Available online at www.sciencedirect.com

INFORMATION
. . AN
ScienceDirect SOPTWARE
Eisl | TECHNOLOGY
ELSEVIER Information and Software Technology 50 (2008) 833-859

www.elsevier.com/locate/infsof

Empirical studies of agile software development: A systematic review

Tore Dyba *, Torgeir Dingsoyr
SINTEF ICT, S.P. Andersensv. 15B, NO-7465 Trondheim, Norway

Received 22 October 2007; received in revised form 22 January 2008; accepted 24 January 2008
Available online 2 February 2008

Abstract

Agile software development represents a major departure from traditional, plan-based approaches to software engineering. A system-
atic review of empirical studies of agile software development up to and including 2005 was conducted. The search strategy identified
1996 studies, of which 36 were identified as empirical studies. The studies were grouped into four themes: introduction and adoption,
human and social factors, perceptions on agile methods, and comparative studies. The review investigates what is currently known about
the benefits and limitations of, and the strength of evidence for, agile methods. Implications for research and practice are presented. The
main implication for research is a need for more and better empirical studies of agile software development within a common research
agenda. For the industrial readership, the review provides a map of findings, according to topic, that can be compared for relevance to
their own settings and situations.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Empirical software engineering; Evidence-based software engineering; Systematic review; Research synthesis; Agile software development; XP;
Extreme programming; Scrum

Contents
Lo IntrodUuction 834
2. Background — agile software development e 834
2.1. The field of agile software development. 834
2.2, Summary Of Previous TEVIEWS o . v vttt e et e e e e e e e e e e e e 836
2.3, Objectives Of this TEVIEW ottt e e e e e e e e e e e e e 837
3. Review method oo 837
3.1. Protocol development 837
3.2. Inclusion and exclusion CIIteria.ttt e 837
3.3, Data sources and search Strategyot ittt e e e 838
3.4. Citation management, retrieval, and inclusion decisions 838
3.5, Quality asSeSSMENT vttt e e e e e e e e 839
3.6, Data eXtraCtion.ottt et e e e e e 840
3.7. Synthesis of fiIndIngs 840
4. ReSUILS . . .o 840
4.1, Overview of StUAICS oo 840
4.2. Research methods 841
4.3. Methodological quality e 841
4.4. Introduction and adoption of agile development methods. 842

* Corresponding author. Tel.: +47 73 59 29 47; fax: +47 73 59 29 77.
E-mail addresses: tore.dyba@sintef.no (T. Dyba), torgeir.dingsoyr@sintef.no (T. Dingseyr).

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.01.006

mailto:tore.dyba@sintef.no
mailto:torgeir.dingsoyr@sintef.no

834 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

4.4.1. Introduction and adoption
44.2. Development process
4.4.3. Knowledge and project management

4.5. Human and social factors

4.5.1. Organizational culture.
4.5.2. Collaborative work.
4.5.3. Team characteristics

4.6. Perceptions on agile methods

4.6.1. Customer perceptions
4.6.2. Developer perceptions.
4.6.3. Student perceptions.

4.7. Comparative studies

4.7.1. Project management
4.7.2. Productivity
4.7.3. Product quality.
4.7.4. Work practices and job satisfaction

5. DISCUSSION. . . o vttt
5.1. Benefits and limitations of agile development.
5.2. Strengthofevidence
5.3. Implications for research and practice.
5.4. Limitations of this review
6. Conclusion
AppendiX A.
Appendix B.
Appendix C.
Appendix D.
References.

1. Introduction

The issue of how software development should be orga-
nized in order to deliver faster, better, and cheaper solu-
tions has been discussed in software engineering circles
for decades. Many remedies for improvement have been
suggested, from the standardization and measurement of
the software process to a multitude of concrete tools, tech-
niques, and practices.

Recently, many of the suggestions for improvement
have come from experienced practitioners, who have
labelled their methods agile software development. This
movement has had a huge impact on how software is devel-
oped worldwide. However, though there are many agile
methods, little is known about how these methods are car-
ried out in practice and what their effects are.

This systematic review seeks to evaluate, synthesize, and
present the empirical findings on agile software develop-
ment to date, and provide an overview of topics researched,
their findings, strength of the findings, and implications for
research and practice. We believe this overview will be
important for practitioners who want to stay up to date
with the state of research, as well as for researchers who
want to identify topic areas that have been researched or
where research is lacking. This review will also help the sci-
entific community that works with agile development to
build a common understanding of the challenges that must
be faced when investigating the effectiveness of agile meth-
ods. The results of such investigation will be relevant to the
software industry.

The article is organized as follows: In Section 2, we give
an overview of agile software development, identify the
theoretical roots, and existing reviews. Section 3 describes
the methods used for this review. Section 4 reports the find-
ings of the review after first presenting an overview of the
studies, the research methods used, the quality of the meth-
odology, and a description of the studies in four main the-
matic groups. Section 5 discusses benefits and limitations,
strength of evidence, and implications for research and
practice. Section 6 concludes and provides recommenda-
tions for further research on agile software development.

2. Background — agile software development

We first describe the field of agile development, core
ideas, how this field relates to other disciplines, and sum-
marize the critique of agile development. We then summa-
rize previous reviews of the agile literature, justify the need
for this review, and state the research questions that moti-
vated the review.

2.1. The field of agile software development

Methods for agile software development constitute a set
of practices for software development that have been cre-
ated by experienced practitioners [68]. These methods can
be seen as a reaction to plan-based or traditional methods,
which emphasize ‘“a rationalized, engineering-based
approach” [21,47] in which it is claimed that problems
are fully specifiable and that optimal and predictable solu-

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 835
Table 1
Description of main agile development methods, with key references
Agile method Description Reference

Crystal methodologies

Dynamic software development
method (DSDM)

Feature-driven development

Lean software development

Scrum

Extreme programming (XP; XP2)

A family of methods for co-located teams of different sizes and criticality: Clear, Yellow, Orange,
Red, Blue. The most agile method, Crystal Clear, focuses on communication in small teams
developing software that is not life-critical. Clear development has seven characteristics: frequent
delivery, reflective improvement, osmotic communication, personal safety, focus, easy access to
expert users, and requirements for the technical environment

Divides projects in three phases: pre-project, project life-cycle, and post project. Nine principles
underlie DSDM: user involvement, empowering the project team, frequent delivery, addressing
current business needs, iterative and incremental development, allow for reversing changes, high-level
scope being fixed before project starts, testing throughout the lifecycle, and efficient and effective
communication

Combines model-driven and agile development with emphasis on initial object model, division of
work in features, and iterative design for each feature. Claims to be suitable for the development of
critical systems. An iteration of a feature consists of two phases: design and development

An adaptation of principles from lean production and, in particular, the Toyota production system to
software development. Consists of seven principles: eliminate waste, amplify learning, decide as late
as possible, deliver as fast as possible, empower the team, build integrity, and see the whole

Focuses on project management in situations where it is difficult to plan ahead, with mechanisms for
“empirical process control”; where feedback loops constitute the core element. Software is developed
by a self-organizing team in increments (called “‘sprints”), starting with planning and ending with a
review. Features to be implemented in the system are registered in a backlog. Then, the product
owner decides which backlog items should be developed in the following sprint. Team members
coordinate their work in a daily stand-up meeting. One team member, the scrum master, is in charge
of solving problems that stop the team from working effectively

Focuses on best practice for development. Consists of twelve practices: the planning game, small
releases, metaphor, simple design, testing, refactoring, pair programming, collective ownership,
continuous integration, 40-h week, on-site customers, and coding standards. The revised ‘““XP2” consists
of the following “primary practices”: sit together, whole team, informative workspace, energized work,
pair programming, stories, weekly cycle, quarterly cycle, slack, 10-minute build, continuous integration,

[16]

(60]

(50]

(52]

9,10]

test-first programming, and incremental design. There are also 11 “corollary practices”

tions exist for every problem. The “traditionalists” are said
to advocate extensive planning, codified processes, and rig-
orous reuse to make development an efficient and predict-
able activity [11].

By contrast, agile processes address the challenge of an
unpredictable world by relying on “people and their crea-
tivity rather than on processes” [21,47].

Ericksson et al. [27] define agility as follows:

agility means to strip away as much of the heaviness, com-
monly associated with the traditional software-develop-
ment methodologies, as possible to promote quick
response to changing environments, changes in user require-
ments, accelerated project deadlines and the like. (p. 89)

Williams and Cockburn [66] state that agile develop-
ment is “about feedback and change”, that agile methodol-
ogies are developed to “‘embrace, rather than reject, higher
rates of change”.

In 2001, the “agile manifesto” was written by the prac-
titioners who proposed many of the agile development
methods. The manifesto states that agile development
should focus on four core values':

e Individuals and interactions over processes and tools.

! http://agilemanifesto.org

e Working software over comprehensive documentation.
e Customer collaboration over contract negotiation.
e Responding to change over following a plan.

In an article that describes the history of iterative and
incremental development, Larman and Basili [40] identify
Dynamic Systems Development Method (DSDM) [60] as
the first agile method, followed by extreme programming
(XP) [9], which originated from the Chrysler C3 project in
1996 [5]. In 1998, the word “‘agile” was used in combination
with “software process” for the first time [6]. Several further
methods followed, including the Crystal family of methods
[16], EVO [28], Feature-Driven Development [50], Lean
Development [52] and Scrum [56]. In 2004, a new version
of XP appeared [10]. See Table 1 for an overview of the most
referenced agile development methods, and Table 2 for a
comparison of traditional and agile development.

Many have tried to explain the core ideas in agile soft-
ware development, some by examining similar trends in
other disciplines. Conboy and Fitzgerald [19], for example,
describe agility as what is known in other fields as “flexibil-
ity” and ““leanness”. They refer to several sources of inspi-
ration, primarily:

e Agile manufacturing, which was introduced by researchers
from Lehigh University in an attempt for the USA to regain
its competitive position in manufacturing. Key concepts in

http://agilemanifesto.org

836 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

Table 2

Main differences between traditional development and agile development [47]

Traditional development

Agile development

Fundamental

assumption through meticulous and extensive planning

Command and control
Explicit
Formal

Management style
Knowledge management
Communication
Development model
Desired organizational
form/structure at large organizations

Quality control

Systems are fully specifiable, predictable, and are built

Life-cycle model (waterfall, spiral or some variation)
Mechanistic (bureaucratic with high formalization), aimed

Heavy planning and strict control. Late, heavy testing

High-quality adaptive software is developed by small
teams using the principles of continuous design
improvement and testing based on rapid feedback and
change

Leadership and collaboration

Tacit

Informal

The evolutionary-delivery model

Organic (flexible and participative encouraging
cooperative social action), aimed at small and medium-
sized organizations

Continuous control of requirements, design and solutions.
Continuous testing

agile manufacturing are integrating customer-supplier rela-
tionships, managing change, uncertainty, complexity, uti-
lizing human resources, and information [30,55].

e Lean development [67], which is rooted in the Toyota
Production System [49] from the 1950s. Some of the core
ideas in this system were to eliminate waste, achieve
quality first time, and focus on problem solving.

Meso and Jain [44] have compared ideas in agile devel-
opment to those in Complex Adaptive Systems by provid-
ing a theoretical lens for understanding how agile
development can be used in volatile business environments.
Turk et al. [64] have clarified the assumptions that underlie
processes of agile development and also identifies the limi-
tations that may arise from these assumptions. In the liter-
ature, we also find articles that trace the roots of agile
development to the Soft Systems Methodology of Peter
Checkland [14], New product development [63] and Ack-
off’s interactive planning [4].

Nerur and Balijepally [46] compare agile development to
maturing design ideas in architectural design and strategic
management: “the new design metaphor incorporates learn-
ing and acknowledges the connectedness of knowing and
doing (thought and action), the interwoven nature of means
and ends, and the need to reconcile multiple world-views” (p.
81).

However, agile development methods have also been
criticized by some practitioners and academics, mainly
focusing on five aspects:

1. Agile development is nothing new; such practices have
been in place in software development since the 1960s [43].

2. The lack of focus on architecture is bound to engender
suboptimal design-decisions [42,61].

3. There is little scientific support for many of the claims
made by the agile community [42].

4. The practices in XP are rarely applicable, and are rarely
applied by the book [34].

5. Agile development methods are suitable for small teams,
but for larger projects, other processes are more appro-
priate [17].

It has also been suggested that the social values
embraced by extreme programming makes agile teams
make ineffective decisions, which are contrary to those that
the group members desire [41].

2.2. Summary of previous reviews

Introductions to and overviews of agile development are
given by Abrahamsson et al. [2], Cohen et al. [17], and
Erickson et al. [27]. These three reports describe the state
of the art and state of the practice in terms of characteris-
tics of the various agile methods and lessons learned from
applying such methods in industry. We summarize each of
these previous overviews briefly.

The first review of the existing literature on agile soft-
ware development was done in a technical report published
by Abrahamsson et al. at VTT in 2002 [2]. The report dis-
cusses the concept of agile development, presents processes,
roles, practices, and experience with 10 agile development
methods, and compares the methods with respect to the
phases that they support and the level of competence that
they require. Only DSDM and the Rational Unified Pro-
cess [38] were found to give full coverage to all phases of
development, while Scrum mainly covers aspects related
to project management. Abrahamsson et al. found anec-
dotal evidence that agile methods are “‘effective and suit-
able for many situations and environments”, but state
that very few empirically validated studies support these
claims. The report was followed by a comparative analysis
of nine agile methods in 2003 [3], where it is stated that
empirical support for the suggested methods remains
scarce.

Cohen et al.’s review published in 2004 [17] emphasizes
the history of agile development, shows some of the roots
to other disciplines, and, in particular, discusses relations
between agile development and the Capability Maturity
Model (CMM) [51]. They further describe the state of the
art with respect to the main agile methods and their char-
acteristics. They also describe the state of the practice,
which resulted from an online discussion between 18 prac-

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 837

titioners, many of whom were involved in defining the var-
ious agile development methods. They discuss issues such
as the introduction of, and project management in, agile
development. They also present experiments and surveys,
and seven case studies of agile development. The authors
believe that agile methods will be consolidated in the
future, just as object-oriented methods were consolidated.
Further, they do not believe that agile methods will rule
out traditional methods. Rather, they believe that agile
and traditional methods will have a symbiotic relationship,
in which factors such as the number of people working on a
project, application domain, criticality, and innovativeness
will determine which process to select.

In 2005, Erickson et al. [27] described the state of research
on XP, agile software development, and agile modelling.
With respect to XP, they found a small number of case stud-
ies and experience reports that promote the success of XP.
The XP practice of pair programming is supported by a more
well-established stream of research, and there are some stud-
ies on iterative development. Erickson et al. recommend that
the other core practices in XP be studied separately in order
to identify what practices are working (for recent studies of
practices, see [22,26]). Further, they see challenges with
matching agile software development methods with stan-
dards such as ISO, and they argue that this is an area that
needs further research. There was much less research on agile
modelling than on XP.

2.3. Objectives of this review

In a short time, agile development has attracted huge
interest from the software industry. A survey in the USA
and Europe reveals that 14% of companies are using agile
methods, and that 49% of the companies that are aware of
agile methods are interested in adopting them [1]. In just six
years, the Agile® conference has grown to attract a larger
attendance than most conferences in software engineering.

Rajlich [53] describes agile development as a paradigm
shift in software engineering, which has emerged from inde-
pendent sources: studies of software life cycles and iterative
development. “The new paradigm brings a host of new topics
into the forefront of software engineering research. These
topics have been neglected in the past by researchers inspired
by the old paradigm, and therefore there is a backlog of
research problems to be solved.” (p. 70).

No systematic review of agile software development
research has previously been published. The existing
reviews that were presented in the previous section only
partially cover the empirical studies that exist today. Fur-
ther, the previous reviews do not include any assessment
of the quality of the published studies, as in this systematic
review.

This means that practitioners and researchers have to
rely on practitioner books in order to get an overview.

2 www.agile200X.org

We hope that this article will be useful for both groups,
and that it will make clear which claims on agile software
development are supported by scientific studies.

The objective of the review is to answer the following
research questions:

1. What is currently known about the benefits and limita-
tions of agile software development?

2. What is the strength of the evidence in support of these
findings?

3. What are the implications of these studies for the soft-
ware industry and the research community?

In addition to producing substantive findings regarding
agile software development, the review also aims to advance
methodology for integrating diverse study types, including
qualitative research, within systematic reviews of software
engineering interventions. The result of this work has been
reported separately [23], and is not further described here.

3. Review method

Informed by the established method of systematic
review [31,35,36], we undertook the review in distinct
stages: the development of review protocol, the identifica-
tion of inclusion and exclusion criteria, a search for rele-
vant studies, critical appraisal, data extraction, and
synthesis. In the rest of this section, we describe the details
of these stages and the methods used.

3.1. Protocol development

We developed a protocol for the systematic review by fol-
lowing the guidelines, procedures, and policies of the Camp-
bell Collaboration,? the Cochrane Handbook for Systematic
Reviews of Interventions [31], the University of York’s Cen-
tre for Reviews and Dissemination’s guidance for those car-
rying out or commissioning reviews [35], and consultation
with software engineering specialists on the topic and meth-
ods. This protocol specified the research questions, search
strategy, inclusion, exclusion and quality criteria, data
extraction, and methods of synthesis.

3.2. Inclusion and exclusion criteria

Studies were eligible for inclusion in the review if they
presented empirical data on agile software development
and passed the minimum quality threshold (see Section
3.5). Studies of both students and professional software
developers were included. Inclusion of studies was not
restricted to any specific type of intervention or outcome
measure. The systematic review included qualitative and
quantitative research studies, published up to and includ-
ing 2005. Only studies written in English were included.

3 www.campbellcollaboration.org

http://www.agile200X.org
http://www.campbellcollaboration.org

838 T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859

Studies were excluded if their focus, or main focus, was
not agile software development or if they did not present
empirical data. Furthermore, as our research questions
are concerned with agile development as a whole, and its
underlying assumptions, studies that focused on single
techniques or practices, such as pair programming, unit
testing, or refactoring, were excluded. In addition to agile
methods in general, we included the following specific
methods: XP, Scrum, Crystal, DSDM, FDD, and Lean.

Finally, given that our focus was on empirical research,
“lessons learned” papers (papers without a research ques-
tion and research design) and papers merely based on
expert opinion were also excluded.

3.3. Data sources and search strategy

The search strategy included electronic databases and
hand searches of conference proceedings. The following
electronic databases were searched:

e ACM Digital Library

e Compendex

e IEEE Xplore

e IST Web of Science

e Kluwer Online

e ScienceDirect — Elsevier

e SpringerLink

e Wiley Inter Science Journal Finder

In addition, we hand-searched all volumes of the follow-
ing conference proceedings for research papers:

o XP
e XP/Agile Universe
e Agile Development Conference

Fig. 1 shows the systematic review process and the num-
ber of papers identified at each stage. In stage 1, the titles,
abstracts, and keywords of the articles in the included elec-
tronic databases and conference proceedings were searched
using the following search terms:

Identify relevant studies —
search databases and
conference proceedings

Stage 1

A 4

Exclude studies on the basis
: n=2821
of titles

Stage 2

A 4

Exclude studies on the basis

Stage 3 of abstracts

v

Obtain primary papers and |
critically appraise studies

Stage 4

Fig. 1. Stages of the study selection process.

(1) agile AND software

(2) extreme programming

(3) xp AND software

(4) scrum AND software

(5) crystal AND software AND (clear OR orange OR
red OR blue)

(6) dsdm AND software

(7) fdd AND software

(8) feature AND driven AND development AND
software

(9) lean AND software AND development

All these search terms for agile articles were combined
by using the Boolean “OR” operator, which entails that
an article only had to include any one of the terms to be
retrieved. That is, we searched:

IOR20OR30OR40OR50R60OR70R80RY

Excluded from the search were editorials, prefaces, arti-
cle summaries, interviews, news, reviews, correspondence,
discussions, comments, reader’s letters and summaries of
tutorials, workshops, panels, and poster sessions. This
search strategy resulted in a total of 2946 ‘‘hits” that
included 1996 unduplicated citations.

3.4. Citation management, retrieval, and inclusion decisions

Relevant citations from stage 1 (n=1996) were
entered into and sorted with the aid of EndNote. They
were then imported to Excel, where we recorded the
source of each citation, our retrieval decision, retrieval
status, and eligibility decision. For each subsequent
stage, separate EndNote databases and Excel sheets were
established.

At stage 2, both authors sat together and went through
the titles of all studies that resulted from stage 1, to deter-
mine their relevance to the systematic review. At this stage,
we excluded studies that were clearly not about agile soft-
ware development, independently of whether they were
empirical or not. As an example, because our search strat-
egy included the term ““xp and software”, we got several
“hits” on articles about Microsoft’s Windows XP operat-
ing system. In addition, because we used the term ‘“‘agile
and software”, we got several hits on articles related to
agile manufacturing. Articles with titles that indicated
clearly that the articles were outside the scope of this sys-
tematic review were excluded. However, titles are not
always clear indicators of what an article is about. Some
authors” use of “clever” or witty titles can sometimes
obscure the actual content of an article. In such cases,
the articles were included for review in the next stage. At
this stage, 1175 articles were excluded.

At stage 3, studies were excluded if their focus, or main
focus, was not agile software development or if they did
not present empirical data. However, we found that
abstracts were of variable quality; some abstracts were

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 839

missing, poor, and/or misleading, and several gave little
indication of what was in the full article. In particular, it
was not always obvious whether a study was, indeed, an
empirical one. Therefore, at this stage, we included all stud-
ies that indicated some form of experience with agile devel-
opment. If it was unclear from the title, abstract, and
keywords whether a study conformed to the screening cri-
teria, it was included for a detailed quality assessment (see
below).

At this stage, we divided the abstracts among ourselves
and a third researcher in such a way that each abstract was
reviewed by two researchers independently of each other.
For the 821 abstracts assessed, the number of observed
agreements was 738 (89.9%). We also computed the Kappa
coefficient of agreement, which corrects for chance agree-
ment [18]. The Kappa coefficient for stage 3 assessments
was 0.78, which is characterized as “‘substantial agreement”
by Landis and Koch [39]. All disagreements were resolved
by discussion that included all three researchers, before
proceeding to the next stage. As a result of this discussion,
another 551 articles were excluded at this stage, which left
270 articles for the detailed quality assessment.

3.5. Quality assessment

Each of the 270 studies that remained after stage 3 was
assessed independently by both authors, according to 11
criteria. These criteria were informed by those proposed
for the Critical Appraisal Skills Programme (CASP)* (in
particular, those for assessing the quality of qualitative
research [29]) and by principles of good practice for con-
ducting empirical research in software engineering [37].

The 11 criteria covered three main issues pertaining to
quality that need to be considered when appraising the
studies identified in the review (see Appendix B):

e Rigour. Has a thorough and appropriate approach been
applied to key research methods in the study?

e Credibility. Are the findings well-presented and
meaningful?

e Relevance. How useful are the findings to the software
industry and the research community?

We included three screening criteria that were related to
the quality of the reporting of a study’s rationale, aims, and
context. Thus, each study was assessed according to
whether:

1. The study reported empirical research or whether it was
merely a “lessons learned” report based on expert
opinion.

2. The aims and objectives were clearly reported (including
a rationale for why the study was undertaken).

4 www.phru.nhs.uk/Pages/PHD/CASP.htm

3. There was an adequate description of the context in
which the research was carried out.

The first of these three criteria represents the minimum
quality threshold of the review and was used to exclude
non-empirical research papers (see Appendix B). As part
of this screening process, any single-technique or single-
practice papers were also identified and excluded.

Five criteria were related to the rigour of the research
methods employed to establish the validity of data collec-
tion tools and the analysis methods, and hence the trust-
worthiness of the findings. Consequently, each study was
assessed according to whether:

4. The research design was appropriate to address the
aims of the research.

5. There was an adequate description of the sample used
and the methods for identifying and recruiting the
sample.

6. Any control groups were used to compare treatments.

7. Appropriate data collection methods were used and
described.

8. There was an adequate description of the methods used
to analyze data and whether appropriate methods for
ensuring the data analysis were grounded in the data.

In addition, two criteria were related to the assessment
of the credibility of the study methods for ensuring that
the findings are valid and meaningful. In relation to this,
we judged the studies according to whether:

9. The relationship between the researcher and partici-
pants was considered to an adequate degree.

10. The study provided clearly stated findings with credible
results and justified conclusions.

The final criterion was related to the assessment of the
relevance of the study for the software industry at large
and the research community. Thus, we judged the studies
according to whether:

11. They provided value for research or practice.

Taken together, these 11 criteria provided a measure of
the extent to which we could be confident that a particular
study’s findings could make a valuable contribution to the
review. Each of the 11 criteria was graded on a dichoto-
mous (“yes” or “no”) scale. Again, only criterion 1 was
used as the basis for including or excluding a study.

Of the 270 articles assessed for quality, the number
of observed agreements regarding inclusion/exclusion
based on the screening criterion was 255 (94.4%).
The corresponding Kappa coefficient was 0.79. Again,
all disagreements were resolved by discussion that
included all three researchers. At this stage, another
234 lessons-learned or single-practice articles were
excluded, leaving 33 primary and 3 secondary studies

http://www.phru.nhs.uk/Pages/PHD/CASP.htm

840 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

Table 3
Quality criteria

1. Is the paper based on research (or is it merely a “lessons learned”
report based on expert opinion)?
2. Is there a clear statement of the aims of the research?
3. Is there an adequate description of the context in which the research
was carried out?
4. Was the research design appropriate to address the aims of the
research?
5. Was the recruitment strategy appropriate to the aims of the
research?
. Was there a control group with which to compare treatments?
. Was the data collected in a way that addressed the research issue?
. Was the data analysis sufficiently rigorous?
. Has the relationship between researcher and participants been
considered to an adequate degree?
10. Is there a clear statement of findings?
11. Is the study of value for research or practice?

Nelio BEN BeN

for data extraction and synthesis. A summary of the
quality assessment criteria for these studies is presented
in Table 3.

3.6. Data extraction

During this stage, data was extracted from each of the
33 primary studies included in this systematic review
according to a predefined extraction form (see Appendix
C). This form enabled us to record full details of the articles
under review and to be specific about how each of them
addressed our research questions.

When we piloted the extraction process we found that
extracting data was hindered by the way some of the pri-
mary studies were reported. Due to this, we also found that
we differed too much in what we actually extracted for
independent extraction to be meaningful. As a conse-
quence, all data from all primary studies were extracted
by both authors in consensus meetings.

The aims, settings, research methods descriptions, find-
ings, and conclusions, as reported by the authors of the pri-
mary studies, were copied verbatim into NVivo, from QSR
Software,” a specialist software package for undertaking
the qualitative analysis of textual data.

3.7. Synthesis of findings

Meta-ethnographic methods were used to synthesize the
data extracted from the primary studies [48]. The first stage
of the synthesis was to identify the main concepts from
each primary study, using the original author’s terms.
The key concepts were then organized in tabular form to
enable comparison across studies and the reciprocal trans-
lation of findings into higher-order interpretations. This
process is analogous to the method of constant comparison
used in qualitative data analysis [45,62]. When we identified
differences in findings, we investigated whether these could

5 See http://www.qsrinternational.com/

be explained by the differences in methods or characteris-
tics of the study setting.

In a meta-ethnographic synthesis, studies can relate to
one another in one of three ways: they may be directly
comparable as reciprocal translations; they may stand in
opposition to one another as refutational translations; or
taken together they may represent a line of argument
[13]. Table 4 shows Noblit and Hare’s seven-step process
for conducting a meta-ethnography.

This process of reciprocal and refutational translation
and synthesis of studies achieved three things with respect
to answering our overarching question about the benefits
and limitations of agile software development. First, it iden-
tified a set of higher-order interpretations, or themes, which
recurred across studies. Second, it documented that agile
software development contains both positive and negative
dimensions. Finally, it highlighted gaps in the evidence about
the applicability of agile methods to software development.

4. Results

We identified 36 empirical studies on agile software devel-
opment. Thirty-three are primary studies (S1-S33) and three
are secondary studies (S34-S36); see Appendix A. In what
follows, we discuss the primary studies. These cover a range
of research topics, were done with a multitude of research
methods, and were performed in settings that ranged from
professional projects to university courses. Key data, along
with a description of the domain in which each primary study
was conducted, is presented in Appendix D.

We categorized the studies into four main groups: (1)
introduction and adoption, (2) human and social factors,
(3) customer and developer perceptions, and (4) compara-
tive studies. Three studies did not fit into any of these cat-
egories. They provide baseline data on various aspects of
agile development (S1, S8, S11).

We now describe characteristics of the studies, describe
the research methods applied, and assess the quality of
the studies. Then, we present the studies included in the
four categories mentioned above.

4.1. Overview of studies

With respect to the kinds of agile method that have been
studied, we see from Table 5 that 25 (76%) of the studies in
this review were done on XP. Studies on agility in general
come next, with five (15%) of the studies. Scrum and Lean

Table 4
Seven phases of meta-ethnography (Noblit and Hare [48])

. Getting started

. Deciding what is relevant to the initial interest
. Reading the studies

. Determining how the studies are related

. Translating the studies into one another

. Synthesizing translations

. Expressing the synthesis

~N NN R W N

http://www.qsrinternational.com/

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 841

Table 5 Table 7

Studies after type of agile method used in the study Studies by research method

Agile method Number Percent Research method Number Percent
XP 25 76 Single-case 13 39
General® 5 15 Multiple-case 11 33
Scrum 1 3 Survey 4 12
Lean software development 1 3 Experiment 3 9
Other” 1 3 Mixed 2 6
Total 33 100 Total 33 100

& “General” refers to studies on agility in general.
> “Other” refers to a company-internal agile method.

Software Development were studied in only one empirical
research article each.

If we look at the level of experience of the employees
who perform agile development in the reviewed studies
(Appendix D), we see that 24 (73%) of the studies that
investigated agile projects dealt with employees who are
beginners (less than a year of experience in agile develop-
ment). Four (12%) studies dealt with mature agile develop-
ment teams (at least one year of experience in agile
development). Two studies did not indicate whether it
was a beginner or mature team that was studied and for
three studies (surveys) this classification was not applicable.

Most studies (24 of 33, 73%) dealt with professional
software developers. The remaining nine (27%) were con-
ducted in a university setting. Most projects were of short
duration and were completed in small teams.

Table 6 gives an overview of the studies according to
publication channel. We see that the conferences XP and
Agile Development have the largest number of studies.

Table 6
Distribution of studies after publication channel and occurrence

Publication channel Type Number Percent
XP 200X Conference 5 15
Agile Development Conference Conference 5 15
IEEE Software Journal 3 9
Profes Conference 2 6
ASEE FEC Conference 1 3
Computer Supported Cooperative Journal 1 3
Work
CSMR Conference 1 3
Empirical Software Engineering Journal 1 3
ENCBS Conference 1 3
ENC Conference 1 3
EuroMicro Conference 1 3
EuroSPI Conference 1 3
HICCS Conference 1 3
HSSE Conference 1 3
IASTED ICSEA Conference 1 3
ICSE Conference 1 3
ISESE Conference 1 3
ITIICT Conference 1 3
Journal of database management Journal 1 3
Metrics Conference 1 3
Software Quality Journal Journal 1 3
XP/Agile Universe Conference 1 3
Total 33 100

Most of the studies were published in conferences (26 of
33, 79%), while seven (21%) appeared in scientific journals.

Regarding the year of publication, we found no empiri-
cal studies of agile software development prior to 2001.
However, from 2001 we found a steady increase of studies
with one empirical research study published in 2001, one in
2002, three in 2003, 12 in 2004, and 16 published in 2005.

4.2. Research methods

The number and percentage of publications using each
research method is listed in Table 7. Information on which
studies belong to which category is given in Appendix D.
Of the 13 single-case studies, nine were done in projects
in industry. The material for the other four studies was
taken from projects where students did the development.
Interestingly, three of these studies took their data from
the same project. Only one of the single-case studies in
industry was done on a mature development team.

For the 11 multiple-case studies, all were done in indus-
try, but only three of the studies were on mature teams.
The number of cases varied from two to three.

Three of the four surveys were done on employees in
software companies, while one was done on students. The
three experiments were all done on students, with team
sizes ranging from three to 16. For the two mixed-method
studies, Melnik and Maurer (S22) reported on a survey
amongst students in addition to interviews and notes from
discussions. The study by Baskerville et al. (S3), reported
on 10 case studies in companies, in combination with find-
ings from group discussions in a “discovery colloquium”
that was inspired by principles in action research [8].

4.3. Methodological quality

As mentioned in Section 3, we chose to assess each of
the primary studies according to 11 quality criteria based
on the Critical Appraisal Skills Programme (CASP)® and
by principles of good practice for conducting empirical
research in software engineering (e.g., [37]). A summary
of the questions used to assess the quality of these studies
is presented in Table 3. The detailed subcriteria are pre-
sented in Appendix B. Both authors rated each criterion
of each study independently. When discrepancies arose,

¢ www.phru.nhs.uk/casp/casp.htm.

http://www.phru.nhs.uk/casp/casp.htm

842 T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859

Table 8
Quality assessment

Study 1 2 3 4 5 6

7 8 9 10 11 Total

Research Aim Context R. design Sampling

Ctrl. Grp

Data coll. Data anal Reflexivity = Findings Value

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
523
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33

Total 33

(=]

m e e e e e e b e e e e e e e b e e b e b e e e e e e e e e
m o e e e e e e e i O e e e e e e e e e e e e O e e e e e e e
o e
— o O e e e e e e O e

NV DO O, —mF L OO0 OO~ OO—RODDDOO—O—~O
— I, O OO0 R 000000000~ O0OO0OO OO~ ~=—~,OO~O

(98]
—_

33

9
(=]
—_
(=]

(=]

—_ e O e e O O O e e e e e e e O e O = e e e e e O e
[«

—_ e O e O O O e O e e b e O e O e e O
OO~ 0O 0000000 ODDD O
—_ e e e e e e e b b e e b b e e e b e e e b e e e et e e e e e
— e e e e e e e e e e e e e b e e e e e e e e e e e e e e e
O O N O O — 00N N OO B O 000000 J00 00O O JOVANO IO LOOLoRN—=

[\
=)}
9]
W
—_

33 33

these were discussed and the study was reread to determine
the final scores of each criterion.

Taken together, these 11 criteria provide a measure of
the extent to which we can be confident that a particular
study’s findings can make a valuable contribution to the
review. The grading of each of the 11 criteria was done
on a dichotomous (“yes” or “no”) scale. The results of
the quality assessment are shown in Table 8, in which a
“1” indicates “yes” (or OK) to the question, while “0” indi-
cates “no” (or not OK).

Because we only included research papers in this review,
all included studies were rated as OK on the first screening
criterion. However, two of the included studies still did not
have a clear statement of the aims of the research. All stud-
ies had some form of description of the context in which
the research was carried out. For three of the studies, the
chosen research design did not seem appropriate to the
aims of the research. As many as 25 out of the 33 primary
studies did not have a recruitment strategy that seemed
appropriate for the aims stated for the research. Ten of
the studies included one or more groups with which to
compare agile methods. As many as seven and eight stud-

ies, respectively, did not adequately describe their data col-
lection and data analysis procedures. In only one study was
the recognition of any possibility of researcher bias
mentioned.

We frequently found the following: methods were not
well described; issues of bias, validity, and reliability were
not always addressed; and methods of data collection
and analysis were often not explained well. None of the
studies got a full score on the quality assessment and only
two studies got one negative answer. Twenty-one studies
were rated at two or three negative answers, while 10 stud-
ies were rated as having four or more negative answers.
The highest number of negative answers was seven.

4.4. Introduction and adoption of agile development methods

Several studies addressed how agile development meth-
ods are introduced and adopted in companies; see Table
9. We characterized these studies as falling into three broad
groups: those that discuss introduction and adoption, those
that discuss how the development process is changed, and

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 843

Table 9

Study aims for studies on the introduction and adoption of agile development methods

Study Study aim

S2 Understand what differentiates waterfall and XP development, and examine the impact of knowledge creation on the adoption of XP
S9 Study why and how XP is adopted and used in everyday software production

S12 Study the integration of agile teams into stage-gate software product development

S23 Test the applicability of lean techniques to developing software

S29 Study how an agile process affects collaboration in a software development organization

S30 Study the introducing of a process based on XP in an evolutionary and maintenance-based software development environment

S31 Understand how newcomers practice extreme programming, and how practice is improved over time

those that discuss how knowledge and projects are
managed.

However, some researchers argue that there is nothing
new about agile methods. Hilkka et al. (S9) studied two
development organizations in Finland, and concluded that
XP is “old wine in new bottles”. XP “formalizes several
habits that appear naturally (...) close customer involve-
ment, short release cycles, cyclical development, and fast
response to change requests”. In a company-internal devel-
opment department, the researchers found that:

the tools and techniques of XP had been employed for
more than 10 years and had been applied in a quite sys-
tematic fashion, though the company had never made a
deliberate decision to use XP. (p. 52)

Another “new economy” company was more aware of
developments in the field:

the XP process had more or less emerged as a novel way
of solving time and budget constraints. The developers
were aware of XP practices, but did not choose to
engage in it by the book. (p. 52)

However, most studies treated agile development as
something “new” and that consequently requires introduc-
tion and adoption.

4.4.1. Introduction and adoption

Svensson and Host (S30) present the results of introduc-
ing a process based on XP to a large software development
company. The process was introduced to a pilot team that
worked for eight months. Svensson and Host concluded
that the introduction of the process proved difficult, due
to the complexity of the organization. They advise compa-
nies that want to introduce agile development methods to
assess existing processes, with the following goals in mind:
determining what to introduce; clarifying terminology to
simplify communication with the rest of the company;
avoiding underestimating the effort needed to introduce
and adapt XP; and introducing the practice of continuous
testing early, because it takes time and effort to introduce
this properly.

In contrast, Bahli and Zeid (S2) studied how a Canadian
organization shifted from a waterfall process to XP, and
found that “even though team members had no prior expe-

rience with XP (except one week of training), they found
the model easy to use and useful to develop information
systems”. A development manager described the shift as
follows:

The first week was tough, no one of my guys have a
strong experience with XP. But they quickly caught up
and we got quite good results. A lot of work is needed
to master XP but we are getting there. (p. 8)

The study reports that the development team found
using the waterfall model to be an ‘“unpleasant experi-
ence”, while XP was found to be “beneficial and a good
move from management”. The XP project was delivered
a bit less late (50% time-overrun, versus 60% for the tradi-
tional), and at a significantly reduced cost overrun (25%,
compared to 50% cost overrun for the traditional project).

Bahli and Zeid claim that the adoption of XP was facil-
itated by “a high degree of knowledge creation enabled by
mutual development of information systems developers
and users”.

Karlstrom and Runeson (S29) found that XP teams
experienced improved communication, but were perceived
by other teams as more isolated. Their study is described
in detail below.

4.4.2. Development process

Tessem (S31) set up a project with researchers and stu-
dents to learn more about how practices in XP work.
The project lasted for three weeks and had two deliveries
(three planned, but reduced because of “severe underesti-
mation in the beginning”). Six people worked on the pro-
ject. The experience of the people varied from
programming experience only from university courses to
people experienced with professional development. The
aim of the project was to develop a web application for
group work in university courses. Tessem reports on expe-
rience with key practices of XP. Pair programming was
found to be a ‘““positive experience, enhancing learning
and also leading to higher quality”. However, three of
the programmers also reported it to be “extremely ineffi-
cient”, “very exhausting”, and “‘a waste of time”. Towards
the end of the project, single programming was used to a
greater extent than pair programming. Tessem suggests
that there is a connection between this shift in program-
ming methods and a higher occurrence of problems in

844 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

the end. Frequent partner changes are suggested as a way
to achieve optimal learning and to increase collective code
ownership. Further, the on-site customer role was per-
ceived as “very valuable by all programmers”. Tessem also
found that test-first programming contributed to ‘“higher
quality in code”, while the project struggled to get func-
tional tests running.

A study by Svensson and Host (S29) also provides
insight into the development process, but focused primarily
on how agile development affects customer collaboration.
This study was done in a software development company
in Sweden with 250 software developers, who were respon-
sible for over 30 software systems. A modified process was
introduced that mainly followed XP. The researchers found
that having the customer on-site enabled better collabora-
tion with the customer, because it provided an arena for
detailed discussions.

Concepts from lean development were introduced in a
large company’s information systems department in a study
organized by Middleton (S23). The techniques were tried on
two two-person teams that were maintaining a financial and
management information system. The teams were instructed
to change their work practice, so that it involved shorter
feedback cycles and completing work before taking on more.
In the beginning, many errors were discovered in the work,
which led to a time of “frustration and low productivity”.
One of the teams made fewer errors over time, but the other
team continued to make a high number of errors, which also
led to an early termination of the study. According to Mid-
dleton, this was because one person in the fault-prone team
felt overqualified for the work and was not willing to discuss
his work with others, and was ““unable to produce work with-
out errors”. There was no infrastructure in the company to
handle this problem. Although the experiment was short
and only successful for one team, Middleton claimed that
“by moving responsibility for measuring quality from the
manger to the workers, a much quicker and more thorough
response to defects was obtained”.

Hilkka et al. (S9) found that in the cases they studied,
XP worked best with experienced developers with domain
and tool knowledge. The tools facilitated fast delivery
and easy modification of prototypes. In addition, continu-
ous feedback was found to be a key factor for success.

4.4.3. Knowledge and project management

The study by Bahli and Zeid (S2) examined knowledge
sharing in an XP project and a traditional project. They
found that when the XP model was used, the creation of
tacit knowledge improved as a result of frequent contacts:

Because the XP model’s main characteristics are short
iterations with small releases and rapid feedback, close
user participation, constant communication and coordi-
nation and collective ownership, knowledge and the
capability to create and utilize knowledge among the
development team members are eminent. (p. 4)

Hilkka et al. also underline the importance of skilled
team members with solid domain knowledge: “without
these kinds of persons, the chosen approach would proba-
bly have little possibility to succeed” (S9).

Karlstrom and Runeson (S12) studied the feasibility of
applying agile methods in large software development pro-
jects, using stage-gate project management models. They
report findings from introductory trials with XP in three
companies: ABB, Ericsson Microwave Systems, and Voda-
phone Group. They found that the engineers were moti-
vated by the principles of agile development, but that the
managers were initially afraid and needed to be trained.
They also found that as a result of using agile development,
the engineers focused on past and current releases, while
the managers focused increasingly on current and future
releases. A potential problem was that technical issues were
raised too early for management.

In the study by Tessem (S31), the planning game prac-
tice of XP was used to estimate the size of work. Estimates
made by the project team at the beginning of the project
were about one third of what turned out to be correct,
which is explained by both the team’s lack of estimation
experience and coarse user stories. Estimates improved
towards the end of the project. Several of the study partic-
ipants mentioned that during the project, there were not
enough discussions on design and architecture.

In a study by Svensson and Host (S30), the planning
game activity was found to have a positive effect on collab-
oration within the company, because it provided the orga-
nization with better insight into the software development
process.

4.5. Human and social factors

Several studies examined various human and social fac-
tors related to agile development; see Table 10. Three broad
topics were investigated: the impact of organizational cul-
ture, how collaborative work takes place in agile develop-
ment, and what characterizes agile development teams.

4.5.1. Organizational culture

Robinson and Sharp (S26) found that XP has the ability
to thrive in radically different organizational settings in an
ethnographically informed study of three companies in the
UK. The companies were studied with respect to three fac-
tors: organizational type, organizational structure, and
physical and temporal settings. These factors are described
in Table 11.

Case A was a large multinational bank with an XP team
that was ““a small part of the bank’s software development
activities”. Case B was a medium-sized company that pro-
duces content security software, using only XP. Case C was
a small start-up company that had used XP since the begin-
ning to develop web-based intelligent advertisements.

Robinson and Sharp (S26) found that, despite the vari-
ations in organization type, structure, and physical setting,
XP was working well. They list a number of consequences

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 845

Table 10

Study aims for studies on human and social factors

Study Study aim

S5 Study how the social behaviour of individuals reflects beliefs and understanding with regard to software development
S16 Evaluate key aspects of XP in a real-world setting as well as contemporary practices of software engineering

S24 Study the characteristics of XP teams

S25 Explore the social side of practices in mature XP teams

S26 Explore the impact of organizational culture on XP practice in mature teams

S27 Gain insight into the culture and community of XP

S33 Explore whether it is possible to identify roles within an extreme programming team that has associated personality characteristics
Table 11

Differences in organization type, structure, and physical setting for the three cases studied in S26

Organization type Organizational structure

Physical setting

Case A Hierarchical XP team collaborated with two

customer representatives
Case B Collaborative Internal “on-site” customers, outside testers
Case C Little or no central control Minimal organizational structure

Large, open-plan floor with workstations

Open-plan space with groups of workstations
for pair programming, meeting rooms and cubicles
Open-plan office with pair programming area

for development that were generated by the organizational
culture.

Case C is further described in another publication (S27).
Here, the development team is described as:

a self-managing, self-organizing community with a cul-
ture that emphasized shared responsibility. There was
a rhythm to life that enabled people to organize their
work tasks in a way that gave them common ownership
of the work product and control over how it was
achieved. The rhythm was comfortable and relaxed,
yet purposeful and productive. (p. 373)

In case C, the authors claim that the organization
seemed to behave in an agile fashion. They found no signs
of such normal software development artefacts as model-
ling techniques, requirements documents, or minutes of
meetings. The working mode in this company resembles
descriptions of communities of practice in the literature
on knowledge management [65].

The organizational culture affected how XP was carried
out, with respect to behaviour, beliefs, attitudes and values,
organizational structure, as well as physical and temporal
settings.

4.5.2. Collaborative work

Collaborative work in XP development has been studied
from three angles: the role of conversation in collaborative
work, how progress is tracked, and how work is
standardized.

With respect to conversation, Robinson and Sharp (S25)
describe pairing as a process of:

purposeful talk where they [two developers] discuss,
explore, negotiate and progress the task at hand. This

talk has a complex structure with identifiable episodes
of exploration, creation, fixing & refining, overlaid with
explaining, justifying & scrutinising. (p. 102)

Paring is described as intense and stressful, and one
pair’s conversation would frequently spread to other pairs.
Mackenzie and Monk (S16) also emphasize the importance
of conversations, claiming that it constitutes ‘“‘talking code
into existence”.

With respect to tracking progress, Robinson and Sharp
described it as happening on two levels: the daily rhythm
and the rhythm oriented around the iteration. Progress
was communicated in daily stand-up meetings, and teams
would often have ceremonies around releasing code. One
team studied by Robinson and Sharp used a toy cow that
was tilted to make a ‘moo’ sound when new code was
released. Chong (S5) reports similar findings, stating that
“XP makes developing software visually and aurally
available”.

Studies of collaborative work also find that the work
patterns are standardized. Chong (S5) observed that:

shared understandings manifested themselves in the con-
sistent, uniform patterns of work in which the team
members engaged ... the XP framework required that
they work at the same time, in the same place, and in lar-
gely the same ways. (p. 8)

One practice that standardizes work in XP is the plan-
ning game, which is described in use by Mackenzie and
Monk (S16):

the card game knit together in a rule-governed process a
very disparate set of work processes and relations
involving management, the customer or client and all
the members of the software development team. (p. 114)

846 T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859

Mackenzie and Monk claimed that the process spans the
usual boundaries between project managers and software
developers.

4.5.3. Team characteristics

Robinson and Sharp (S24) claim that agile development
teams have faith in their own abilities, show respect and
responsibility, establish trust, and preserve the quality of
working life. Young et al. (S33) used a technique called
“repertory grid analysis” to identify good personality char-
acteristics for members of XP development teams.

Faith in one’s own abilities was observed to have two
aspects in the study by Robinson and Sharp (S24): believ-
ing that the team was capable of achieving the tasks at
hand, and understanding what the limitations were. The
team received feedback on their beliefs from successfully
executing code, from a satisfied customer, and from sup-
port and encouragement from each other.

Preserving the quality of working life was observed
through constructive discussions in the planning game, tak-
ing into account the needs of individuals in pair program-
ming, and adhering to 40-h work-weeks. In addition, one
team took regular breaks and identified several ways to
relieve developers in hectic periods.

Respect for one’s team members and a sense of respon-
sibility were manifested via the way in which work was
assigned; active agreement was required. ‘“Individuals
clearly felt that they had the respect of their fellow team
members and were therefore empowered to take on respon-
sibility in this way”.

In the study by Robinson and Sharp (S24), trust was
found to be pervasive:

The nature of the trust relationship here transcends the
immediate business of two individuals pairing and is
persistent. It also applies across pairs (and sub-teams),
with each pair trusting the others to do their part, and
it extends beyond the 12 practices. (p. 146)

Young et al. (S33) investigated what personality traits it
is beneficial for team members to possess in agile develop-
ment. They discussed the traits of roles such as team leader,
technical lead, architect, good (XP) team member, and bad

Table 12
Study aims for the perceptions of customers, developers, and students

team member. Good XP team members are described as
“analytical, with good interpersonal skills and a passion
for extending his knowledge base (and passing this on to
others).”

4.6. Perceptions on agile methods

Several studies have investigated how agile methods are
perceived by different groups. We describe findings from
studies that examined the perceptions amongst customers,
developers, and university students. Table 12 gives an over-
view of the aims of these studies.

4.6.1. Customer perceptions

Several aspects of customer perceptions are discussed in
the literature on agile development. Some have addressed
how satisfied customers are with agile methods, others
describe the customer role, and some focus on the collabo-
ration between a customer and the development team.

With respect to the customer’s satisfaction with agile
development methods, Ilieva et al. (S10) studied the intro-
duction of an agile method based on XP and the Personal
Software Process [32]. They state that the customer had
constant control over the development process, which
was “highly praised by the customer at the project sign-
off”. In addition, Mann and Maurer (S17) found, in a study
on the impact of Scrum on overtime and customer satisfac-
tion, that customers believed that the daily meetings kept
them up to date and that planning meetings were helpful
to “reduce the confusion about what should be developed”.
The attitude of the customers was found to change from
“one of ambivalence to becoming involved”. The custom-
ers stated that their satisfaction with the project that was
based on XP was greater than with previous projects at
the company.

However, Mann and Maurer stress that the customer
should be trained in the Scrum process so that they will
understand the new expectations that the developers will
have of them.

The role of the customer is also the focus in the study by
Martin et al. (S19), on three XP projects with on-site cus-
tomers. In all cases, they found that the customer was
under stress and committed working long hours, although

Study Study aim

S2 Understand what differentiates waterfall and XP development, and examine the impact of knowledge creation on the adoption of XP

S10 Compare empirical findings of an agile method based on XP with a baseline, with respect to productivity, defect rates, cost, and schedule
deviations

S13 Provide empirical data on customer effort usage, customer perceptions, and project team perceptions of on-site customer in an XP project

S17 Study the impact of Scrum on overtime, as well as on customer and developer experience

S18 Compare the job satisfaction of developers that use XP practices with developers that do not use XP practices

S19 Provide empirical data on the role of on-site customer role in XP

S20 Study the role of the customer in projects using XP and outsourcing

S21 Study student perceptions of agile practices

S22 Study how students perceive agile development methods

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 847

all the customers were supported by an acceptance team,
various technical advisors, or senior personnel:

The existing XP Customer practices appears to be
achieving excellent results, but they also appear to be
unsustainable, and so constitute a great risk to XP pro-
jects, especially in long or high pressure projects (p. 12)

Martin et al. (S20) also studied the role of the customer
in outsourced projects, and found that this was challenging
because the customer was required to become acclimatized
to the different cultures or organizations of the developers.

Koskela and Abrahamsson (S13) analyzed the role of
the customer in an XP project and found that most of
the time was spent on participating in planning game ses-
sions and acceptance testing, followed by retrospective ses-
sions at the end of release cycles.

4.6.2. Developer perceptions

Mannaro et al. (S18) surveyed the job satisfaction
amongst employees in software companies that used XP
and companies that did not use agile development meth-
ods. One hundred and twenty-two people completed a
web-based questionnaire. The bulk of these were from Eur-
ope and the United States.

Ninety-five percent of the employees who used XP
answered that they would like their company to continue
using their current development process, while the number
for the employees in companies that did not use agile devel-
opment methods was 40%. In addition, the employees in
the companies that used XP were significantly more willing
to use the development process in the future than the
employees in companies that did not use XP. Further,
Mannaro et al. (S18) claimed that employees who use XP
have greater job satisfaction, feel that the job environment
is more comfortable, and believe that their productivity is
higher. In particular, 73% of the employees who used pair
programming claim that this practice speeds up the soft-
ware development process.

In the study by Ilieva et al. (S10), developers found pair
programming to be “a very useful style of working as
everyone was strictly conforming to the coding standards”.
However, the authors also note that working 40 h a week in
pairs requires a lot of concentration, and that as a result,
the developers became exhausted.

Mann and Maurer (S17) found that the introduction of
Scrum led to a reduction of overtime, and all developers
recommended the use of Scrum in future projects. The
developers were more satisfied with the product, and saw
that the Scrum process fostered more customer involve-
ment and communication. One developer said that “the
Scrum process is giving me confidence that we are develop-
ing the software that the customer wants”.

A study by Bahli and Zeid (S2) used the Technology
Acceptance Model [54] to study the adoption of XP in a
company that develops medical information systems. They
found that employees saw XP as easy to use and useful,

and that employees intended to use this development pro-
cess in the future.

4.6.3. Student perceptions

Melnik and Maurer (S21, S22) report on student percep-
tions of agile development methods in two studies, one
from 2002 and one from 2005. They found that 240 stu-
dents who responded to a survey at the Southern Alberta
Institute of Technology and at the University of Calgary
in Canada were “very enthusiastic about core agile prac-
tices”. The findings were consistent across educational
programmes.

The students found that working in agile teams helped
them to develop professional skills such as communication,
commitment, cooperation, and adaptability. Seventy-eight
percent of the respondents stated that they believe that
XP improves the productivity of small teams. This figure
is comparable to the findings of Mannaro et al. (S18) on
pair programming and productivity for employees in soft-
ware companies.

Further, 76% of the respondents believed that using XP
improved the quality of code, and 65% would recommend
using XP to any company for which they may work in the
future. Of those that recommended using XP to their future
employers, a large number preferred to work in pairs.

In the 2002 study, Melnik and Maurer (S21) present
qualitative findings on perceptions of XP in general, pair
programming, test-first design, and the planning game.
Most students found pair programming to be helpful, but
some expressed concern when the the members of the pair
had different levels of competence. One student stated that
“There was a huge difference in skill level in my pair, so we
weren’t very productive when I wasn’t driving”. In addi-
tion, test-first design was difficult for many students. The
authors believe that this is because design in itself is very
difficult, and writing the tests first forces students to make
design decisions early.

4.7. Comparative studies

One third (11) of the reviewed primary studies provided
some form of comparison of agile development against an
alternative; see Table 13. Using our interpretations as a basis,
these comparisons can be grouped into four higher-order
comparative topics: project management, productivity,
product quality, and team characteristics. Non-comparative
studies that mention one or more of these issues are also
included in this section.

4.7.1. Project management

The management of software projects has long been a
matter of interest. Agile methods have reinforced this inter-
est, because many conventional ideas about management
are challenged by such methods. Ceschi et al. (S4) found,
in their survey of plan-based and agile companies, that
agile methods improved the management of the develop-
ment process as well as relationships with the customer.

848 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

Table 13

Study aims for comparative studies

Study Study aim

S3 Understand how and why Internet-speed software development differs from traditional software development

S4 Compare agile methods with plan-based methods with respect to project management practices

S6 Compare the effectiveness of incremental and evolutionary process models for technology development projects

S7 Compare differences in resource utilization and efficiency in products developed using sequential, incremental, evolutionary, and extreme
programming

S10 Compare empirical findings of an agile method based on XP with a baseline, with respect to productivity, defect rates, cost, and schedule
deviations

S12 Study the integration of agile teams into stage-gate software product development

S14 Compare the effectiveness of XP with traditional development, with respect to pre- and post-release quality, programmer productivity, customer
satisfaction, and team moral

S15 Compare XP with a traditional approach with respect to quality

S18 Compare the job satisfaction of developers that use XP practices with developers that do not use XP practices

S28 Compare agile and document-driven approaches in managing uncertainty in software development

S32 Compare plan-driven and agile development with respect to team cohesion and product quality

In particular, they found that companies that use agile
methods prefer to organize their processes in more releases
and that the managers of such companies are more satisfied
with the way they plan their projects than are plan-based
companies. Moreover, Baskerville et al. (S3) found that
“Internet-speed development” project management differs
from that of traditional development in that “Projects do
not begin or end, but are an ongoing operation more akin
to operations management.” (Baskerville et al. (S3), p. 77).

Karlstrom and Runeson (S12) studied how traditional
stage-gate project management could be combined with
agile methods. In a case study of three large companies,
they found that agile methods give the stage-gate model
powerful tools for microplanning, day-to-day work con-
trol, and reporting on progress. They also found that they
were able to communicate much more effectively when
using the working software and face-to-face meetings of
agile methods than when using written documents. In turn,
the stage-gate model provided the agile methods with a
means to coordinate with other development teams and
to communicate with marketing and senior management.
Their conclusion was that it is feasible to integrate agile
methods with stage-gate project management to improve
cost control, product functionality, and on-time delivery.

A central concern for agile methods is to attend to the real
needs of the customer, which are often not stated explicitly in
a more or less complete requirements specification. Thus,
Dagnino et al. (S6) compared and contrasted the use of an
evolutionary agile approach with a more traditional incre-
mental approach in two different technology development
projects. They showed that by planning in detail only the fea-
tures and requirements to be implemented in a specific cycle,
the agile team was more able to incorporate changes in
requirements at a later stage with less impact on the project.
In addition, by delivering in-progress software to the cus-
tomer more frequently, the agile team was able to demon-
strate business value more quickly and more often than the
traditional, iterative team. Combined with continuous feed-
back by the customer, this lead to a sharp increase in cus-
tomer satisfaction on the agile project.

Similarly, Ceschi et al. (S4) found that the tighter links
between the customer and the development team resulted
in agile companies being more satisfied with their customer
relationships than plan-based companies. Furthermore,
Sillitti et al.’s (S28) survey of project managers found that
companies that use agile methods are more customer-cen-
tric and flexible than document-driven ones, and that com-
panies that use agile methods seem to have a more
satisfactory relationship with the customer.

However, with respect to human resource management,
Baskerville et al. (S3) concluded that compared to tradi-
tional development, team members of agile teams are less
interchangeable, and more difficult to describe and identify.

4.7.2. Productivity

Four studies compared the productivity of agile teams
with the productivity of teams using traditional develop-
ment methods (S7, S10, S14, S32); see Table 14. Ilieva
et al. (S10) compared the productivity of two similar pro-
jects, one of which used traditional methods and the other
of which used XP. They measured the productivity for
three iterations of each project. Overall, the results showed
a 42% increase in productivity for the agile team. The
increase in productivity was largest for the first iteration,
while there was virtually no difference in productivity for
the last iteration.

The case study by Layman et al. (S14) compared an old
release developed with traditional methods with a new

Table 14

Comparisons of productivity

Study Productivityrrap Productivityagig Productivity gain (%)
S7 3 LoC/h® 13.1 LOC/h 337
S10 3.8 LOC/h 5.4 LOC/h 42
S14 300 LOC/month 440 LOC/month 46
S32 157 LOC/ 88 LOC/engineer —44

engineer®
V-model.

b Comparisons were made between two one-semester courses; however,
the actual hours worked by the members of the teams were not measured.

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 849

release developed with agile methods. The results showed a
46% increase in productivity for the new agile release com-
pared with the old, traditional release. However, the agile
team had notably greater domain and programming lan-
guage expertise and project manager experience, because
three of the team members on the new release had previ-
ously worked on the old release.

Dalcher et al. (S7) performed an experiment in which fif-
teen software teams developed comparable software prod-
ucts using four different development approaches (V-
model, incremental, evolutionary, and XP). The greatest
difference in productivity was between the V-model teams
and the XP teams, with the XP teams being, on average,
337% more productive than the V-model teams. However,
this productivity gain was due to the XP team delivering
3.5 times more lines of code without delivering more
functionality.

Contrary to the studies by Dalcher et al. (S7), Ilieva
et al. (S10), and Layman et al. (S14), Wellington et al.
(S32) found a 44% decrease in productivity for an XP team
compared with a traditional team. Furthermore, Svensson
and Host (S30) found no change in overall productivity
when comparing results from before and after the introduc-
tion of an agile process. However, they did find evidence
that when the agile process was introduced, the team
improved their productivity during the first iterations.

In addition, Mannaro et al. (S18) asked their subjects
whether the team’s productivity had increased significantly
as a result of the development process that was used. On a
scale from 1 (Strongly Disagree) to 6 (Strongly Agree), the
mean for the non-XP developers was 3.78, while the mean
for the XP developers was one scale point higher (4.75).
Similarly, 78% of Melnik and Maurer’s (S22) respondents
either believed or believed strongly that using XP improves
the productivity of small teams.

4.7.3. Product quality

Several aspects of product quality were examined by the
studies in this review. For example, comparing the results
for a new release of a project to those for an old release,
Layman et al. (S14) found a 65% improvement in pre-
release quality and a 35% improvement in post-release
quality. Ilieva et al. (S10) found 13% fewer defects reported
by the customer or by the quality assurance team in an XP
project than in a non-XP project.

In Wellington et al.’s (S32) study, the XP team’s code
scored consistently better on the quality metrics used than
the traditional team. In addition, the quality of the code
delivered by the XP team was significantly greater than that
delivered by the traditional team. However, both teams
agreed that the traditional team had developed a better
and much more consistent user interface.

Macias et al. (S15) measured the internal and external
quality of the products developed by 10 XP teams and 10
traditional teams. However, in contrast to Layman et al.
and Wellington et al., they found no difference in either

internal or external quality between the XP teams and
the traditional teams.

With respect to product size, the XP model teams in
Dalcher et al.’s (S7) study delivered 3.5 times more lines
of code than the V-model teams. This is in sharp contrast
to Wellington et al.’s (S32) results, which showed that the
traditional team delivered 78% more lines of code than
the XP team. However, in contrast to both Dalcher et al.
and Wellington et al., Macias et al. (S15) found no differ-
ence in product size between the XP teams and the tradi-
tional teams.

4.7.4. Work practices and job satisfaction

A few studies made qualitative comparisons of social
behaviour. Chong (S5), for example, performed an ethno-
graphic study to compare the work routines and work
practices of the software developers on an XP team and
a non-XP team. Chong’s observations suggest that certain
features of XP promote greater uniformity in work routine
and work practice across individual team members and
that, consequently, XP provides a framework for standard-
izing the work of software development and making it
more visible and accessible to the members of a software
development team.

An important part of the XP philosophy is to increase
overall team cohesion by making everyone in the team
responsible for the source code. However, Wellington
et al.’s (S32) study of team cohesion and individuals’
attachment to the project in XP and non-XP teams yielded
equal or higher scores for every aspect of cohesion for the
non-XP teams. However, at the same time, the study indi-
cated a lack of cohesion across subteams for the non-XP
team (the XP team was not divided into subteams).

The point of departure for Mannaro et al. (S18) was the
importance of job satisfaction for the effectiveness of the
software development process. Consequently, they per-
formed a survey to compare the job satisfaction of develop-
ers that used XP practices with that of developers that did
not use them. The results of their study showed that the
developers viewed XP practices favourably and indicated
that developers who use XP practices are more comfortable
with their job environment and more satisfied with their
jobs than developers that do not use XP practices.

5. Discussion

The present review identified a greater number of studies
than did previous reviews. Abrahamsson et al. (S34) wrote
in their 2002 review that the existing evidence consists
mainly of practitioners’ success stories. Cohen et al. (S35)
found seven case studies on agile development in their
2004 report, we included none of these in our final set of
studies, because they were ecither lessons learned studies
or single-practice studies. Further, Erickson et al.’s (S36)
2004 review found four “‘case studies and lessons learned
reports”, none of which we included in our review. This
systematic review shows that there are many more empiri-

850 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

cal studies on agile development methods in general than
have previously been acknowledged. In contrast to the pre-
vious reviews, this review used an explicit search strategy
combined with explicit inclusion and exclusion criteria.

We now address our research questions, starting by dis-
cussing what we found regarding the benefits and limitations
of agile software development. The second subsection dis-
cusses the strength of evidence of these findings, while the
third subsection discusses the implications of the findings
for research and practice. Finally, we discuss the limitations
of this systematic review.

5.1. Benefits and limitations of agile development

The studies that address the introduction and adoption
of agile methods do not provide a unified view of current
practice, but offer a broad picture of experience and some
contradictory findings. XP was found to be difficult to
introduce in a complex organization, yet seemingly easy
in other types of organizations. This is consistent with ear-
lier findings that suggest that agile development methods
are more suitable for small teams than for larger projects
[17]. It is likely that the ease with which XP can be intro-
duced will depend on how interwoven software develop-
ment is with the other functions of the organization.
Most studies reported that agile development practices
are easy to adopt and work well. Benefits were reported
in the following areas: customer collaboration, work pro-
cesses for handling defects, learning in pair programming,
thinking ahead for management, focusing on current work
for engineers, and estimation. With respect to limitations,
the lean development technique did not work well for
one of the teams trying it out, pair programming was seen
as inefficient, and some claimed that XP works best with
experienced development teams. A further limitation that
was reported by one of the studies, which has also been
repeatedly mentioned in the literature [42,61], was the lack
of attention to design and architectural issues.

A recurring theme in studies on agile development is
what we have called human and social factors and how
these factors affect, and are affected by, agile development
methods. A benefit of XP was that it thrived in radically
different environments; in organizations that varied from
having a hierarchical structure to little or no central con-
trol. In addition, customer involvement and physical set-
tings varied greatly for the successful XP teams studied.
It seems to be possible to adopt XP in various organiza-
tional settings. Further, conversation, standardization,
and the tracking of progress have been studied and are
described as mechanisms for creating awareness within
teams and organizations. In addition, studies of XP indi-
cate that successful teams manage to balance a high level
of individual autonomy with a high level of team autonomy
and corporate responsibility. They have faith in their own
abilities and preserve the quality of their working lives.
Good interpersonal skills and trust were found to be
important characteristic for a successful XP team.

Many studies have sought to identify how agile methods
are perceived by different groups. Studies on customer per-
ceptions report that customers are satisfied with the oppor-
tunities for feedback and responding to changes. However,
we also found that the role of on-site customer can be
stressful and cannot be sustained for a long period. Devel-
opers are mostly satisfied with agile methods. Companies
that use XP have reported that their employees are more
satisfied with their job and that they are more satisfied with
the product. There were mixed findings regarding the effec-
tiveness of pair programming and several developers
regard it as an exhausting practice, because it requires
heavy concentration. University students perceive agile
methods as providing them with relevant training for their
future work and believe that these methods improve the
productivity in teams. However, they reported that pair
programming was difficult when there was a large skill dif-
ferential between the members of the pairs. In addition,
test-first development was reported to be difficult for many
students.

The group of comparative studies, in which variations of
traditional development are compared to variations of
agile development, is very interesting. It has been found
that traditional and agile development methods are accom-
panied by differing practices of project management. Some
studies suggest benefits in projects that use agile methods
because changes are incorporated more easily and business
value is demonstrated more efficiently. In addition, we
found that it is also possible to combine agile project man-
agement with overall traditional principles, such as the
stage-gate project management model. A limitation that
was mentioned is that team members are less interchange-
able in agile teams, which has consequences for how pro-
jects are managed. With respect to the productivity of
agile and traditional teams, three of the four comparative
studies that address this issue found that using XP results
in increased productivity in terms of LOC/h. However,
none of these studies had an appropriate recruitment strat-
egy to ensure an unbiased comparison. There are also find-
ings from several of the non-comparative studies that
indicate that the subjects themselves believe that the pro-
ductivity increases with the use of agile methods.

With respect to product quality, most studies report
increased code quality when agile methods are used,
but, again, none of these studies had an appropriate
recruitment strategy to ensure an unbiased comparison.
The size of the end product seems not to be correlated
with the method of development used. Different studies
have reported larger, smaller, and equal sizes of end
product for traditional versus agile methods. The effect
on work practices and job satisfaction of using agile
and traditional methods has not been established conclu-
sively. Some studies have found that work practice is
more standardized when agile methods are used and that
job satisfaction is greater. However, a study of team
cohesion did not find any improvement of cohesion in
an XP team.

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 851

Table 15

Definitions used for grading the strength of evidence [7]

High Further research is very unlikely to change our confidence in the estimate of effect

Moderate Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate

Low Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate
Very low Any estimate of effect is very uncertain

5.2. Strength of evidence

Several systems exist for making judgments about the
strength of evidence in systematic reviews (see [7] for an
overview). Most of these systems suggest that the strength
of evidence can be based on a hierarchy with evidence from
systematic reviews and randomized experiments at the top
of the hierarchy and evidence from observational studies
and expert opinion at the bottom of the hierarchy [36].
The inherent weakness with evidence hierarchies is that
randomized experiments are not always feasible and that,
in some instances, observational studies may provide better
evidence.

To cope with the weaknesses of evidence hierarchies, we
used the GRADE (Gradingof Recommendations Assess-
ment, Development and Evaluation) workinggroup defini-
tions to grade the overall strength of the evidences high,
moderate, low, or very low [7] (see Table 15). According
to GRADE, the strength of evidence can be determined
on the basis of the combination of four key elements, i.e.,
in addition to study design, study quality, consistency,
and directness are also evaluated. The GRADE system ini-
tially categorizes evidence concerning study design by
assigning randomized experiments a high grade and obser-
vational studies a low grade. However, by considering the
quality, consistency, and directness of the studies in the evi-
dence base, the initial overall grade could be increased or
decreased, i.e., evidence from inconsistent, low-quality
experiments may be assigned a low grade, while strong or
very strong evidence of association from two or more
high-quality observational studies may be assigned a high
grade [7].

Regarding study design, there were only three experi-
ments in the review (two randomized trials), while the
remaining primary studies were observational. That there
are few experiments is natural because we included only
studies that addressed agile methods as a whole and
excluded ones that investigated specific practices in isola-
tion. This is consistent with Shadish et al.’s comments that
experiments are best used to investigate specific cause-effect
phenomena [57]. Consequently, our initial categorization
of the total evidence in this review based on study design
is low. We now consider the quality, consistency, and
directness of the studies in the evidence base.

With respect to the quality of the studies, methods were
not, in general, described well; issues of bias, validity, and
reliability were not always addressed; and methods of data
collection and analysis were often not explained well (see
Section 4.3). As many as 25 out of the 33 primary studies

did not have a recruitment strategy that seemed appropri-
ate for the aims stated for the research and 23 of the studies
did not use other groups or baselines with which to com-
pare their findings. Furthermore, in only one study was
the possibility of researcher bias mentioned (see Table 9).
Using these findings as a basis, we conclude that there
are serious limitations to the quality of the studies that
inevitably increasesthe risk of bias or confounding. Hence,
we must be circumspect about the studies’ reliability.

With respect to consistency, i.e., the similarity of esti-
mates of effect across studies, we found differences in both
the direction of effects and the size of the differences in
effects, 1.e., we found no consistent evidence of association
from two or more studies with no plausible confounders
nor did we find direct evidence from studies with no major
threats to validity. These inconsistencies might by due to
imprecise or sparse data, and reporting bias.

With respect to directness, i.e., the extent to which the
people, interventions, and outcome measures are similar
to those of interest, we found that most studies were con-
cerned with XP. This leaves an uncertainty about the
directness of evidence for other agile methods. However,
given that most of the studies regarding XP were per-
formed with student subjects or professionals who had lit-
tle or no experience in agile development, this also raises an
issue regarding the directness of evidence for XP. In addi-
tion, very few studies provided direct comparisons of inter-
ventions; hence, we had to make comparisons across
studies. However, such indirect comparisons leave greater
uncertainty than direct comparisons because of all the
other differences between studies that can affect the results.
Our judgment is thus that there are major uncertainties
about the directness of the included studies.

Combining the four components of study design, study
quality, consistency, and directness, we find that the
strength of the evidence in the current review regarding
the benefits and limitations of agile methods, and for deci-
sions related to their adoption, is very low. Hence, any esti-
mate of effect that is based on evidence of agile software
development from current research is very uncertain. This
is consistent with criticisms that have been raised regarding
the sparse scientific support for many of the claims made
by the agile community [42].

5.3. Implications for research and practice
This systematic review has a number of implications for

research and practice. For research, the review shows a
clear need for more empirical studies of agile development

852 T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859

methods. Agile development has had a deep impact on the
software industry in recent years. In our opinion, this
should lead to a greater interest amongst researchers as
to what has driven the trend and what the effects are of
the changes that emerge in response to the adoption of
agile development.

This review also shows that, with rare exceptions, only
XP has been studied. Hence, research on other agile
approaches that are popular in industry should be a prior-
ity when designing future studies. In our opinion, manage-
ment-oriented approaches, such as Scrum, are clearly the
most under-researched compared to their popularity in
industry.

Another striking finding is that only one research group
in the world has studied mature agile development teams.
If we want to investigate the potential of agile methods,
we clearly need to direct more resources towards investigat-
ing the practices of mature teams.

The review shows that a range of research methods have
been applied. We need to employ both flexible and fixed
research designs if we are to gain a deeper understanding
of agile development. Edmondson and McManus [25]
argue that the research design needs to fit the current state
of theory and research. They divide this state into three cat-
egories: nascent, intermediate, and mature; see Table 16.
For agile software development, we believe the current
state of theory and research on methods is clearly nascent,
which suggests a need for exploratory qualitative studies.
Rajlich [53] phrased it as a “backlog of research problems
to be solved”.

Other areas of research on agile software development,
such as studies of particular practices, like pair program-
ming, or areas that connect well to existing streams of soft-
ware engineering research, might be described as being at
an intermediate, or even a mature, state.

A major challenge is to increase the quality of studies on
agile software development. In [58], Sjoberg et al. discuss
measures to increase the quality of empirical studies in soft-
ware engineering in general. Recently, Host and Runeson
[33] have suggested a checklist to use in case studies in soft-
ware engineering. The recent special issue of Information
and Software Technology on qualitative software engineer-
ing research [20] provides many useful examples of
approaches for study designs, data collection, and analysis
that should be relevant for future studies of agile software
development. The state of research with respect to con-

Table 16
Categories of methodological fit in field research [25]

trolled experiments has been described thoroughly in a sur-
vey by Sjeberg et al. [59].

In order to increase the usefulness of the research for
industry and to provide a sufficient number of studies of
high quality on subtopics related to agile development,
we think that researchers in the field should collaborate
to determine a common research agenda. It lies beyond
the scope of this article to suggest such an agenda, but
we hope that the synthesis of research presented herein
may provide the inspiration to create one.

For practitioners, this review shows that many promis-
ing studies of the use of agile methods have been reported.
Although serious limitations have been identified, e.g., that
the role of on-site customer seems to be unsustainable for
long periods and that it is difficult to introduce agile meth-
ods into large and complex projects, the results of the
review suggest that it is possible to achieve improved job
satisfaction, productivity, and increased customer
satisfaction.

The strongest, and probably most relevant, evidence for
practice is from the studies of mature agile teams, which
suggests that it is necessary to focus on human and social
factors in order to succeed. Specifically, it seems that a high
level of individual autonomy must be balanced with a high
level of team autonomy and corporate responsibility. It
also seems important to staff agile teams with people that
have faith in their own abilities combined with good inter-
personal skills and trust.

Evidence also suggests that instead of abandoning tradi-
tional project management principles, one should rather
take advantage of these principles, such as state-gate pro-
ject management models, and combine them with agile pro-
ject management. The evidence also suggests that agile
methods not necessarily are the best choice for large pro-
jects. Thus, consistent with recommendations provided by
others [11,12,15], we suggest that practitioners carefully
study their projects’ characteristics and compare them with
the relevant agile methods’ required characteristics.

Due to the limited number and relatively poor quality of
the primary studies in this review, it is impossible to offer
more definitive and detailed advice. Rather, this review
provides an overview of research carried out to date, which
must be critically appraised by companies in order to iden-
tify similarities and differences between the studies reported
and their own situation. A particular important aid in this
appraisal is the description of the context of the studies in

State of prior theory and Nascent
research

Intermediate

Mature

Research questions
of interest

Type of data collected

need to be interpreted for meaning

A suggestive theory, often an invitation

for further work on the issue or set of

issues opened up by the study

Theoretical contribution

work

Open-ended inquiry about a phenomenon Proposed relationships between new and
established constructs

Qualitative, initially open-ended data that Hybrid (both qualitative and
quantitative)

A provisional theory, often one that
integrates previously separate bodies of

Focused questions and/or hypotheses
relating existing constructs
Quantitative data: focused measures
where extent or amount is meaningful
A supported theory that may add
specificity, new mechanisms, or new
boundaries to existing theories

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 853

this review (Appendix D). A further aid would be to apply
the principles of evidence-based software engineering in
order to support and improve the decisions about what
methods and technologies to employ [24].

The review clearly shows the need for more research in
order to determine the situations in which advice on agile
development that has been offered by practitioners may
suitably be applied. We would like to urge companies to
participate in research projects in the future, in order to
target research goals that are relevant for the software
industry. Action research is one such way of organizing
collaboration between industry and researchers that would
be highly relevant for a nascent field such as agile software
development.

5.4. Limitations of this review

The main limitations of the review are bias in the selection
of publications and inaccuracy in data extraction. To help to
ensure that the process of selection was unbiased, we devel-
oped a research protocol in advance that defined the research
questions. Using these questions as a basis, we identified key-
words and search terms that would enable us to identify the
relevant literature. However, it is important to recognize that
software engineering keywords are not standardized and
that they can be both discipline- and language-specific.
Therefore, due to our choice of keywords and search strings,
there is a risk that relevant studies were omitted. To avoid
selection bias, we piloted every part of the review process,
and in particular, the search strategy and citation manage-
ment procedure, in order to clarify weaknesses and refine
the selection process. Furthermore, since our focus was on
empirical research, we excluded “lessons learned” papers
and papers that were based merely on expert opinion. If
the review had included this literature, the current study
could, in principle, have provided more data. In that event,
it might have been possible to draw more general conclu-
sions. To further ensure the unbiased selection of articles, a
multistage process was utilized that involved three research-
ers who documented the reasons for inclusion/exclusion at
every step, as described in Section 3 and also as suggested
by Kitchenham [36].

When we piloted the data extraction process, we found
that several articles lacked sufficient details about the
design and findings of a study and that, due to this, we dif-
fered too much in what we actually extracted. As a conse-
quence, all data from all the 33 primary studies were
extracted by the two authors in consensus meetings accord-
ing to a predefined extraction form (Appendix C). How-
ever, we often found that the extraction process was
hindered by the way some of the primary studies were
reported. Many articles lacked sufficient information for
us to be able to document them satisfactorily in the extrac-
tion form. More specifically, we frequently found that
methods were not described adequately, that issues of bias
and validity were not always addressed, that methods of
data collection and analysis were often not explained well,

and that samples and study settings were often not
described well. There is therefore a possibility that the
extraction process may have resulted in some inaccuracy
in the data.

6. Conclusion

We identified 1996 studies from searches of the litera-
ture, of which 36 were found to be research studies of
acceptable rigour, credibility, and relevance. Thirty-three
of the 36 studies identified were primary studies, while
three were secondary studies.

The studies fell into four thematic groups: introduction
and adoption, human and social factors, perceptions of
agile methods, and comparative studies. We identified a
number of reported benefits and limitations of agile devel-
opment within each of these themes. However, the strength
of evidence is very low, which makes it difficult to offer spe-
cific advice to industry. Consequently, we advise readers
from industry to use this article as a map of findings
according to topic, which they can use to investigate rele-
vant studies further and compare the settings in the studies
to their own situation.

The studies investigated XP almost exclusively, and only
a few of the studies on XP were done on mature develop-
ment teams. A clear finding of the review is that we need
to increase both the number and the quality of studies on
agile software development. In particular, agile project
management methods, such as Scrum, which are popular
in industry, warrant further attention. We see that there
is a backlog of research issues to be addressed. In this con-
text, there is a clear need to establish a common research
agenda for agile software development and for future field
studies to pay more attention to the fit between their
research methods and the state of prior work.

Acknowledgements

The work in this paper was supported by the Research
Council of Norway through the project Evidence-Based
Software Engineering (181685/130). We are grateful to
Geir K. Hanssen at SINTEF ICT, who participated in
selecting and assessing the studies included in this review.
We are also grateful to Chris Wright for proofreading the

paper.
Appendix A. Studies included in the review

[S1] P. Abrahamsson, J. Koskela, Extreme program-
ming: a survey of empirical data from a controlled
case study, in: Proceedings — 2004 International
Symposium on Empirical Software Engineering,
ISESE 2004, Aug 19-20 2004, Redondo Beach,
CA, United States, 2004.

[S2] B. Bahli, E.S.A. Zeid, The role of knowledge crea-
tion in adopting extreme programming model: an
empirical study, in: ITI 3rd International Confer-

854

[S3]

[S4]

[S7]

(S8]

[S9]

[S10]

[S11]

[S12]

[S13]

[S14]

[S15]

T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

ence on Information and Communications Technol-
ogy: Enabling Technologies for the New Knowledge
Society, 2005.

R. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje,
S. Slaughter, Is internet-speed software development
different? IEEE Software 20(6) (2003) 70-77.

M. Ceschi, A. Sillitti, G. Succi, S. De Panfilis, Pro-
ject management in plan-based and agile companies,
IEEE Software 22(3) (2005) 21-27.

J. Chong, Social behaviours on XP and non-XP
teams: a comparative study, in: Proceedings of the
Agile Development Conference (ADC’05), 2005.

A. Dagnino, K. Smiley, H. Srikanth, A.I. Anton, L.
Williams, Experiences in applying agile software devel-
opment practices in new product development, in: Pro-
ceedings of the 8th IASTED International Conference
on Software Engineering and Applications, November
9-11, Cambridge, MA, United States, 2004.

D. Dalcher, O. Benediktsson, H. Thorbergsson,
Development life cycle management: a multiproject
experiment, in: Proceedings of the 12th Interna-
tional Conference and Workshops on the Engineer-
ing of Computer-Based Systems (ECBS’05), 2005.
A. Fruhling, K. Tyser, G.-J. De Vreede, Experiences
with extreme programming in telehealth: developing
and implementing a biosecurity health care applica-
tion, in: Proceedings of the 38th Hawaii International
Conference on System Sciences (HICCS), Hawaii,
USA, 2005.

M.-R. Hilkka, T. Tuure, R. Matti, Is extreme pro-
gramming just old wine in new bottles: a comparison
of two cases, Journal of Database Management
16(4) (2005) 41-61.

S. Ilieva, P. Ivanov, E. Stefanova, Analyses of an
agile methodology implementation, in: Proceedings
30th Euromicro Conference, IEEE Computer Soci-
ety Press, 2004, pp. 326-333.

T. Jokela, P. Abrahamsson, Usability assessment of
an extreme programming project: close co-operation
with the customer does not equal to good usability,
in: Product Focused Software Process Improvement,
Lecture Notes in Computer Science, vol. 3009,
Springer Verlag, Berlin, 2004, pp. 393-407.

D. Karlstréom, P. Runeson, Combining agile meth-
ods with stage-gate project management, IEEE Soft-
ware 22(3) (2005) 43-49.

J. Koskela, P. Abrahamsson, On-site customer in an
XP project: empirical results from a case study, in:
T. Dingseyr (Ed.), Software Process Improvement,
Proceedings, Lecture Notes in Computer Science,
vol. 3281, Springer-Verlag, Berlin, 2004, pp. 1-11.
L. Layman, L. Williams, L. Cunningham, Exploring
extreme programming in context: an industrial case
study, Agile Development Conference, 2004.

F. Macias, M. Holcombe, M. Gheorghe, A formal
experiment comparing extreme programming with
traditional software construction, in: Proceedings

[S16]

[S17]

[S18]

[S19]

[S20]

[S21]

[S22]

[S23]

[S24]

[S25]

[S26]

[S27]

[S28]

of the Fourth Mexican International Conference
on Computer Science (ENC 2003), 2003.

A. Mackenzie, S. Monk, From Cards to Code: How
Extreme Programming Re-Embodies Programming
as a Collective Practice, Computer Supported Coop-
erative Work, vol. 13, 2004, pp. 91-117.

C. Mann, F. Maurer, A case study on the impact of
scrum on overtime and customer satisfaction, Agile
Development Conference, 2005.

K. Mannaro, M. Melis, and M. Marchesi, Empirical
analysis on the satisfaction of IT employees compar-
ing XP practices with other software development
methodologies, in: Extreme Programming and Agile
Processes in Software Engineering, Proceedings,
Lecture Notes in Computer Science, vol. 3092,
Springer Verlag, 2004, pp. 166-174.

A. Martin, R. Biddle, J. Noble, The XP customer
role in practice: three studies, Agile Development
Conference, 2004.

A. Martin, R. Biddle, J. Noble, When XP met out-
sourcing, in Extreme Programming and Agile Pro-
cesses in Software Engineering, Proceedings,
Lecture Notes in Computer Science, vol. 3092,
Springer Verlag, Berlin, 2004, pp. 51-59.

G. Melnik, F. Maurer, Perceptions of agile practices:
a student survey, in: Proceedings, eXtreme Program-
ming/Agile Universe 2002, Lecture Notes in Com-
puter Science, vol. 2418, Springer Verlag, 2002, pp.
241-250.

G. Melnik, F. Maurer, A cross-program investiga-
tion of student’s perceptions of agile methods, in:
International Conference on Software Engineering
(ICSE), St. Louis, MI, USA, 2005.

P. Middleton, Lean software development: two case
studies, Software Quality Journal 9(4) (2001) 241-
252.

H. Robinson, H. Sharp, The characteristics of XP
teams, in: Extreme Programming and Agile Pro-
cesses in Software Engineering, Lecture Notes in
Computer Science, vol. 3092, Springer Verlag, Ber-
lin, 2004, pp. 139-147.

H. Robinson, H. Sharp, The social side of technical
practices, in: Extreme Progamming and Agile Pro-
cesses in Software Engineering, Lecture Notes in
Computer Science, vol. 3556, Springer Verlag, Ber-
lin, 2005, pp. 100-108.

H.S. Robinson, Organisational culture and XP:
three case studies, in: Proceedings of the Agile Con-
ference (ADC’05), 2005.

H. Sharp H. Robinson, An ethnographic study of
XP practice, Empirical Software Engineering, 9(4)
(2004) 353-375.

A. Sillitti, M. Ceschi, B. Russo, G. Succi, Managing
uncertainty in requirements: a survey in documenta-
tion-driven and agile companies, in: Proceedings of
the 11th International Software Metrics Symposium
(METRICS), 2005.

[S29]

[S30]

[S31]

[S32]

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 855

H. Svensson, M. Host, Introducing agile process in a
software maintenance and evolution organization,
in: Ninth European Conference on Software Main-
tenance and Reengineering (CSMR’05), 2005.

H. Svensson, M. Host, Views from an organization
on how agile development affects its collaboration
with a software development team, Lecture Notes
in Compuer Science, vol. 3547, Springer Verlag, Ber-
lin, 2005, pp. 487-501.

Tessem, Experiences in learning Xp practices: a qual-
itative study, in: XP 2003, vol. 2675, Springer Ver-
lag, Berlin, 2003, pp. 131-137.

C.A. Wellington, T. Briggs, C.D. Girard, Compari-
son of student experiences with plan-driven and agile
methodologies, in: Proceeedings of the 35th ASEE/
IEEE Frontiers in Education Conference, 2005.

Appendix B. Quality assessment form

Screening questions:

[S33]

[S34]

[S35]

[S36]

S.M. Young, H.M. Edwards, S. Mcdonald, J.B.
Thompson, Personality characteristics in an XP
team: A repertory grid study, in: Proceedings of
Human and Social Factors of Software Engineering
(HSSE), St. Louis, MI, USA, 2005.

P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta,
Agile software development methods: Review and
analysis, VIT Technical report, 2002.

D. Cohen, M. Lindvall, P. Costa, An introduction
to agile methods, in: M. V. Zelkowitz (Ed.),
Advances in Computers, Advances in Software
Engineering, vol. 62, Elsevier, Amsterdam, 2004.

J. Erickson, K. Lyytinen, K. Siau, Agile modeling,
Agile software development, and extreme program-
ming: the state of research, Journal of Database
Management 16(4) (2005) 88-100.

1. Is this a research paper?
Consider:

opinion?

—Is the paper based on research (or is it merely a “lessons learned” report based on expert

Oyes [ONo

Consider:

—Does the study present empirical data?

or process quality)?

2. Is there a clear statement of the aims of the research?

—Is there a rationale for why the study was undertaken?
—Is the study’s focus or main focus on Agile Software Development?

—Is there a clear statement of the study’s primary outcome (i.e. time-to-market, cost, or product

Oyes ONo

Consider whether the researcher has identified:
travel, etc)
independent software supplier)

application domain)

procedures, the configuration management process)

3. Is there an adequate description of the context in which the research was carried out?
—The industry in which products are used (e.g. banking, telecommunications, consumer goods,
—The nature of the software development organization (e.g. in-house department or
—The skills and experience of software staff (e.g. with a language, a method, a tool, an

—The type of software products used (e.g. a design tool, a compiler)
—The software processes being used (e.g. a company standard pro cess, the quality assurance

Oyes ONo

If question 1, or both of questions 2 and 3, receive a “No” response do not continue with the

quality assessment.

Detailed questions:

Research design

Consider:

which methods to use)?

4. Was the research design appropriate to address the aims of the research?

— Has the researcher justified the research design (e.g. have they discussed how they decided

[Yes [No

856 T. Dybd, T. Dingseyr | Information and Software Technology 50 (2008) 833-859

Sampling

5. Was the recruitment strategy appropriate to the aims of the research? Odves [ONo
Consider:
—Has the researcher explained how the participants or cases were identified and selected?
—Are the cases defined and described precisely?
—Were the cases representative of a d efined population?
—Have the researchers explained why the participants or cases they selected were the most
appropriate to provide access to the type of knowledge sought by the study?
—Was the sample size sufficiently large?

Control group

6. Was there a control group with which to compare treatments? [Yes O No
Consider:

—How were the controls selected?

—Were they repres entative of a defined population?

—Was there anyth ing special about the controls?

—Was the non-response high? Could non-respondents be different in any way?

Data collection

7. Was the data collected in a way that addressed the research issue? [Yes O No
Consider:
—Were all measures clearly defined (e.g. unit and counting rules)?
—Is it clear how data was collected (e.g. semi-structured interviews, focus group etc.)?
—Has the researcher justified the methods that were chosen?
—Heas the researcher mad e the methods explicit (e.g. is there an indication of how interviews
were conducted, did they use an interview guide)?
—If the methods were modified during the study, has the researcher explained how and why?
—Whether the form of the data is clear (e.g. tape recordin g, video material, notes etc.)
—Whether quality control methods were used to ensure comp leteness and accuracy of data
collection

Data analysis

8. Was the data analysis sufficiently rigorous? Oves [ONo
Consider:

—Was there an in-depth description of the analysis process?

—If thematic analysis was used, is it clear how the categories/ themes were derived from the

data?

—Has sufficient data been presented to support the findings?

—To what extent has contradictory data been taken into account?

—Whether quality control methods were used to verify the results

Reflexivity (research partnership relations/recognition of researcher bias)

9. Has the relationship between researcher and participants been considered adequately? Oves [ONo
Consider:

—Did the researcher critically examine their own role, potential bias and influence during the
Sformulation of research questions, sample recruitment, data collection, and analysis and
selection of data for presentation?

—~How the researcher respond ed to events during the study and whether they considered the
implications of any changes in the research design.

Findings

10. Is there a clear statement of findings? Oves [ONo
Consider:
—Are the findings explicit (e.g. magnitude of effect)?
—Has an adequate discussion of the evidence, both for and against the researcher’s arg uments,
been demonstrated?
—Heas the researcher discussed the credibility of their findings (e.g. triangulation, respondent
validation, more than one analyst)?
—Are limitations of the study discussed explicitly?
—Are the findings discussed in relation to the original research questions?
—Are the conclusions justified by the results?

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 857

Value of the research

11. Is the study of value for research or practice?
Consider:
—Does the researcher discuss the contribution the study makes to existing knowledge or

understanding (e.g. do they consider the findings in relation to current practice or relevant
research-based literature)?
—Does the research id entify new areas in which research is necessary?
—Does the researcher discuss whether or how the findings can be transferred to other
populations, or consider other ways in which the research can be used?

[Yes [No

Appendix C. Data extraction form

Study description

Nk LN =

o

10.
11.
12.
13.
14.

Study findings
1

Study identifier

Date of data extraction
Bibliographic reference
Type of article

Study aims

Objectives

Design of study

Research hypothesis
Definition of agile software
development given in study
Sample description

Setting of study

Control group

Data collection

Data analysis

Findings and conclusions

Validity
Relevance

Unique id for the study

Author, year, title, source

Journal article, conference paper, workshop paper, book section
What were the aims of the study?

What were the objectives?

Qualitative, quantitative (experiment, survey,

case study, action research)

Statement of hypotheses, if any

Verbatim from the study

Size, students, professionals (age, education, experience)
Industry, in-house/supplier, products and processes used

Yes, no (number of groups, sample size)

How was the data obtained? (questionnaires, interviews, forms)
How was the data analyzed? (qualitative, quantitative)

What were the findings and conclusions?
(verbatim from the study)

Limitations, threats to validity
Research, practice

Appendix D. Overview of primary studies

ID Research Agile Agile Professional/ Project Team Domain, comment
method method experience Student duration size
S1 Singlecase XP Beginner Student 8,4 weeks 4 Research prototype developed
S2 Multicase XP Beginner Professional 1 year 9 Medical information systems
S3 Mixed General - Professional — — NA Web development
S4 Survey General NA Professional — NA NA
S5 Multicase XP Beginner Professional — 7-12 Mid-size software start-up
S6 Multicase Other Beginner Professional ~ 2700 h 5 Industrial automation
S7 Experiment XP Beginner Student 1 year 3-4 NA
S8 Singlecase XP Beginner Professional 21 months 4 Medical information systems
S9 Multicase XP Beginner Professional ~ NA/18 months 6/4 Factory system + communication system
S10 Singlecase ~ XP Beginner Professional 900 h 4 Financial software
S11 Singlecase XP Beginner Student 8,4 weeks 4 Research prototype developed
S12 Multicase General Beginner Professional — — - Industrial automation/Defence/Telecom
S13 Singlecase XP Beginner Student 8,4 weeks 4 Research prototype developed
S14 Singlecase XP Beginner Professional 3,5 months 10 Airline company software
S15 Experiment XP Beginner Student 1 semester 4-5 NA
S16 Singlecase XP Beginner Professional — 6-12 Knowledge management software
S17 Singlecase Scrum Beginner Professional 22 months 4-6 Oil and gas software
S18 Survey XP NA Professional NA NA NA

(continued on next page)

858 T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859

Appendix C. (continued)

ID Research Agile Agile Professional/ Project Team Domain, comment
method method experience Student duration size
S19 Multicase XP Beginner Professional ~ 15/45/18 11/8/16 -
S20 Multicase XP Beginner Professional 15 months/18+ months 11/60 -
S21 Survey XP Beginner Student NA NA NA
S22 Mixed General Beginner Student - NA NA
S23 Multicase LSD Beginner Professional 3 days 2 Financial system
S24 Multicase XP Mature Professional — 8/23 Web applications/document software
S25 Multicase XP Mature Professional — — 7/23/8 Mid-size software start-up
S26 Multicase XP Mature Professional — 12/20/8 Banking/Content security software/web-applications
S27 Singlecase XP Mature Professional — 10 -
S28 Survey General NA Professional — — NA NA
S29 Singlecase XP Beginner Professional — - Software house
S30 Singlecase XP Beginner Professional — — - Software maintenance and evolution
S31 Singlecase ~ XP Beginner Student 3 weeks 6 Educational software
S32 Experiment XP Beginner Student 1 semester 16 NA
S33 Singlecase XP - Professional — 6 Software house

Several numbers for a study in the columns ‘Project duration’ and ‘Team size’ indicate that the study included several teams.

References

[1] North American and European Enterprise Software and Services
Survey, Business Technographics Ed., 2005.

[2] P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, Agile software
development methods: review and analysis, VIT Technical report,
2002.

[3] P. Abrahamsson, J. Warsta, M.T. Siponen, J. Ronkainen, New
directions on agile methods: a comparative analysis, in: Proceedings
of the 25th International Conference on Software Engineering
(ICSE’03), IEEE Press, 2003.

[4] R.L. Ackoff, Alternative types of planning, in: Ackoff’s Best: His
Classic Writings on Management, Wiley, New York, 1999, pp. 104—
114.

[5] A. Anderson, R. Beattie, K. Beck, D. Bryant, M. Dearment, M.
Fowler, M. Fronczak, R. Garzaniti, D. Gore, B. Hacker, C.
Hendrickson, R. Jeffries, D. Joppie, D. Kim, P. Kowalsky, D.
Mueller, T. Murasky, R. Nutter, A. Pantea, D. Thomas, Chrysler
goes to extremes, Distributed Computing Magazine (October) (1998)
24-28.

[6] M. Aoyama, Web-based agile software development, IEEE Software
15 (6) (1998) 56-65.

[7] D. Atkins, D. Best, P.A. Briss, M. Eccles, Y. Falck-Ytter, S. Flottorp,
G.H. Guyatt, R.T. Harbour, M.C. Haugh, D. Henry, S. Hill, R.
Jaeschke, G. Leng, A. Liberati, N. Magrini, J. Mason, P. Middleton,
J. Mrukowicz, D. O’connell, A. D Oxman, B. Phillips, H.J.
Schiinemann, T.T.-T. Edejer, H. Varonen, G.E. Vist, J.W. Williams
Jr., Z. Stephanie, Grading quality of evidence and strength of
recommendations, BMJ 328 (1490) (2004).

[8] D. Avison, F. Lau, M. Myers, P.A. Nielsen, Action research,
Communications of the ACM 42 (1) (1999) 94-97.

[9] K. Beck, Extreme Programming Explained: Embrace Change, Addi-
son-Wesley, 2000, ISBN 0-201-61641-6.

[10] K. Beck, Extreme Programming Explained: Embrace Chage, second
ed., Addison-Wesley, 2004, ISBN 978-0321278654.

[11] B. Boehm, Get ready for agile methods, with care, IEEE Computer 35
(1) (2002) 64-69.

[12] B. Boehm, R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed, Addison-Wesley, Boston, 2003, ISBN 978-0321186126.

[13] N. Britten, R. Campbell, C. Pope, J. Donovan, M. Morgan, R. Pill,
Using meta ethnography to synthesise qualitative research: a worked
example, Journal of Health Services Research and Policy 7 (4) (2002)
209-215.

[14] P. Checkland, J. Scholes, Soft Systems Methodology in Action,
Wiley, Chichester, 1990, ISBN 0-471-98605-4.

[15] A. Cockburn, Selecting a project’s methodology, IEEE Software 17
(4) (2000) 64-71.

[16] A. Cockburn, Crystal Clear: A Human-Powered Methodology for
Small Teams, Addison-Wesley, 2004, ISBN 0-201-69947-8.

[17] D. Cohen, M. Lindvall, P. Costa, An introduction to agile methods,
in: M.V. Zelkowitz (Ed.), Advances in Computers, Advances in
Software Engineering, vol. 62, Elsevier, Amsterdam, 2004.

[18] J. Cohen, A coefficient of agreement for nominal scales, Educational
and Psychological Measurement 20 (1960) 37-46.

[19] K. Conboy, B. Fitzgerald, Toward a conceptual framework of agile
methods: a study of agility in different disciplines, in: Proceedings of
XP/Agile Universe, Springer Verlag, 2004.

[20] Y. Dittrich, M. John, J. Singer, B. Tessem, For the special issue on
qualitative software engineering research, Information and Software
Technology 49 (6) (2007) 531-539.

[21] T. Dyba, Improvisation in small software organizations, IEEE
Software 17 (5) (2000) 82-87.

[22] T. Dyba, E. Arisholm, D. Sjeberg, J. Hannay, F. Shull, Are two
heads better than one? On the effectiveness of pair-programming,
IEEE Software 24 (6) (2007) 10-13.

[23] T. Dyba, T. Dingseyr, G.K. Hanssen, Applying systematic reviews to
diverse study types: an experience report, in: Proceedings of the st
International Symposium on Empirical Software Engineering and
Measurement (ESEM’07), IEEE Computer Society, Madrid, Spain,
2007, pp. 225-234.

[24] T. Dyba, B. Kitchenham, M. Jorgensen, Evidence-based soft-
ware engineering for practitioners, IEEE Software 22 (1) (2005)
58-65.

[25] A.C. Edmondson, S.E. Mcmanus, Methodological fit in management
field research, Academy of Management Review 32 (4) (2007) 1155-
1179.

[26] H. Erdogmus, M. Morisio, M. Torchiano, On the effectiveness of the
test-first approach to programming, IEEE Transactions on Software
Engineering 31 (3) (2005) 226-237.

[27] J. Erickson, K. Lyytinen, K. Siau, Agile Modeling, Agile software
development, and extreme programming: the state of research,
Journal of Database Management 16 (4) (2005) 88-100.

[28] T. Gilb, Competitive Engineering: A Handbook for Systems Engi-
neering, Requirements Engineering, and Software, Elsevier Butter-
worth-Heinemann, Oxford, 2005, ISBN 0-7506-6507-6.

[29] T. Greenhalgh, How to Read a Paper, second ed., BMJ Publishing
Group, London, 2001.

[30] A. Gunasekaran, Agile manufacturing: A framework for research and
development, International Journal of Production Economics 62 (1-
2) (1999) 87-105.

T. Dybd, T. Dingseyr [Information and Software Technology 50 (2008) 833-859 859

[31] J.P.T. Higgins, S. Green (Eds.), Cochrane Handbook for System-
atic Reviews of Interventions, Version 5.0.0 (updated February
2008), The Cochrane Collaboration, 2008. Available from:
<www.cochrane-handbook.org>.

[32] W.S. Humphrey, PSP: A Self-Improvement Process for Software
Engineers, Addison-Wesley, 2005, ISBN 978-0321305497.

[33] M. Host, P. Runeson, Checklists for software engineering case study
research, in: Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement, IEEE, Madrid,
Spain, 2007, pp. 479-481.

[34] G. Keefer, Extreme Programming Considered Harmful for Reliable
Software Development 2.0, AVOCA GmbH, Online Report, 2003.

[35] K.S. Khan, G. Ter Riet, J. Glanville, A.J. Sowden, J. Kleijnen,
Undertaking Systematic Review of Research on Effectiveness, CRD’s
Guidance for those Carrying Out or Commissioning Reviews, CRD
Report Number 4, second ed., NHS Centre for Reviews and
Dissemination, University of York, 2001.

[36] B.A. Kitchenham, Guidelines for performing Systematic Literature
Reviews in Software Engineering Version 2.3, Keele University and
University of Durham, EBSE Technical Report, 2007.

[37] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, J. Rosenberg, Preliminary guidelines for
empirical research in software engineering, IEEE Transactions on
Software Engineering 28 (8) (2002) 721-734.

[38] P. Krutchen, The Rational Unified Process: An Introduction, third
ed., Addison-Wesley, Boston, 2003.

[39] J.R. Landis, G.G. Koch, The measurement of observer agreement for
categorical data, Biometrics 33 (1) (1977) 159-174.

[40] C. Larman, V.R. Basili, Iterative and incremental development: a
brief history, IEEE Computer 36 (6) (2003) 47-56.

[41] J. Mcavoy, T. Butler, The impact of the Abilene Paradox on double-
loop learning in an agile team, Information and Software Technology
49 (6) (2007) 552-563.

[42] P. Mcbreen, Questioning Extreme Programming, Pearson Education,
Boston, MA, USA, 2003, ISBN 0-201-84457-5.

[43] H. Merisalo-Rantanen, T. Tuure, R. Matti, Is extreme programming
just old wine in new bottles: a comparison of two cases, Journal of
Database Management 16 (4) (2005) 41-61.

[44] P. Meso, R. Jain, Agile software development: adaptive systems
principles and best practices, Information Systems Management 23
(3) (2006) 19-30.

[45] M.B. Miles, M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook, second ed., Sage Publications, 1994, ISBN
0803955405.

[46] S. Nerur, V. Balijepally, Theoretical reflections on agile development
methodologies, Communications of the ACM 50 (3) (2007) 79-83.

[47] S. Nerur, R. Mahapatra, G. Mangalaraj, Challenges of migrating to
agile methodologies, Communications of the ACM (May) (2005) 72—
78.

[48] G.W. Noblit, R.D. Hare, Meta-Ethnography: Synthesizing Qualita-
tive Studies, Sage Publications, London, 1988.

[49] T. Ohno, Toyota Production System: Beyond Large-scale Production,
Productivity Press, New York, USA, 1988, ISBN 0-915299-14-3.

[50] S.R. Palmer, J.M. Felsing, A Practical Guide to Feature-driven
Development, Prentice Hall, Upper Saddle River, NJ, 2002, ISBN 0-
13-067615-2.

[51] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, The Capability
Maturity Model: Guidelines for Improving the Software Process,
Addison-Wesley, Boston, 1995, ISBN 0-201-54664-7.

[52] M. Poppendieck, T. Poppendieck, Lean Software Development — An
Agile Toolkit for Software Development Managers, Addison-Wesley,
Boston, 2003, ISBN 0-321-15078-3.

[53] V. Rajlich, Changing the paradigm of software engineering, Com-
munications of the ACM 49 (8) (2006) 67-70.

[54] C.K. Riemenschneider, B.C. Hardgrave, F.D. Davis, Explaining
software developer acceptance of methodologies: a comparison of five
theoretical models, IEEE Transactions on Software Engineering 28
(12) (2002) 1135-1145.

[55] L.M. Sanchez, R. Nagi, A review of agile manufacturing systems,
International Journal of Production Research 39 (16) (2001) 3561—
3600.

[56] K. Schwaber, M. Beedle, Agile Software Development with Scrum,
Prentice Hall, Upper Saddle River, 2001.

[57] W.R. Shadish, T.D. Cook, D.T. Campbell, Experimental and Quasi-
Experimental Designs for Generalized Causal Inference, Houghton
Mifflin Company, Boston, 2002.

[58] D. Sjoberg, T. Dyba, M. Jorgensen, The Future of Empirical
Methods in Software Engineering Research, in: Future of Software
Engineering (FOSE’07), IEEE, 2007, pp. 358-378.

[59] D. Sjeberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasa-
novic, N.-K. Liborg, A.C. Rekdal, A survey of controlled experi-
ments in software engineering, IEEE Transactions on Software
Engineering 31 (9) (2005) 733-753.

[60] J. Stapleton, DSDM: Business Focused Development, second ed.,
Pearson Education, 2003, ISBN 978-0321112248.

[61] M. Stephens, D. Rosenberg, Extreme Programming Refactored: The
Case Against XP, Apress, Berkeley, CA, 2003, ISBN 1-59059-096-1.

[62] A. Strauss, J. Corbin, Basics of Qualitative Research, second ed., Sage
Publications, 1998, ISBN 0-8039-5939-7.

[63] H. Takeuchi, I. Nonaka, The new product development game,
Harvard Business Review (January) (1986) 137-146.

[64] D. Turk, R. France, B. Rumpe, Assumptions underlying agile software-
development processes, Journal of Database Management 16 (4) (2005)
62-87.

[65] E. Wenger, Communities of Practice: Learning, Meaning and Identity,
Cambridge University Press, Cambridge, UK, 1998, ISBN 0-521-
43017-8.

[66] L. Williams, A. Cockburn, Agile software development: it’s about
feedback and change, IEEE Computer 36 (6) (2003) 39-43.

[67] J.P. Womack, D.T. Jones, D. Roos, The Machine that Changed the
World: The Story of Lean Production — Toyota’s Secret Weapon in
the Global Car Wars that is Now Revolutionizing World Industry,
Free Press, 2007, ISBN 978-0743299794.

[68] P. Agerfalk, B. Fitzgerald, Flexible and distributed software pro-
cesses: old petunias in new bowls? Communications of the ACM 49
(10) (2006) 27-34.

http://www.cochrane-handbook.org

	Empirical studies of agile software development: A systematic review
	Introduction
	Background - agile software development
	The field of agile software development
	Summary of previous reviews
	Objectives of this review

	Review method
	Protocol development
	Inclusion and exclusion criteria
	Data sources and search strategy
	Citation management, retrieval, and inclusion decisions
	Quality assessment
	Data extraction
	Synthesis of findings

	Results
	Overview of studies
	Research methods
	Methodological quality
	Introduction and adoption of agile development methods
	Introduction and adoption
	Development process
	Knowledge and project management

	Human and social factors
	Organizational culture
	Collaborative work
	Team characteristics

	Perceptions on agile methods
	Customer perceptions
	Developer perceptions
	Student perceptions

	Comparative studies
	Project management
	Productivity
	Product quality
	Work practices and job satisfaction

	Discussion
	Benefits and limitations of agile development
	Strength of evidence
	Implications for research and practice
	Limitations of this review

	Conclusion
	Acknowledgements
	Studies included in the review
	Quality assessment form
	Data extraction form
	Overview of primary studies
	References

