expansion or contraction (Eddington, 1930).
Departures of the mass density from the value in Einstein’s model (Λ = κρ/2)
are enhanced via dynamical evolution, because the mass density changes while
the cosmological constant remains fixed under expansion or contraction. A local
concentration of matter triggers contraction; the effect of the contraction is to
increase the matter density, which then differs even more from the (fixed) value of
the cosmological constant, leading to further contraction. (Similarly for the case
of a local deficit in density, triggering expansion.) As Eddington emphasized, the
result follows directly from an equation Lemâıtre had derived from eqn. (7), and
it is surprising that the instability escaped notice for so long.55 Eddington did
not immediately discard Einstein’s solution due to the stability problem; instead,
he followed Lemâıtre in suggesting that Einstein’s model might describe the ini-
tial state of the universe, with some event triggering a transition to the De Sitter
model. But once this instability was recognized, it was no longer possible to treat
the model as Einstein had, as an approximation to the real, lumpy universe.

On the other hand, De Sitter’s model predicted a redshift effect apparently
compatible with observations. But it also failed to give a realistic approximation
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to the observed universe. De Sitter calculated the mean density of matter required
in his model based on observed redshifts, and concluded that it was too high to be
approximated as a vacuum.56 As Eddington (1933, 46) put the question, “Shall
we put a little motion into Einstein’s world of inert matter, or shall we put a little
matter into de Sitter’s Primum Mobile?”

One answer to the dilemma was to drop one of the assumptions that led to
such a short list of viable models. By the time of De Sitter’s presentation, both
Eddington and De Sitter had finally begun to question in print the assumption
that any physically reasonable model must be static.57 (Although De Sitter imme-
diately criticized Einstein’s argument that the universe must be static in 1917, he
did not advocate a systematic study of dynamical solutions in print until 1930.)
The American cosmologist Richard Tolman had reached a similar conclusion in the
previous year, after surveying the problems facing all of the static models (Tol-
man, 1929b).58 All three suggested that dynamical cosmological models were a
suitable topic for further research—only to discover that these models had already
been studied during the twenties. After reading the proceedings of the January
1930 Royal Astronomical Society meeting, Georges Lemâıtre wrote to remind Ed-
dington of a study of dynamical solutions he had published three years earlier
(Lemâıtre, 1927).59 Eddington promptly advertised Lemâıtre’s “brilliant work” in
a letter to Nature and published a translation of Lemâıtre’s paper in the Monthly
Notices (Lemâıtre, 1931), where it would reach a wider audience than the Belgian
journal in which it had originally appeared.60 Lemâıtre had investigated evolving
models without knowledge of an even earlier pair of papers by Friedmann (1922,
1924). Although Friedmann’s papers appeared in the prominent German journal
Zietschrift für Physik, they also garnered little attention. Einstein’s (1922) initial
claim that Friedmann’s results rested upon a mathematical mistake can be par-
tially blamed for this lack of interest. To paraphrase de Sitter (1931, 584), most
cosmologists discovered expanding universe models in 1930, several years after they
had first appeared in print.

These models can also be derived elegantly by appealing to symmetries, as
Robertson and A. G. Walker showed in 1935. As a result they are often called
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) models. Robertson (1929)
arrived at expanding models in a mathematical study of all possible solutions to
Einstein’s field equations with uniform spatial sections. Six years later he consid-
ered the relationship between these relativistic models and “kinematical relativity”
advocated by E. A. Milne (1935). Milne aimed to derive cosmological models by
extending the kinematical principles of special relativity. The project was moti-
vated by an operationalist methodology and a conviction that Einstein’s general
relativity was unsound.61 Robertson (1935, 1936a,b) and Walker (1935, 1936) in-
dependently showed that Milne’s distinctive approach led, ironically, to the same
set of basic models already studied in relativistic cosmology.62 Walker showed that
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the FLRW metric follows from Milne’s basic principles: the “cosmological princi-
ple,” which requires observational equivalence among fundamental observers, along
with a further symmetry principle stating that the model is spherically symmetric
around each fundamental observer.63 Robertson and Walker applied group theory
to derive the consequences of such strong symmetry principles for the space-time
metric. Their work showed how the FLRW metric follows from simple geometrical
assumptions.

The discovery of the FLRW models made it clear that the Einstein and De Sitter
solutions are special cases of a more general class of solutions. Friedmann retained
two of Einstein’s starting assumptions: that the space-time can be decomposed
into three dimensional spatial sections corresponding to different cosmic times t,
and that these sections are uniform, without preferred locations or directions in
space.64 He then showed that these two assumptions could be satisfied in dy-
namical models, in which the curvature of the spatial sections changes with time.
The change in curvature corresponds to expansion or contraction in the sense that
the distance measured on any spatial section between freely falling test bodies
changes with time; the so-called “scale factor” R(t) measures the rate of change
of this distance (see Fig. 5).65 Using the simplifying assumptions stated above,
Friedmann showed that Einstein’s field equations—in general a complicated set of
10 non-linear, coupled partial differential equations—reduced to a simple pair of
differential equations for R(t).66

The set of solutions to these equations describe simple dynamical models that
have since become the standard models of relativistic cosmology. There are three
classes of solutions to this pair of equations, typically classified according to the
curvature of the spatial sections and the corresponding geometry. Friedmann
(1922) discovered what are now called the spherical models, whose spatial sections
have positive constant curvature and finite volume (like a sphere), and Friedmann
(1924) introduced hyperbolic models, with infinite spatial sections of constant neg-
ative curvature. Robertson (1929) discovered the intermediate flat case between
these two, namely infinite spatial sections with zero curvature. For all three cases,
the two dynamical equations relate the scale factor R(t) to the properties of the
matter filling the space-time. From the equations for R(t) one can define a critical
density that divides the three cases described above. In addition, normal matter67

leads the expansion of the universe to decelerate, i.e., R̈(t) < 0. The flat solution
corresponds to a universe with exactly the critical density, and the initial velocity of
the expansion is delicately balanced with this deceleration due to gravitational at-
traction. Models with less than the critical density have hyperbolic spatial sections
and expand forever, whereas the spherical models have sufficient matter density to
stop and reverse the initial expansion. The equations for R(t) also illustrate that
the simplest cosmological models are inherently dynamical. Einstein’s preference
for a static model was satisfied by choosing precisely the value of Λ needed to
counteract the attraction of gravitation and yield R̈(t) = 0.
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Figure 5. The scale factor R(t) measures the rate of change of distance
between freely falling particles as a function of time. Although the cos-
mological expansion has dynamical effects on local systems, these effects
are incredibly small—far too small to “stretch” systems along with ex-

pansion.

Einstein did not overlook Friedmann and Lemâıtre’s work before 1930, but he
rejected expanding models as unphysical due to his persistent preference for a
static model. Even after he retracted his initial claim (Einstein, 1922) that Fried-
mann had made an error, he clearly did not think that the expanding models were
of any use in describing the observed universe. Stachel (1986) discovered that
Einstein’s draft retraction closed by stating that no physical significance could be
attributed to Friedmann’s models.68 Fortunately this strong statement did not
appear in print, but several years later Einstein expressed much the same view in
conversation with Lemâıtre. According to Lemâıtre’s account of their 1927 meet-
ing, Einstein acknowledged that he had to withdraw his criticism of Friedmann’s
work but still found expanding models “totally abominable” from a physical point
of view.69 Friedmann seems to have shared, to a degree, Einstein’s reluctance to
attribute physical significance to the expanding models; his papers explored the



26 Chris Smeenk

properties of the hyperbolic and spherical solutions without linking them to the
observed universe. Friedmann approached cosmology like a mathematician explor-
ing the space of solutions to a differential equation. By way of contrast, Lemâıtre
(1927) clearly regarded the spherical model (derived independently of Friedmann)
as possibly giving a description of the universe’s evolution. Unlike Friedmann,
Lemâıtre explicitly derived the redshift effect and argued that his model naturally
accounted for observed redshifts, and he also speculated about the physical origins
of the expansion.

In the early 30s theorists began to develop a richer account of the evolution
of the universe based on the expanding models. Hubble’s results qualitatively
agreed with the redshift effect calculated in these models, but the utility of the
simple dynamical models depends upon whether the universe is approximately uni-
form. The status of this assumption was the focus of lively debate, partly due to
Milne’s advocacy of an alternative theory based on what he called the “cosmolog-
ical principle.” Relativistic cosmologists regarded the idealized uniformity of the
FLRW as a simplifying assumption compatible with observations but not justified
by them (see, e.g., Tolman, 1934, 332), rather than a methodological principle.
The unrelenting uniformity built into the FLRW models conflicts with the clear
non-uniformities of the stars, star clusters, and galaxies of the local universe, but
the models might still serve as a useful approximation if the non-uniformities are
negligible at larger scales. In 1926 Hubble initiated an observational program to
measure the uniformity of the large scale distribution of nebulae, but the results of
this program were challenged by Shapley.70 Shapley and Hubble disagreed about
the significance of observed small-scale clumping. In any case, the observational
debates did not force theorists to abandon the simple expanding models.

There were, however, two widely acknowledged limitations of these simple mod-
els. First, extrapolating the models backwards in time leads to a genuine singular-
ity (later derisively called the “big bang” by Fred Hoyle) that cannot be blamed
on a poor choice of coordinates. Eddington and Lemâıtre avoided this initial sin-
gularity by suggesting that the universe began in an Einstein static state and then
decayed into an expanding model. Einstein’s cosmological constant could still
serve the useful purpose of avoiding this initial singularity, and throughout the 30s
Lemâıtre and others studied a wide variety of evolving models with non-zero Λ.71

Lemâıtre later proposed a speculative theory of the initial state; on this account,
the universe began as a “primeval atom” and has a finite age. A more common
response, advocated by Einstein as well as Tolman, blamed the existence of the
singularity on the strong idealizations built into the simple models. Perhaps a
more detailed model describing the lumps and bumps of the real universe would
not have evolved from an initial singularity, or so the suggestion went. (The sin-
gularity theorems of the 1960s showed that the singularity could not be blamed on
the symmetries of the standard models.) The second limitation is that the uniform
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models provide no insight into the formation of non-uniformities, such as galax-
ies and stars. The cosmological models did not directly answer the cosmogonic
problem that had concerned Jeans and others before the introduction of general
relativity. Starting in the early 30s, Lemâıtre, McCrea, and others studied the
growth of small clumps of matter in a background expanding model with the hope
of shedding some light on the formation of galaxies.

Einstein missed the chance to discover the expanding models, and Friedmann
and Lemâıtre’s papers did not convince him of their physical importance. Through-
out the 20s he apparently did not waver in his insistence on static models. He did
reconsider the status of the cosmological constant but did not abandon it. He
acknowledged in Einstein (1919a) that his earlier introduction of the cosmological
constant was “gravely detrimental to the formal beauty of the theory,” but imme-
diately went on to argue that it could be treated more satisfactorily as a constant of
integration.72 Hubble’s observations convinced him to abandon his preference for
static models as well as the cosmological constant. During a trip to Pasadena from
December, 1930 to March, 1931, Einstein learned about the latest observations at
Mount Wilson first-hand from Hubble and his colleagues. Tolman persuaded Ein-
stein that dynamical models were preferable to static models for describing the
observed universe.73 Shortly after returning to Berlin, Einstein published a paper
that discussed the expanding models favorably and noted the shortcomings of his
own static model (Einstein, 1931). During another visit to CalTech the follow-
ing year, Einstein wrote a brief paper with De Sitter describing the properties of a
simple expanding model with zero spatial curvature (Einstein and de Sitter, 1932).
Both of these papers emphasized that Hubble’s results completely undermined the
original rationale for introducing the cosmological constant, which was to insure
the possibility of a static universe with a finite mean matter density. Einstein later
reportedly regarded its introduction as his “biggest blunder.”74

After this decade and a half of sometimes intense work on cosmology, Einstein
returned to the subject only occasionally in his later years. His most significant
later contribution was a discussion of the impact of cosmological expansion on the
gravitational field surrounding a star. The Schwarzschild solution used to describe
such a field asymptotically approaches Minkowski spacetime as the distance from
the star goes to infinity. But this cannot be correct for a star within an expanding
universe. What are the consequences of treating the star as part of an expanding
model? Einstein and Straus (1945) showed that the Schwarzschild solution could
be embedded in an expanding FLRW model, and that despite the time dependence
of the background cosmological model the field near the star remains static. This
was an important first step in understanding the impact of global cosmological ex-
pansion on local physics. Einstein’s other research in general relativity periodically
touched on cosmology, but it was no longer a major focus of his work.
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6. Conclusion

Within fifteen years after the introduction of Einstein’s theory, theorists had sur-
veyed the properties of a number of simple, idealized solutions of the new grav-
itational field equations. Einstein’s groundbreaking work initiated the study of
cosmological models, although several contemporaries were more clear sighted in
understanding the properties of these models, and Einstein’s preference for a static
model kept him from discovering or initially accepting the expanding models. The
exploration of these models touched on a number of the novel features of general
relativity, including event horizons and singularities, that have been a focus of
further research. The work described above has been aptly called “geometrical
cosmology,” given its very mathematical style. However, Hubble’s discovery of the
redshift - distance relation provided a link with astronomical observations that
encouraged many astronomers and theorists to take these models seriously. The
new consensus regarding the expanding models was codified in systematic reviews
(such as Robertson, 1933) and textbooks (Tolman, 1934).75

However, this consensus faced a number of objections, ranging from empirical
anomalies to questions regarding the legitimacy of taking cosmology to be the
study of idealized solutions of Einstein’s gravitational field equations. As critics of
relativistic cosmology rightly pointed out, the links between the expanding models
and observations were remarkably tenuous. The expanding models provided a nat-
ural explanation of the observed redshifts of the spiral nebulae. However, the use of
these observations to constrain parameters of the models led to a striking problem:
for expanding models with a finite age, the “age of the universe” often turned out
to be far less than the age estimated for various astronomical objects! The eventual
resolution of this problem two decades later came not from a change in the cosmo-
logical models but a recalibration of the distance scale based on Cepheids. Prior
to this recalibration the opponents of the expanding universe models often cited
the age problem as a serious anomaly (among others) for relativistic cosmology.

Debates in the next two decades extended beyond such empirical problems.
Critics of relativistic cosmology introduced rival cosmological theories based on
allegedly sounder scientific methodology than that followed by Einstein and the
other relativists. Although I do not have space to explore these debates in detail,
a brief discussion of the status of the cosmological principle will convey some of
the issues at stake. Within the standard approach to relativistic cosmology, the
cosmological principle was typically treated as a simplifying assumption used to
arrive at mathematically tractable models. Although the assumption of unifor-
mity could be precisely characterized mathematically, there was admittedly no
physical motivation for demanding such a high degree of symmetry. As a result,
it was unclear what, if anything, the failure of the observed universe to satisfy the
uniformity assumption indicated regarding the status of the models, and whether
the models could be refined to give more realistic descriptions of the observed
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matter distribution. By way of contrast, the main alternative to relativistic cos-
mology throughout the 30s, Milne’s kinematic relativity, elevated a version of the
cosmological principle to a fundamental axiom. Milne’s unabashed rationalism in
treating the cosmological principle as an a priori axiom led to a series of heated de-
bates regarding method in cosmology, and Milne’s distinctive approach influenced
work in relativistic cosmology (as noted above) even though kinematic relativity
never won widespread acceptance. Admiration of Milne’s approach also played a
role in the discovery of the second major alternative to relativistic cosmology, the
steady state theory introduced in 1948 by Herman Bondi, Thomas Gold, and Fred
Hoyle (Bondi and Gold, 1948; Hoyle, 1948).

Bondi and Gold (1948) proposed the “perfect cosmological principle” as a re-
sponse to an apparent threat to the extrapolation of local physical laws to cosmo-
logical scales. Relativistic cosmology certainly involves an enormous extrapolation
of Einstein’s theory, from its empirical testing grounds of roughly solar-system
scale to cosmological length scales such as the Hubble radius (the length scale
of the observable universe), roughly 14 orders of magnitude larger. The steady
state theorists were not primarily concerned with the threat of new physics arising
at greater length scales; instead, they followed Milne in insisting that cosmology
faced distinctive methodological problems due to the uniqueness of the universe.
In particular, they argued that the distinction between “laws” and “initial condi-
tions” familiar in other areas of physics does not carry over to cosmology. Since
this distinction could not be drawn clearly, perhaps there would be some form
of “interaction” between local physical laws and the features usually described as
initial conditions, such as the global distribution of matter?76 The perfect cosmo-
logical principle was introduced to rule out the possibility that the local physical
laws evolve along with the changing universe by simply stipulating that the uni-
verse does not change. Bondi and Gold argued for this principle on methodological
grounds: if the principle fails, they argued, any extrapolation of local laws to cos-
mological scales is unjustified, since it might neglect possible interactions. The
principle leads to a “steady state” universe with unchanging global features, and
the reconciliation of this picture with the observed expansion forced the steady
state theorists to relinquish conservation of matter. The steady state theory pro-
voked sharp debates throughout the 50s, focused in part on whether cosmology
should employ such a distinctive methodology. The perfect cosmological principle
provided a tight constraint on cosmological theorizing, as the steady state theo-
rists had hoped, but by the early 60s the constraint proved too tight—and several
advocates of the theory abandoned it in light of new observational evidence.

The status of the cosmological principle changed again in 1965 with the discovery
of very low temperature radiation by Arno Penzias and Robert Wilson. The
Princeton physicist Robert Dicke immediately interpreted this radiation as the
remnant of a hot big bang in the early universe, and it provided a final piece of
evidence against the steady state theory.77 But more importantly, the discovery
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of the background radiation provided an empirical touchstone that encouraged a
dramatic increase in research effort devoted to cosmology. This effort included the
development of detailed accounts of the nuclear reactions taking place in the first
three minutes of the universe’s history (an idea first introduced by Gamow, Alpher,
and Herman a generation earlier, but largely ignored), and theorists also explored
competing accounts of the formation of galaxies and other large-scale structure.
The uniform temperature of the background radiation indicated that the simple
mathematical assumption of uniformity built into the evolving models was far
more accurate than cosmologists had expected, and it also provided evidence that
these models applied to the universe at very early times.

Cosmologists had reason to be puzzled rather than exhilirated by this result,
since they lacked an explanation of why the universe should be in such a highly
symmetric state soon after the big bang. The attempt to resolve this final puzzle
has pushed cosmological theories to incredibly early times (t ≈ 10−35 seconds
after the big bang!), where exotic features of particle physics theories become
relevant. “Particle cosmology” has been an active area of research for the last
twenty years, partially because the “poor man’s accelerator” (to use the Soviet
cosmologist Zel’dovich’s apt description of the early universe) provides perhaps the
only way of testing aspects of particle physics well beyond the reach of Earth-bound
accelerators. The field has been dominated by inflationary cosmology, introduced
in Guth (1981), which explains the puzzling uniformity of the early universe as
the consequence of a brief period of exponential (“inflationary”) expansion in the
early universe. In light of Einstein’s early research in cosmology, the theory of
inflationary cosmology is doubly ironic, since it re-introduces Einstein’s infamous
cosmological constant Λ (admittedly for very different reasons) and it makes use
of the De Sitter solution, the model Einstein argued so strenuously against.
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Notes

1This brief overview draws on several comprehensive historical accounts, primarily Smith
(1982); North (1965); Paul (1993); see also North (1995). Macpherson (1929) and Clerke (1890)
offer well-informed contemporary overviews of the field that bracket this time period.

2Jeans coined the name following Kapteyn’s publications in the early 20s, and Seeliger’s
research supported a similar model (see Paul, 1993, 141–150). Estimates of the scale of the system
were subject to a great deal of uncertainty. Eddington (1914, 31) argued that the dimensions are
roughly 1100 light-years (along the shorter axis) by 3200 light-years (along the galactic plane),
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where the distance is measured from the center to the region where the density of stars drops to
below one fifth of the maximum density. Six years later Kapteyn and van Rhijn (1920) estimated
the size of the galaxy to be roughly 6,100 by 31,000 light-years.

3Advocates and opponents of the island universe theory advanced a variety of ideas regarding
the size, distance and nature of the spiral nebulae and other astronomical objects; in this sense
there was not a single “island universe theory” throughout this period. For example, one disputed
topic was whether globular clusters also lie outside the Milky Way and have some connection with
the spirals. For a more fine-grained analysis of these debates that highlights such differences, see
Smith (1982).

4For further discussion of these objections and references to the original literature, see Smith
(1982, 1–54), North (1965, 4–15).

5The observational situation was muddied by the failure to distinguish novae from much more
luminous supernovae. At the time the small sample of novae used in the comparison included
two supernovae, leaving Shapley and other island universe opponents ample reason to doubt that
novae in the spirals were dimmer than those within the Galaxy (North, 1965, 2–13).

6There is much less dust along the line of sight to objects near the Galactic poles than there is
to objects near the Galactic plane. Even if the spirals were uniformly spread throughout the sky,
they would appear to be clustered around the Galactic poles due to this differential absorption.

7The observed brightness (apparent magnitude) of the star decreases with distance, so if the
intrinsic brightness (absolute magnitude) is known the distance can be calculated.

8The published exchange appeared a year later (Curtis 1921, Shapley 1921). Hoskin (1976)
argues that Shapley tailored his performance to secure a position as the director of the Harvard
College Observatory, which had recently opened up with the death of E. C. Pickering. See also
Smith (1982, 77–90) for a detailed discussion of the Great Debate and its context.

9In 1917 Shapley accepted the island universe theory, but became increasingly critical in 1918
and 1919 (Smith, 1982, 85–86).

10Hubble measured the distance of the spiral nebula Messier 33 to be roughly 930, 000 lightyears,
compared to van Maanen’s estimate of 9, 800 lightyears.

11Three decades after Hubble’s pioneering work, Walter Baade showed that earlier distance
measurements had failed to take into account the existence of two distinct populations of variable
stars, each with a characteristic period-luminosity relation (Baade, 1952). Taking this into
account dramatically changed the distance scale, literally doubling the earlier distant estimates.

12Here I draw on Brush’s (1996a,b) rich historical account of the nebular hypothesis and the
competing ideas introduced in the early twentieth century.

13The subject of the 1917 Adams Prize at Cambridge was “the course of configurations possible
for a rotating and gravitating fluid mass, including the discussion of the stabilities of the various
forms” (Jeans, 1919, v); Jeans’ innovative 1919 book extended his prize-winning essay. See
Smith (1982) for an account of Jeans’s influence and his interactions with van Maanen, Curtis,
and others.

14For example, from roughly 1916 to 1924 Jeans thought that van Maanen’s measurements of
radial velocities in the spiral nebulae fit naturally into his account of the dynamical evolution
of spiral nebulae (Smith, 1982), an unfortunate association given the later problems with van
Maanen’s measurements.

15See Torretti (2000) for an insightful discussion of the nature of cosmological models and what
he memorably calls Einstein’s “unexpected lunge for totality” in introducing the first cosmological
model. I am indebted to Torretti’s article and previous work, especially in this section and in
Section 5 below.

16In this subsection, I draw on Norton’s (1999) comprehensive discussion of the difficulties
with Newtonian cosmology and their history; cf. Jaki (1990); North (1965).
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17Einstein was unaware of Seeliger’s papers when he wrote his cosmology paper (Einstein
1917b), but after they came to his attention he duly cited them (see, in particular, Einstein
1919b, 433, footnote 1, and CPAE 8, Doc. 400). In 1692 Richard Bentley raised the problem
in correspondence with Newton while preparing his inaugural Boyle lectures for publication
(Turnbull, 1959-1977, Vol. III, 233–56). He pressed Newton to consider the following question.
For a given particle of matter in a uniform, infinite mass distribution, the gravitational force in
any chosen direction is infinite. But would the pull exerted by the infinity of mass lying in the
opposite direction cancel this first infinite force, so that the forces in different direction would
be in equilibrium? Bentley balked at comparing infinities, but Newton answered with a definite
yes, apparently without recognizing the deeper problem. The force on the particle is found by
integrating over the contributions due to all other masses, but this integral fails to converge for
a uniform, infinite distribution of mass.

18Seeliger proposed adding an exponential decay term to Newton’s gravitational force law.
Einstein’s modification is not equivalent to this, although Carl Neumann had proposed a modifi-
cation equivalent to Einstein’s, with different motivations, in 1896 (see Norton, 1999, 293–298).

19See Norton (1999, 302–313), for a clear description of the properties of these hierarchic
models and an explanation of how these models avoid the divergences.

20Treating time-varying matter distributions is clearly not sufficient to avoid the difficulty,
since even in an evolving model the universe may pass through a uniform state. Milne (1934);
McCrea and Milne (1934) do not address the question directly, and Layzer (1954) argued that
the models do not apply consistently to an infinite universe, even though they can be consistently
applied to a finite mass distribution. McCrea (1955); Heckmann and Schücking (1955, 1956)
aptly defended the Neo-Newtonian models along lines similar to those discussed in the text, but
without appealing to the geometric formulation (cf. Layzer, 1956; Heckmann and Schucking,
1956).

21See Malament (1995); Norton (1995, 2003) for thorough treatments of the geometric formu-
lation and its implications for Newtonian cosmology.

22Additional solutions to eqn. (1) can be obtained by adding a harmonic function (a function
ψ such that ∇2ψ = 0) to one of these solutions. These additional solutions can be eliminated by
requiring that φ is isotropic around r0.

23One other feature of Einstein’s note is worth highlighting: he comments that the latest
observations refute the “hypothesis of the equivalence of the spiral nebulae and the Milky Way,”
although it is not clear which observational results he had in mind.

24Einstein later added Mach’s principle—“The metric field is determined without residue by
the masses of bodies”—to the list of three foundational principles of general relativity (Einstein,
1918e, 242, original emphasis). There are problems with both formulations; in particular, it is
not clear how to characterize the matter distribution without employing the metric. In what
follows, we will focus almost exclusively on the connection between Mach’s principle and the
status of boundary conditions and vacuum solutions. For an entry into the extensive literature
on Mach’s principle, its historical role in Einstein’s path to general relativity, and its relation to
other foundational principles, such as the requirement of general covariance and the equivalence
principle, see Janssen’s contribution to this volume, Torretti (2000), and Hoefer (1994).

25The editorial note “The Einstein-De Sitter-Weyl-Klein Debate” (CPAE 8, 351–357) gives
a thorough discussion of the correspondence between Einstein and De Sitter, and the later
participants Weyl and Klein. See also Section 5 of Janssen’s contribution to this volume.

26Einstein (1915h) introduced the boundary conditions of the Schwarzschild solution without
commenting on the potential conflict with his Machian ideas. However, there are hints that
Einstein had already begun to worry about these issues (see Hoefer, 1994, 298–303), in both his
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comments regarding the status of Minkowski space-time in the context of general relativity and
a letter to Lorentz from the winter of 1915 (CPAE 8, Doc. 47).

27As Torretti (2000) has emphasized, Birkhoff’s (1923) theorem shows that the Schwarzschild
solution can be derived from the assumption of spherical symmetry without further stipulating
boundary conditions at infinity. Thus in the case Einstein had in mind, the boundary conditions
are not logically independent from the symmetry requirements.

28Einstein and De Sitter also studied the transformation behavior of different boundary con-
ditions as a way of testing their consistency with Mach’s principle. Einstein apparently thought
that degenerate values would be generally covariant, but De Sitter showed that this claim was
incorrect. de Sitter pointed out that even the “degenerate values” were not invariant under
certain transformations (see CPAE 8, Doc. 272 and De Sitter (1916c, 1917a)).

29More precisely, Einstein takes the matter distribution and the corresponding metric field
to be homogeneous and isotropic. Roughly, homogeneity is satisfied if there are no “preferred
locations” on a spatial section, and isotropy holds that at a given location there are no “preferred
directions” in space. The modern treatment of these symmetries traces back to the work of
Robertson and Walker described briefly below.

30A few years later Weyl introduced a contrast between “static” and “stationary” solutions
that has since become standard: in a stationary solution, the spatial components of the metric
are not functions of time but the “mixed” space-time components may be functions of time,
whereas for a static solution only the time-time component of the metric is allowed to vary with
time. More intuitively, spatial distances remain fixed under time translations in a stationary
solution, and this is compatible with a perfectly rigid rotation; there is no such rotation in static
solutions.

31In a later letter (Doc. 355) he considered the constraints that low stellar velocities would
put on a cosmological solution, and argued that they do not lead to a static solution as Einstein
had thought.

32This change is not “perfectly analogous” to the addition of a constant in Poisson’s equation,
as Einstein claimed. The Newtonian limit of the modified field equations yields ∇2φ+Λφ = 4πGρ,
rather than eqn. (3) (Trautman, 1965, 230).

33The Ricci tensor Rµν is defined in terms of the metric field gµν and its first and second
derivatives, and the metric field characterizes the geometrical properties of space-time. The
stress-energy tensor Tµν represents the distribution of matter, energy, and stress throughout the
space-time.

34The left hand side of eqn. (7) is the most general symmetric tensor that can be constructed
from the metric gµν and its first and second derivatives, such that the conservation law for Tµν

holds. See Renn (2007a, Vol. 2, 493–500) for further discussion of the physical requirements that
guided Einstein’s derivation of the original field equations.

35To be more precise, Λ enters into equations governing, for example, the behavior of nearby
test particles with the opposite sign as matter or energy density. The presence of normal matter or
energy leads paths of nearby test particles to converge, and this captures the idea that gravitation
is a “force of attraction.” A positive Λ term leads to divergence of these paths (if it is strong
enough to counteract gravitational attraction), and in this sense it is a “repulsive force.”

36Minkowski space-time apparently constitutes a violation of Mach’s principle as formulated
above, since it is a vacuum solution. Einstein did not explicitly mention that Minkowski space-
time is not a solution with Λ 6= 0, although he undoubtedly appreciated this point (as did Pauli,
1921).

37“It is to be emphasized, however, that our results give a positive curvature of space even if
the the supplementary term [Λ] is not introduced; that term is necessary only for the purpose of
making a quasi-static distribution of matter possible, as required by the fact of the small stellar
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velocities” (Einstein, 1917b, 152). Torretti (2000, 178) suggested that “Einstein could hardly
have published that remark” without knowing of a non-stationary solution with closed spatial
sections. Torretti’s point is plausible, but as far as I know there is no evidence that Einstein had
obtained such a solution in 1917.

38Prior to the introduction of his own model, De Sitter had focused on the status of the time
coordinate in Einstein’s solution, and he characterized his solution as treating the temporal
coordinate as “closed” in the same manner that Einstein closed the spatial dimensions. He gives
credit to Ehrenfest for the idea of getting rid of temporal as well as spatial boundary conditions
by postulating a “spherical” space-time (de Sitter, 1917c).

39I am setting aside debates regarding the topology of De Sitter’s space-time; Klein, Einstein
and others discussed whether antipodal points should be identified or treated as distinct points.
(Antipodal points lie on opposite “sheets” of the hyperboloid and are connected by a line passing
through the center of the hyperboloid.)

40See, in particular, Janssen’s contribution to this volume, Earman and Eisenstaedt (1999),
and Goenner (2001) for further discussions of the debates regarding De Sitter’s solution.

41For discussion of geodesics in the De Sitter solution, see Schrödinger (1956). Geometrically,
referring to Fig. 9 of Janssen’s contribution to this volume, timelike geodesices are defined by
the intersection of the hyperboloid and vertical planes through the origin. These are curves of
constant spatial coordinates in pseudo-polar coordinates, which cover the entire hyperboloid.
But the curves of constant spatial coordinates in static coordinates are not geodesics, as can be
shown by considering the coordinate transformation from pseudo-polar to static coordinates.

42See Janssen’s contribution to this volume regarding Klein’s contribution and his exchange
with Einstein, and for further discussion of the properties of the De Sitter solution. See also
Schrödinger (1956) for a particularly clear treatment of the De Sitter solution.

43See “The Einstein-De Sitter-Weyl-Klein Debate” (CPAE 8, 352–354) for a discussion of
Einstein’s other criticisms and De Sitter’s responses.

44See Earman (1999) for a history of the problems related to singularities, culminating with a
discussion of the famous Penrose-Hawking singularity theorems.

45See Earman and Eisenstaedt (1999, 189–193) for further discussion of Einstein’s definition
and its relation to an alternative, more stringent definition proposed by Hilbert.

46Written in static coordinates, the gtt component of the metric is given by cos2 (r/R) (where
r is a coordinate and R is a constant), and this goes to zero at the “mass horizon” r = πR/2.
See also Section 5 of Janssen’s contribution to this volume.

47The construction only appeared in the second edition of Raum-Zeit-Materie. Weyl and
Einstein exchanged several letters regarding Weyl’s results, which Einstein foreshadowed in the
closing remarks of Einstein (1918c). See Goenner (2001) and Earman and Eisenstaedt (1999),
as well as the correspondence and the editorial headnote in CPAE 8, for discussions of Weyl’s
result and its role in Einstein’s thinking.

48Lanczos criticized the mass horizon idea in a second paper (Lanczos, 1923); see also Stachel
(1994); Eisenstaedt (1993).

49Rindler (1956) is the classic paper regarding horizons in cosmology; see Ellis and Rothman
(1993) for a more recent and extremely clear discussion.

50I do not have space to review the disputes regarding redshift during the twenties. See North
(1965), Goenner (2001) and Ellis (1989) for thorough assessments and references to the original
papers.

51See Section 3 of Janssen’s contribution for a brief explanation of the notion of a geodesic.
52 Contributions to the overall redshift come from the following six sources (Ellis 1989, 374–

375): the Doppler shift due to relative motion of the source, gravitational redshift due to inho-
mogeneity near the source and near the observer, Doppler shift due to the peculiar velocity of
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the observer, the cosmological expansion or contraction, and the gravitational redshift produced
by large-scale inhomogeneities.

53See Smith (1982), Chapter 5, regarding the background of Hubble’s work and its reception.
54De Sitter had voiced some skepticism about this in correspondence with Einstein (CPAE

8, Doc. 355), and Gustav Mie also broached the issue (CPAE 8, Docs. 465, 488), although he
argued incorrectly that any inhomogeneities in Einstein’s solution would evolve back to a uniform
matter distribution.

55The conclusion follows from Lemâıtre’s equations for the evolution of the scale factor given a
perfect fluid with zero pressure: 3R̈/R = Λ− (κρ/2), given that ρ varies with R(t) as ρ ∝ R−3(t)
whereas Λ remains constant.

56Tolman (1929a) also criticizes the De Sitter model. Unlike De Sitter, Tolman argued that
predicting a correct redshift-distance relation requires ad hoc assumptions regarding the world-
lines of the spiral nebulae, but like De Sitter he expressed unease at treating galaxies as test
bodies within a vacuum solution.

57At this time the De Sitter solution was regarded as a static solution. Following De Sitter’s
presentation, Eddington expressed puzzlement regarding why there should be only two solutions,
adding that “I suppose the trouble is that people look for static solutions” (R.A.S., 1930, 39).
Similarly, de Sitter (1930) concluded by advocating dynamical solutions in light of the difficulties
facing both models; cf. a letter from De Sitter to Shapley quoted in Smith (1982, 187).

58 Tolman remarked that “the investigation of non-static line elements would be interesting”
(Tolman, 1929b) in the final line of a paper presenting the difficulties for static models; in a
slightly later paper (Tolman, 1929a), Tolman argued that the De Sitter solution does not give
a “simple and unmistakably evident explanation” of the distribution and motion of the spiral
nebulae, as observed by Hubble.

59Lemâıtre had been Eddington’s student in 1923–24, and Eddington later remarked that he
had probably seen but not appreciated Lemâıtre’s paper before 1930; see Kragh (1996, 31–33);
Eisenstaedt (1993).

60(Lemâıtre, 1931) is not, however, a complete translation of the original paper; Eddington
dropped Lemâıtre’s determination of what we now call the Hubble constant, based on the redshift-
distance relation for 42 galaxies.

61Milne’s work and the larger methodological debates it sparked have been the focus of a series
of papers by George Gale and various collaborators—see, in particular, Gale and Urani (1993);
Gale and Shanks (1996), Gale (2002) for a general overview, and Lepeltier (2006) for a critical
response.

62Despite the significant overlap in mathematical content in these sets of papers, their method-
ological motivations were quite different. Robertson adopted Milne’s operationalist standpoint
only to rebut Milne’s supposed alternative to general relativity, highlighting its similarities at the
level of kinematics and the difficulties facing Milne’s kinematical-statistical theory of gravitation.
Milne’s protegé Walker was, unsurprisingly, much more sympathetic to Milne’s approach.

63In current terminology, the metric is required to be homogeneous and isotropic. Robertson
and Walker both set aside Milne’s further requirement that the (operationally defined) coordi-
nates assigned by distinct fundamental observers are related by Lorentz transformations, as this
singles out the k = −1 FLRW model.

64Torretti (1983, 202–210) describes Friedmann’s work in greater detail and compares it to the
work of Robertson and Lemâıtre; cf. Kragh (1996, 22–38).

65In Einstein’s static model the distance between test particles remains constant; De Sitter’s
solution only appears to be static if one mistakenly focuses on test particles that do not move
along geodesics.
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66Friedmann studied solutions of the modified field equations including the cosmological con-
stant Λ, although his results establish the existence of the solutions described below with Λ = 0.

67Roughly speaking, normal matter is defined as having “positive total stress-energy density.”
The presence of such matter produces gravitational attraction, other things being equal, in the
sense of convergence of the trajectories of freely falling test particles. There are different ways
of making the notion of “normal matter” more precise, leading to various energy conditions in
general relativity. Matter which satisfies the so-called strong energy condition contributes to the
dynamical equations such that it contributes to deceleration. By way of contrast, a non-zero
cosmological constant term does not satisfy this energy condition and does not qualify as normal
matter.

68The last line of the brief correction reads, “It follows that the field equations admit, as well
as the static solution, dynamic (that is, varying with the time coordinate) centrally symmetric
solutions for the spatial structure, [to which a physical significance can hardly be ascribed].”
The phrase in square brackets is canceled in the manuscript (EA 1-206) and does not appear in
the printed version (Einstein, 1923).

69Lemâıtre described the encounter to Eddington in a letter written in early 1930 accompanying
the reprint of his 1927 article. Eisenstaedt (1993, 361) quotes a draft of this letter from Lemâıtre’s
papers.

70See Peebles (1980, 3–11) for an overview of the debate, and Tolman (1934, Sections 177–185)
for a contemporary assessment of the evidence.

71See Earman (2001) for a discussion of these models and different attitudes to the cosmological
constant.

72Schrödinger (1918) had pointed out another way of treating the cosmological constant: mov-
ing it from the left-hand side of eqn. (7), where it represents a contribution to space-time
curvature, to the right-hand side, where it represents a contribution to the energy-matter dis-
tribution. Then it would correspond physically to a kind of cosmic pressure. In his response to
Schrödinger, Einstein (1918d) wrote that he had considered this option too but had rejected it as
artificial. Einstein (1919a) argues that the cosmological constant term, treated as a constant of
integration, also solves a problem in matter theory by contributing a negative pressure term to
keep the electrodynamic forces on a small charged particle in equilibrium. For further discussion
of the proposal in Einstein (1919a), see Earman (2003).

73As Stachel (1986) has pointed out, Einstein’s diary from the trip records that he initially had
doubts regarding Tolman’s argument, but that during this trip he was convinced that Tolman
was in fact correct (EA 29-134, 27–28). Einstein had a positive impression of the astronomers at
Mount Wilson; see, e.g., his letter to Besso written in March of 1931, quoted in Stachel (1986).

74The canonical source for this story is George Gamow’s autobiography: “Einstein’s original
gravity equation was correct, and changing it was a mistake. Much later, when I was discussing
cosmological problems with Einstein, he remarked that the introduction of the cosmological term
was the biggest blunder he ever made in his life. But the “blunder,” rejected by Einstein . . . rears
its ugly head again and again and again” (Gamow, 1970, 149–150).

75In 1931 the consensus favored a multi-stage evolutionary model rather than a simple big
bang model; see Gale and Shanks (1996) regarding the discussion of this emerging consensus at
a 1931 British Association for the Advancement of Science meeting.

76Mach’s principle returned to the limelight as one of the steady state theorists’ main examples
of this type of interaction (see, for example, Sciama 1957). In the case of Mach’s principle, the
concern was that local inertial structure would change with the overall change in matter distri-
bution in an evolving cosmos. For example, Sciama developed a theory according to Newton’s
gravitational constant G depended upon the density and expansion velocity of the global matter
distribution, such that in an expanding model the current value of G would differ from that at
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earlier or later times. Bondi and Gold were concerned that other local “laws” of physics may
also “evolve” in this sense. Whether the ideas of interaction and evolving laws invoked here
make sense is a contentious issue; see Balashov (2002) for a discussion that is sympathetic to the
steady state theorists.

77Popular accounts of the controversy typically overplay the importance of the background
radiation; as Kragh (1996) establishes, the background radiation was the last of several empirical
anomalies facing the steady state theory, and all those who could be convinced to abandon the
theory had already done so before 1965.
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Raumes’.” Zeitschrift für Physik 16, 228.

— (1931). “Zum kosmologischen Problem der allgemeinen Reitivitätstheorie.”
Sitzungsberichte der Preussische Akademie der Wissenschaften (Berlin) , 235–
237.

Einstein, Albert and de Sitter, Willem (1932). “On the relation between the
expansion and the mean density of the universe.” Proceedings of the National
Academy of Science 18, 213–214.

Einstein, Albert and Straus, Ernest G. (1945). “The influence of the expansion of
space on the gravitation fields surrounding individual stars.” Reviews of Modern
Physics 18, 148–152.

Eisenstaedt, Jean (1989). “Cosmology: A space for thought on general relativity.”
In Foundations of Big Bang Cosmology , F. Walter Meyerstein, ed. Singapore:
World Scientific, 271–295.
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