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ABSTRACT 
Just as a herd of animals relies on its robust social structure to survive in 
the wild, similarly robustness is a crucial characteristic for the survival 
of a complex network under attack.  The capacity to measure robustness 
in complex networks defines a network’s survivability in the advent of 
classical component failures and at the onset of cryptic malicious 
attacks.  To date, robustness metrics are deficient and unfortunately the 
following dilemmas exist: accurate models necessitate complex analysis 
while conversely, simple models lack applicability to our definition of 
robustness.  In this paper, we define robustness and  present a novel 
metric, elasticity- a bridge between accuracy and complexity-a link in 
the chain of network robustness.  Additionally, we “test-drive” the 
performance of elasticity on Internet topologies and online social 
networks, and articulate results. * 
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1. INTRODUCTION 
The gravity of network robustness requires earnest attention.  In 2001, 
Code Red, a computer virus that incapacitated numerous networks, 
resulted in a global loss of 2.6 billion US dollars.  In 2004, the Sassar 
virus caused Delta airlines to cancel 40 transatlantic flights in addition 
to halting trains in Australia.  The US General Accounting Office 
estimated 250,000 annual attacks on Department Of Defense networks.  
Objectives of such attacks range from theft, modification, and 
destruction of data to dismantling of entire networks.  Our daily routines 
would cease to exist should the technological information infrastructure 
disintegrate.  Thus, it becomes crucial to maintain the highest levels of 
robustness in complex networks.  
 

In an effort to measure robustness, it is necessary to first provide a 
definition for the robustness.  Amongst other definitions, a network can 
be robust if disconnecting components is difficult.  However, in this 
paper, we define a robust network as one where the total throughput 
degrades gracefully under node and link removal.  The former definition 
is based on topological characteristics, while the latter also considers 
traffic flow.   
 

 

The classical approach for determining robustness of networks entails 
the use of basic concepts from graph theory.  For instance, the 
connectivity of a graph is an important, and probably the earliest, 
measure of robustness of a network [1].  Node (link) connectivity, 
defined as the size of the smallest node (link) cut, determines in a 
certain sense the robustness of a graph to the deletion of nodes (links).  
However, the node or link connectivity only partly reflects the ability of 
graphs to retain certain degrees of connectedness after deletion.  Other 
improved measures were introduced and studied, including super 
connectivity [2], conditional connectivity [3], restricted connectivity [4], 
fault diameter [5], toughness [6], scattering number [7], tenacity [8], 
expansion parameter [9] and isoperimetric number [10].  In contrast to 
node (link) connectivity, these new measures consider both the cost to 
damage a network and how badly the network is damaged.  However, 
from an algorithmic point of view, it is unfortunate that the problem of 
calculating these measures for general graphs is NP-complete. This 
implies that these measures are too costly for use within the confines of 
complex networks.  
 

Contemporary approaches include, but are not limited to, utilizing link 
and router information in addition to spectral analysis.  Should we 
consider the former approach, one can immediately calculate the 
subsequent repercussion: an unfortunate dependence on ISPs for data.  
ISPs, due to an inherent need to maintain their competitive link, opt out 
of providing network specific data to researchers.  However, assuming 
ISPs provided all requested data, [8 9] delineate the complexities 
involved in developing mathematical models.  Due to these constraints, 
there has been a thrust towards utilizing spectral analysis and more 
specifically, the Laplacian spectrum, as a measure of network 
robustness.  Though notable and innovative in all respects, it will be 
shown using examples and counterexamples, that these current methods 
are incapable and insufficient to capture the robustness in complex 
networks [16, 26].  
 

Strides towards categorizing network topologies resulted in the 
development of a topological metric system [11, 12, 13, 14, 15, 16, 17]:  
likelihood [17], expansion [16], resilience [15], performance [17], router 
utilization [16], assortativity [11], distance [11], spectrum [11], 
betweenness [11], average node degree, NDD (node degree distribution) 
and JDD (joint degree distribution).  These are the most commonly used 
metrics.  A seasoned veteran in the field of complex networks would 
concur that one metric is unable to define the structure of a network.  
However, a collection of “golden” metrics will undoubtedly embody the 
nature of a network [12]: research is ongoing to obtain these “golden” 
metrics.  Considering all metrics above, this paper seeks to highlight 
performance and assortativity.   

 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full citation on the first page. To copy otherwise, or republish, to post on 
servers or to redistribute to lists, requires prior specific permission and/or a fee. 
Bionetics'08, November 25-28, 2008, Hyogo, Japan. 
Copyright 2008 ICST 978-963-9799-35-6.  * This paper is best viewed in a color format. 

  



Enlightened by efforts to realize the robustness of Internet models, this 
study exhaustively targets the heart of network robustness by 
introducing a necessary metric: elasticity (Ε).  Elasticity is defined as 
the area under the curve of throughput vs. percentage of remaining 
nodes in a network under attack.  From a panoramic perspective, 
elasticity not only analyzes a topology’s adaptability to node and link 
failures but also captures the overall percentage of flows rerouted under 
the aforementioned failures.  Much research on network robustness 
starts on a connected network and ends at the point in which this 
network becomes disconnected [25].  Our study is realistic, proving that 
performance of disconnected networks cannot be overlooked, and is a 
significant improvement over some of its predecessors by necessitating 
solely, the topology of a network in order to determine robustness.  
Hence, we developed a simple algorithm, which accepts as its input the 
topology of any network, irrespective of the number of nodes or links, 
which has the potential to target node removal randomly or selectively 
in order to determine the scale of operational performance.   
 

We validate the legitimacy of our algorithm by comparing results 
obtained to that of previously published research.  Additionally, we 
have carried out exhaustive experiments on the most frequently used 
internet topologies: BGP, traceroutes, Whois, Abilene, as well as 
computer-generated topologies and will publicize our datasets and 
algorithm.  Finally, we correlate the possible interplay between 
Assortativity and Elasticity and suggest the possibility of using online 
social networks to model the Internet.     
 

Our motivation for this research stems from the need to provide network 
specialists with tools necessary to encapsulate the global performance of 
any topology, without the overheads in obtaining actual router/link data 
and specifications.  This emulates what was done in [8, 9], without 
demanding costly computing resources and the use of complex 
theorems.  This not only reduces the time necessary to make an 
informed decision about an impending network project execution, but 
also reduces the bureaucratic costs involved with obtaining ISPs’ 
topology data.  Thus, ISPs can rest assured that their competitive link is 
not compromised as their network performance is optimized.  Our 
proposed contribution engenders the following: 

1. Defines a metric, Elasticity 0 ≤ Ε ≤ 1, inspired by the 
Performance metric [8, 9] and develops an algorithm, which 
for a given network topology, details its adaptability to node 
and link failures.   

2. Validates the legitimacy of our model through comparative 
analysis 

3. Extends the removal of nodes and links to 80% of the total in 
contrast to 20% in previous work [9].  This extension is 
necessary to obtain an overall worst case scenario perspective 
for a topology in question, even in the event of a disconnected 
network   

4. Establishes a possible link between the Assortativity metric 
[29] and Network Elasticity 

5. Explores Internet robustness under random and targeted 
attacks 

6. Proposes the exploration of online social networks to model 
the Internet  

 

2. SPECTRAL ANALYSIS FOR ROBUSTNESS 
Research on the performance metric has deviated from the course of 
utilizing actual router and link specific models [8, 9] to spectral models.  
The former models have specifically investigated the performance of 
networks under node removal by comparing the performance of two 
controversial models of the internet: Scale-free and HOT (Heuristically 
Optimal Topology).  Though accurate, the innate complexity of these 

models has been a vehicle towards utilizing spectral models to define 
network robustness.  As shown below, spectral analysis though simple, 
lacks applicability to our definition of robustness.  For example, the 
second smallest Laplacian eigenvalue (λ2) has been given significant 
attention and is generally considered an adequate measure of robustness 
[15]. 

 
Figure 1. Network 1 with a diameter of 4 and λ2 = .6766. 

 
Figure 2. Network 2 with a diameter of 4 and λ2 = .58579. 

 

Based on the robustness definition presented in the Introduction, 
network 1 is more robust than network 2.  Initially, 42 origin-destination 
(O-D) flows exist.  In network 1, if one node is attacked in such a way 
that the network becomes disconnected, 22 flows will not be delivered, 
which corresponds to 52% of the initial throughput.  In network 2, if the 
central node is targeted, 12 flows will be delivered, which corresponds 
to 30% of the initial throughput.  Thus, the elasticity of network 1 is 
greater than that of network 2.  Likewise, λ2  for network 1 is greater 
than that of network 2.  In this case, the second smallest eigenvalue 
captures our definition of robustness in that the larger the λ2 , the greater 
the robustness of a topology.  Networks 3 and 4 serve as 
counterexamples.  In network 3, there exist 30 initial O-D flows.  If the 
central node is removed, you can still route 20 flows: 67% of the initial 
throughput.  In network 4, however, there is no central node and in the 
worse case scenario of a single node removal, out of 306 initial flows 
240 will be delivered, which corresponds to 78% of the initial 
throughput.  Thus, network 4 is more robust than the one in network 3.  
However λ2  for network 4 is considerably lower than that of network 3.  
On this premise, λ2  does not capture our definition of robustness.  

 
Figure 3. Network 3 with a diameter of 2 and λ2 = 2.38197. 

 

 
Figure 4. Network 4 with a diameter of 3 and λ2 = .89023. 
 

From a different approach, researchers in [16] endeavor to use an 
average of the spectrum of eigenvalues as a more accurate measure of 
robustness.  This works exceptionally but only for small-scale 
topologies.  When dealing with complex networks that span thousands 
and millions of nodes, finding eigenvalues for all nodes is directly 

  



proportional to the resources available in terms of software, processing 
power and RAM. 
 

3. DATA SOURCES 
Whois, BGP, Skitter data are frequently utilized Internet topologies 
obtained from [11].  Inet topology was also obtained from a highly 
recognized computer topology generator [21].  The Abilene topology, 
another internet backbone established in 11 US cities, was obtained 
from [22].  Other computer-generated topologies were obtained from 
Pajek [23], which is used to analyze large networks, and WHEAT, a C 
program, which generates lattice topologies.  Due to the computational 
resource requirements of this algorithm, all networks were rescaled 
using [21] to approximately 1000 nodes.   
 

Rescaling involves characteristics inherent in the dK series where d, for 
the purposes of this study, is a positive integer from 0 to 3 [12].  The 
computational complexity in rescaling is directly correlated to an 
increase in d. The objective seeks to rescale any given topology to the 
required number of nodes while preserving topological characteristics.  
A panoramic overview of this approach details the following: 
 

i. 0K: These topologies are produced from average node degree 
[12, 21] 

• This stochastic technique originated from research 
done by Erdös and Renyí.  However, due to high 
statistical variance, when applied to higher d values, 
this approach fails. 

ii. 1K: Produced from node degree distribution P(k) 
iii. 2K: Produced from joint degree distribution (JDD) 
iv. 3K: Produced from links and triangles 

• Utilizes the rewiring technique and can be applied to any 
of the dK topologies 

 
Researchers from [12] conclude that 2K is sufficient to capture most 
properties of a given rescaled graph.  However, 3K captures all 
topological characteristics to date.  The specific details of the 
approaches mentioned above are beyond the scope of this paper.  
However, for the purposes of this research, 2K rescaling was utilized.  
Further insight can be realized from [12]. 
  

4. MODEL AND SIMULATION 
 

4.1 MODEL 
For the subsequent sections of this paper, the following definitions hold 
true: 

• Nodes (n): Any interconnecting component on a network: 
computers, routers,  people for social networks 

• Links (m): A link between nodes 
• Graph (gi): The initial graph with n nodes and m links 
• Traffic matrix (T(gi)): The initial nxn matrix containing each 

flow (If j = k, Tjk  = 0.  Otherwise, Tjk = 1).   
• Normalized remaining throughput (Tp(g)) 
• Bandwidth Bm =1 
•  (R(gi)): The routing matrix using standard shortest  path 

routing and can be 1 or 0 if a flow traverses an O-D pair  
• X(gi)  : A vector formed by stacking all T(gi) flows 
• fmax: Maximum number of flows through bottleneck link 
• δ : Maximum flow for each O-D pair (δ = 1/fmax) 
 

Based on our definition of robustness, we introduce a new metric 
Elasticity (E), as the area under the curve of Tp(g) vs. % nodes still 

functioning in the network.  For each network where nodes and links are 
removed, Tp(g) gives the maximum throughput obtained.  Thus: 
 

Tp(g) = max  δ T(g) s.t.  R(g) X(g) ≤ B(g) (1) 
 
Our approach realizes a simplification of this formula where: 

max

1
( )  jkjkTp g T

f
= ∑  (2) 

Algorithm to find Elasticity 
i. Input g 

ii. Find shortest path and populate R(g) 
iii. Calculate fmax 
iv. Calculate Tp(g) 
v. Calculate Ε, which is the area under the curve of Tp(g) vs. % 

nodes  

4.2 RESULTS AND ANALYSIS 
Up to this point, discussion about the metric assortativity coefficient (r), 
has been circulated.  Assortativity ranges from -1 to 1.  In disassortative 
networks, r < 0, the majority of radial links connects nodes of different 
degrees.  The repercussion of this fact indicates that such networks are 
vulnerable to random failures, targeted attacks, and faster virus 
dissemination.  Conversely, in assortative networks where r > 0, the 
opposite holds true [11].  For all topologies, Table 5, in the appendix, 
highlights the following key characteristics: assortativity coefficient, 
number of nodes and links, maximum node degree and average node 
degree.  ORBIS, a rescaling topological tool from [21], provided the 
capability to rescale networks. 
 

In order to verify ORBIS’ rescaling capability, we calculated the metrics 
mentioned above for the original HOT topology with 939 nodes, a 500, 
2000 and finally 5000 node rescaled version.  The results are shown in 
Table 5, in the appendix.  Additionally, figure 5 plots Elasticity for the 
HOT original and rescaled topologies.  For all Elasticity graphs, Tp(g) is 
plotted against the percentage of nodes left in the network.  The x-axis 
has been reversed to portray the initial scenario when all nodes are in 
the network (100 %) and thus Tp(g) would be 1 (No nodes have been 
removed).  The Legend format for all graphs from figure 9 onwards 
reads, “Graph name_Assortativity value.” 

Evaluation of ORBIS' Rescaling Ability Under 
Targeted Node Removal

0

0.2
0.4

0.6

0.8

1

20406080100
% Nodes in Network

Tp
(g

) HOT 2000
HOT 500
HOT original
Skitter

 
Figure 5. 

From Table 5, in the appendix, though the number of nodes and links 
increase, r and the average node degree remain relatively constant.  In 
Figure 5, though the original HOT topology has better performance than 
the rescaled versions, it can be seen that the rescaled versions still 
maintain high Elasticity when compared to the Skitter topology, which 
has one of the highest Elasticity values.  

  



 

To validate elasticity, we compared our output results to that obtained 
for the HOT and Scale-free topologies from [20].  
 

 
Figure 6. [20]  

 

Elasticity in HOT and Scale-free Topologies under 
Targeted Attacks
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Figure 7. 

 
 

  

 
 

 
 
 
 
 
Figure 6 shows the performance of HOT (prominent mesh core) 
compared to Scale-free (high degree hubs) when up to 20% of the high 
degree nodes were removed.  Figure 7 shows our version, relatively 
comparable to Figure 6.  However, our model is based solely on the 
link-list (Topological structure) of the network and does not include any 
link or router specific information, as does Figure 6.  Yet, our results are 
highly similar.  This result validates the legitimacy of our model.   
On this conclusion, we proceed to the subsequent sections of our 
analysis.  For all values of elasticity under random removal, we 
executed each experiment 20 times and found the average.  
 

Elasticity in All Topologies: Targeted Attacks 
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Figure 10. 
 

Table 1.  Elasticity under highest node degree failure 

Graph Area Elasticity 

HOT 35.36124 0.4420155 
155 31.01468 0.3876835 
154 30.25828 0.3782285 
Abilene 29.87953 0.37349413 
Whois 27.3725 0.34215625 
MySpace 27.07741 0.33846763 
Skitter 26.4573 0.33071625 
BGP 25.90381 0.32379763 
Inet 25.63658 0.32045725 
153 22.92724 0.2865905 
152 19.61782 0.24522275 
Scale-free 17.21701 0.21521263 
45 10.74491 0.13431138 
54 9.636033 0.12045041 
116 0.2495 0.00311875 

  
Figure 8. Scale-free                   Figure 9. HOT 

 
Table 1 gives the values for elasticity when nodes with the highest node 
degrees are removed from all topologies in Figure 10.  As expected, the 
HOT topology (Blue trace) which, designed under realistic 
technological and economic constraints, has the highest elasticity and 
the Scale-free topology (Green trace) shows poor elasticity.  This result 
is expected due to the fact that the Scale-free topology exhibits few 
nodes with high degrees.  Graph 116, as shown in figure 13, consists of 
three star-like nodes that interconnect all other nodes.  Thus, when these 
nodes fail, one would expect the entire topology to fail.  Topologies 155 
and 154, as shown in figures 11 and 12 respectively, are mesh-like 
topologies.  Therefore, the removal of nodes has minimal effect on their 
elasticity.  The next tier of high performing topologies are all Internet 
topologies, including skitter, Abilene, BGP, Whois.  Figures 14, 15, 16 
and 17 provide a visual on these topologies.  They all have a prominent 
mesh-like core (comparable to the HOT topology) that provides for high 
Ε.  At this juncture, one should notice the relationship between r and Ε.  
From figure 10, the conclusion can undoubtedly be made that a high 
percentage of topologies with a negative r values, are internet topologies 
and have the highest Ε values.  Conversely, low performing topologies 
have positive r values.  This phenomenon will be investigated in later 
sections. 



 

Previous work compared the removal of 20% of the highest degree 
(worse case) nodes and as shown in figure 7, the HOT topology had the 
overall best performance.  However, figure 10, taking into consideration 
the entire network, clearly gives a counter argument to the claim 
mentioned above.  HOT demonstrated excellent Elasticity when 50% of 
the high degree nodes were removed.  However, past this threshold, if 
more nodes are removed, this topology deteriorates to the worse Internet 
topological structure.  However, Abilene has notably consistent 
qualities.  Its high Elasticity is exhibited consistently under targeted 
attacks even past the 50% threshold experienced by HOT.     

  

 

         
 
 
 
 
 
                      
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Elasticity Under Random Node Failure for All 
Topologies
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Figure 18 

 

Table 2.  Ε under random node failure 

Graph Area Elasticity 
116 33.4223 0.417779 
155 33.4058 0.417573 
154 33.341 0.416763 
MySpace 33.3372 0.416715 
Skitter 33.1151 0.413939 
Whois 33.0163 0.412704 
Scale-free 32.8113 0.410141 
Inet 32.6983 0.408729 
BGP 32.4478 0.405598 
Abilene 30.0752 0.37594 
152 26.6476 0.333095 
45 23.1055 0.288819 
54 22.5472 0.28184 
HOT 18.3556 0.229445 

  
Figure 15. BGP                    Figure 16. Abilene 

 

      
Figure 17. Skitter                 

 

 

 

 

 
Figure 11. Topology 155                   Figure 12. Topology 154 

 

              
Figure 13. Topology 116                Figure 14. Whois topology 

 

 
Figure 18 shows the response for all topologies under random node 
attacks.  In line with the results in [20], HOT should have been among 
the best performing network under random node attack.  However, as 
shown above, this claim holds true for the first 5% of nodes removed.  
As the number of random nodes removed increases, the HOT topology 
plummets drastically and falls within the sector of graphs with positive r 
values, the worse performing topologies.  Surprisingly, Abilene 
maintains the highest average Elasticity over 80% for both random and 
targeted node removals.  This rather strange behavior of the HOT 
topology demonstrates the difficulties involved in computer-generated 
topologies.    One interesting observation is that the Scale-free topology 
in addition to Graph 116, under random attacks, exhibits elasticity 
comparable to the other high performing topologies: including Abilene 
and skitter.  One reason is alluded to by the fact that, under random 
attacks, the probability of removing a highly connected hub is low.  
Intuitively, one would expect the elasticity of a network under random 
attack to be higher than that of a network under targeted attack.  We 
observed that all topologies, except HOT adhered to this generality.  We 
surmised that perhaps the structure of the HOT topology with high node 
degree hubs on the periphery, may have contributed to this behavior.  
However, we intend to comprehend this topology as part of our future 
work.   



 

At this point, we attempt to delve deeper into the relationship between r 
and Ε and perhaps formulate some intuitively simple heuristic.  The 
results in figure 19 below make this task impossible based on the limited 
number of topologies evaluated so far.  Consider the example of HOT in 
figure 19.  It has higher Ε than Inet, yet a lower r value.  Should one 
attempt to formulate a rule, such that Ε is inversely proportional to r, the 
following counter example would make this heuristic void. Whois has a 
higher r value than HOT.  However, its Ε is lower than HOT’s Ε.  This 
proves that the relationship is not as clear-cut as one would expect and 
extensive analysis on numerous topologies must be completed prior to 
formulating rules.  

Elasticity in Internet Topologies Under Targeted 
Attacks 
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Figure 19. 

 

Negative Assortativity
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Figure 20. E vs r for graphs with negative assortativity, under highest 
node degree removal 

Positive Assortativity 
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Figure 21. E vs r for graphs with positive assortativity, under highest 
node degree removal 

 

Figure 20 and 21 show a possible correlation between elasticity and 
assortativity.  However, additional graphs must be analyzed to 
strengthen this correlation. Figure 22 shows the elasticity for all 
networks under random link removal.  Similar conclusions can be drawn 

for nodes with comparable links:  all topologies with a negative r value 
have an exceedingly higher Ε value than those with a positive r value.  
The Whois seemingly has the highest Elasticity value compared to the 
HOT topology with the lowest.  One explanation for this stems from the 
fact that the Whois topology has the most links, of all topologies 
evaluated, compared to HOT with the least number of links.  Thus, the 
number of links in a topology will directly affect Ε when links are 
removed.   

Elasticity Under Link Failure in All Topologies
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Figure 22. 

 

5. ELASTICITY IN  SOCIAL NETWORKS 
MySpace, facebook, orkut, YouTube and Flickr are online social 
networks.  We obtained the MySpace dataset from [14], which included 
100,000 nodes and over 6 million links.  YouTube and Flicker were 
obtained from [28].  Once again, due to the extensive computational 
resources required for such analysis, our team resorted to ORBIS and 
rescaled these topologies to approximately 1000 nodes.  Our objective 
to establish correlations between social networks and computer 
networks produces intricate results.  Theoretically, both networks are 
similar and one can hence make the following parallels: 
 

Analysis of Social Networks (SN) and Internet (IN) Topologies   
1. Objective of topology analysis: 

i. “ Understanding structure and mechanism of society”[29](SN) 
ii. Understand structure and mechanism of the internet (IN) 

iii. “Improving spreading of news and opinions”[29](SN) 
iv. Improving spreading of information (data, protocols)(IN) 

 
2. Tools used in analysis: 

i. Weighted network models(SN & IN) 
ii. Undirected or directed links(SN & IN) 

 
3. Concepts used in analysis: 

i. -“Best results are obtained by searching out of your 
community”[29](SN) 

ii. –Use of proxy server to obtain common information but 
venture beyond the proxy to obtain new information(IN) 

iii. -Granovetter’s Weak Ties Hypothesis (“The relative overlap 
of two individual’s friendship networks varies directly with 
the strength of their tie to one another”[29](SN) 

iv. -Theory of preferential attachment (Attaching new nodes to 
existing nodes with high node degree)(IN) 

 
Under both targeted and random node removal in figures 23 and 24 
respectively, MySpace exhibited similar Ε as the Abilene network.  
Should we concur with [20] that the internet remains robust in the face 
of both random and targeted node failure, we must also concur that 

  



MySpace can be a candidate to represent Internet-like topologies.  Thus, 
there exists the probability that online social networks do exhibit similar 
characteristics, both theoretically and structurally, to Internet topologies 
and thus, can perhaps provide valid datasets to model the Internet.   

Elasticity in Social Networks Under Targeted 
Attacks
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Figure 23. 

 

Table 3.  Elasticity of Social Networks under targeted attacks 

Graph Area Elasticity 
Abilene 29.87953 0.373494 
MySpace 27.07741 0.338468 
Flickr 17.92365 0.224046 
YouTube 17.42864 0.217858 
Scale-free 17.21701 0.215213 
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Table 4.  Elasticity of Social Networks under random attacks 

Graph Area Elasticity 
MySpace 33.3372 0.416715 
Scale-free 32.8113 0.410141 
Flickr 31.2968 0.39121 
Abilene 30.0752 0.37594 
YouTube 28.2176 0.35272 

 
Figures 25 and 26 show the node degree distributions (NDD) for 
MySpace and Abilene respectively.  Both topologies have similar node 

degree distributions which are comparable to the NDD for general social 
networks [29].  Additionally, the NDD were plotted for all other Internet 
graphs, and the graphs exhibited similar NDD.  Though it has been 
proven that different topologies can have similar node degree 
distributions [19], one must seek to examine all possible topological 
characteristics to classify topologies.  
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Figure 25. NDD for MySpace 
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Figure 26. NDD for Abilene 

 

From figure 19, one can conclude that the majority of the Internet 
topologies adhered to the relationship that the lower the assortativity 
coefficient, the higher the elasticity.  This holds true because the 
topologies cited are all Internet oriented.  Their performance decays 
with the same gradient.  This conclusion cannot be made for any of the 
computer generated topologies as yet.  Comparisons with such 
topologies yield controversial and inconclusive results.  To date, a 
legitimate topology generator, which embodies the characteristics of any 
particular topology, “remains in the pipeline.”  However, Abilene 
performs well under elasticity. 

6. CONCLUSIONS AND FUTURE WORK 
Characterization of network topologies, though recent to the research 
community, epitomizes the essential concepts inherent in modeling 
complex systems.  In this work, we propose a new metric for 
robustness-elasticity, which is an approximate predictor of network 
performance under node and link failures for all topologies.  Through 
comparative analysis our metric has been validated.  Unlike previous 
research [20], which defined performance with reference to actual router 
and link information, our approach is strictly based on saturation of a 
homogeneous capacity network.  Though strategically novel within the 
confines of complex networks analysis, our results are relatively 
accurate and simple to obtain, considering the global topology even in 
the event of multiple disconnected components.  In addition, our work 
has generated a possible relationship between elasticity and 
assortativity.  Our model explored and concurred with the fact that 
Internet topologies are less affected by both random and targeted attacks 
than the Scale-free topologies [20].  
 
Utilizing online social networks to model the Internet seems promising.  
MySpace demonstrated identical characteristics to the Internet 
topologies.  Therefore, there exists the possibility for MySpace to serve 
as an Internet model.   However, YouTube and Flickr obtained 
comparable Ε values to Internet topologies under random attacks but 



  

portrayed a Scale-free type Ε, under targeted attacks.  One reason 
originates from the class structure of online networks. YouTube and 
Flickr  define a class of online networks where users share photos and 
videos in contrast to MySpace, where users form purely online social 
networks.   
 

Elasticity provides several future research avenues.  First, algebraic 
connectivity, though unable to consistently capture the robustness of 
networks, does provide a novel avenue to capture the robustness of 
networks utilizing key components of the laplacian spectrum.  Secondly, 
there may exist a relationship between elasticity and assortativity.  
However, a quantitative approach that necessitates mathematical 
correlations between the two metrics must be investigated.  Finally, in 
an effort to corroborate the general claim that online social networks can 
be used to model the Internet, extensive tests encompassing online 
social networks such as orkut and Facebook are necessary. 

7. APPENDIX 
Table 5.  Common metrics for cited topologies 

Topology r n m Max 
Node 

Degree 

Average 
Node 

degree 

HOT_initial -.220 939 988 91 2.10 

HOT_500 -.341 408 444 49 2.17 

HOT_2000 -.163 1773 1936 194 2.18 

HOT_5000 -.154 4774 5229 485 2.19 

Abilene -.401 2209 3624 113 3.28 

BGP -.284 1074 2046 220 3.81 

Skitter -.310 1158 3088 303 5.33 

Whois -.117 1169 6389 260 10.93 

My Space -.224 955 10976 914 22.98 

Inet -.429 934 2222 222 4.75 

Scalefree -.758 1000 4022 743 8.044 

Pajek 54 .119 1059 1253 12 2.36 

Wheat 152 .792 1000 1975 4 3.95 

Wheat 153 .574 1000 3926 8 7.852 

Wheat 154 .674 1000 9726 20 19.452 

Wheat 155 .702 1000 13558 28 27.11 

Pajek 45 .305 909 1124 12 2.47 

Pajek 116 -1 1303 3900 1300 5.98 
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