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The endoplasmic reticulum (ER) plays a crucial role in protein folding, assembly, and secretion. Disruption of ER homeostasis
may lead to accumulation of misfolded or unfolded proteins in the ER lumen, a condition referred to as ER stress. In response to
ER stress, a signal transduction pathway known as the unfolded protein response (UPR) is activated. UPR activation allows the
cell to cope with an increased protein-folding demand on the ER. Recent studies have shown that ER stress/UPR activation plays a
critical role in lipid metabolism and homeostasis. ER-stress-dependent dysregulation of lipid metabolism may lead to dyslipidemia,
insulin resistance, cardiovascular disease, type 2 diabetes, and obesity. In this paper, we examine recent findings illustrating the
important role ER stress/UPR signalling pathways play in regulation of lipid metabolism, and how they may lead to dysregulation
of lipid homeostasis.

1. Introduction

The liver plays a central role in whole body lipid homeostasis.
Metabolic signals such as carbohydrates and dietary fatty
acids regulate hepatic gene expression leading to glycolytic
and lipogenic signalling pathways. In addition, the pancre-
atic hormones, insulin and glucagon, play a pivotal role
in the transcriptional and posttranslational regulation of
lipogenesis and lipid oxidation [1]. Lipogenesis, the process
of de novo lipid biosynthesis, occurs when an excess of
carbohydrates is consumed, or when circulating insulin
levels are high. Carbohydrates undergo glycolysis to generate
acetyl-CoA molecules which are the building blocks for fatty
acid (FA) synthesis. Following esterification, one glycerol
molecule and three FA chains produce triacylglycerol (TG)
molecules which are transported in apoB containing very
low-density lipoprotein (VLDL) particles [2] to the adipose
tissue for long-term storage. Under fasting conditions when
insulin levels are low and glucagon levels are high, FA
oxidation or lipolysis occurs which allows for mobilization
of FA and uptake by the liver [3]. However, disruption in
these homeostatic mechanisms may lead to the development

of dyslipidemia, insulin resistance, fatty liver, and excess
adipose mass, ultimately causing cardiovascular disease and
diabetes.

In recent years, increasing evidence suggests that ER
stress and UPR activation can regulate cellular processes
beyond ER protein folding and can play crucial roles in
lipid metabolism [4–10]. ER stress, which occurs due to
disruption in ER protein-folding capacity, leads to activation
of an evolutionarily conserved UPR signalling system in
order to restore ER homeostasis [11]. Accumulating evidence
suggests that activation of the UPR pathways can modulate
lipid metabolism by controlling the transcriptional regula-
tion of lipogenesis. Excess adipose mass and obesity are a
direct consequence of increased de novo lipogenesis and TG
storage in the adipose tissue. The presence of ER stress has
been observed in various tissues from obese mice [12, 13]
and humans [14–17]. UPR activation has also been linked
to fatty liver disease where lipid droplets accumulate in
hepatocytes. The role of ER stress and UPR pathways in the
development of fatty liver disease has been under intense
investigation (reviewed in [18]). Here, we aim to examine the
evidence regarding the role of UPR pathways in modulating
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the transcriptional regulation of lipid metabolism. Further-
more, potential therapeutic approaches targeting the ER
stress response in obesity and dyslipidemia will be discussed.

2. Transcriptional Regulation of
Lipid Metabolism

A number of key transcription factors have been iden-
tified which regulate hepatic lipogenesis and fatty acid
oxidation. These include sterol-regulatory-element-binding
protein-1c (SREBP-1c), liver X receptor (LXR), peroxisome-
proliferator-activated receptors (PPARs), and carbohydrate-
responsive-element-binding protein (ChREBP). Enzymes
such as glucokinase (GK), liver pyruvate kinase (LPK),
acetyl CoA carboxylase (ACC), fatty acid synthase (FAS),
and stearoyl CoA desaturase-1 (SCD-1) are critical for the
biochemical conversion of glucose into fatty acids and TG
[19, 20].

SREBP-1c, a member of the SREBP family of transcrip-
tion factors, is thought to be the main driving force for
hepatic lipogenesis and development of fatty liver disease
known as hepatic steatosis [21, 22]. There are three isoforms,
SREBP-1a, -1c and -2. SREBPs are synthesized as inactive
precursors bound to the ER membrane [23]. While SREBP-
1a/-2 upregulate cholesterol synthesis genes, SREBP-1c is
responsible for the regulation of genes involved in FA and
TG synthesis pathways [24]. Under sterol-replete conditions,
SREBPs are held in the ER through their interaction with
SCAP, an anchoring molecule, and Insig, an ER trans-
membrane protein. The SREBP-SCAP complex is released
from Insig upon sterol-deplete conditions. SCAP assists
in the transport of SREBP from the ER to the golgi for
cleavage by site 1 and 2 proteases [25]. Following proteolytic
cleavage, the active mature form of SREBP translocates
into the nucleus where it induces genes required for lipid
biosynthesis and uptake [26].

SREBP-2 is the main transcription factor responsible
for regulating the cholesterol biosynthetic pathways [27].
Cholesterol is the precursor for steroid biosynthesis and plays
an important role in membrane biology. Excess unesterified
intracellular cholesterol can lead to membrane disruptions
and cellular toxicity and hence must be tightly regulated
[28]. Therefore, under sterol-deplete conditions, SREBP-2 is
cleaved and translocates to the nucleus allowing for expres-
sion of its target genes, including HMG-CoA reductase,
the rate-limiting enzyme in cholesterol biosynthesis [29, 30].

SREBP-1c is the predominant isoform and the main
regulator of lipid synthesis in the liver [31]. Overexpression
of the active form of SREBP-1 in the liver leads to hepatic
steatosis due to increased lipid synthesis, uptake, and TG
accumulation [32], while loss of SREBP-1 has been linked to
marked reduction in both lipogenesis and hepatic steatosis
[22, 33]. Interestingly, the proteolytic cleavage of SREBP-1c is
not affected by sterol depletion [34]. Proteolytic cleavage and
activation of SREBP-1c is stimulated by insulin [35]. Insulin-
mediated SREBP-1c activation occurs through insulin recep-
tor substrate-1 (IRS1) and activation of its downstream
targets protein kinase B (PKB/Akt) and mammalian target of

rapamycin complex 1 (mTORC1) [34]. Although the exact
mechanism by which insulin stimulates SREBP-1c cleavage
is not entirely understood, it has been shown that insulin
leads to phosphorylation of the ER-bound inactive SREBP-
1c, increasing its posttranslational processing [36]. Further-
more, insulin represses Insig2 mRNA which is thought to
enhance SREBP-1c activation [37, 38].

SREBP-1c activity may also be induced through the nu-
clear hormone receptor peroxisome-proliferator-activated
receptor-γ (PPARγ) [39] as well as liver X receptor (LXR)
activity [20], both of which play a critical role in lipogen-
esis. Ligand-activated nuclear PPARγ heterodimerizes with
retinoid X receptors (RXRs) resulting in expression of its
target genes such as CD36, a fatty acid transport protein
involved in the transport and metabolism of intracellular FA
[40]. Ultimately, PPARγ activity allows for transcription of
genes involved in promoting lipogenesis [41]. In addition,
positive feedback loops have been identified where SREBP-
1c activity increases the formation of PPARγ ligands which
lead to its activation [42]. PPARγ also leads to LXRα gene
expression which is a potent activator of SREBP-1c target
genes [40]. PPARα activity, on the other hand, regulates
peroxisomal, microsomal, and mitochondrial FA oxidation
pathways by transcriptionally regulating enzymes involved
in these pathways [40]. Interestingly, LXR competes with
PPARα for RXRα heterodimerization, thereby repressing
RXRα-PPARα signalling. This in turn suppresses LXR-
SREBP-1c activity [40]. This crosstalk would ensure that
lipogenic and lipolytic pathways are not simultaneously
activated. Finally, lipogenic and glycolytic gene expression
may also be regulated by ChREBP, a transcription factor
responsive to high glucose levels and important in regulating
the expression of LPK, an enzyme required for hepatic
glycolysis [43].

In addition to regulation of lipogenic and lipolytic
pathways, fatty acid uptake and lipoprotein secretion are also
important for lipid homeostasis. Expression of PPARα, for
example, leads to mobilization and transport of catabolized
fatty acids by inducing expression of enzymes such as
fatty-acid-binding protein (FABP) and fatty-acid translocase
(FAT) [40]. Fatty acids undergo esterification to form TG
which can be exported out of the liver as VLDL parti-
cles. ApoB is the key component of VLDL particles and
microsomal triacylglycerol transfer protein (MTP) allows for
the addition of TG to apoB, forming the VLDL particle.
However, the overall rate of VLDL assembly depends on
the rate of apoB synthesis in the ER [40].

3. The ER and UPR Activation

The ER is a membranous organelle with several critical
cellular functions. First, it is the site where nascent polypep-
tides fold into their proper conformation and any necessary
posttranslational modifications such as glycosylation and
disulphide bond formation take place. This task is accom-
plished by ER resident chaperones and foldases and protein
disulphide isomerases (PDI) [11]. Second, phospholipid
synthesis takes place in the ER which allows for expansion of
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lipid bilayers in the cell [1]. Third, the ER is a major storage
site for calcium ions which are required for cellular signalling
processes [44]. Fourth, enzymes such as cytochrome p450 in
the ER allow for efficient metabolism of drugs [45].

A number of physiological, pharmacological, and patho-
logical conditions are known to disrupt ER homeostasis and
affect its protein-folding capacity. The inability of the cell to
efficiently fold and secrete proteins is defined as ER stress.
Cells have evolved mechanisms to adapt to adverse condi-
tions in order to maintain homeostasis and survive. One such
coping mechanism is UPR activation in response to ER stress
conditions [46, 47]. Activation of the UPR ultimately results
in (i) enhancement of ER protein-folding capacity through
expansion of the ER and increased expression of chaperones
and foldases, (ii) inhibition of protein translation, and (iii)
ER-associated protein degradation (ERAD) of misfolded
proteins [48]. If ER stress conditions are not resolved, ER-
stress-induced cell death may ensue. Generally, ER-stress-
associated cell death occurs through caspase activation [49,
50]; however, caspase-independent necrosis and autophagy
have also been observed [51].

The UPR in mammalian cells is composed of three
signalling branches which are initiated by three ER trans-
membrane sensors, inositol-requiring protein 1 (IRE1),
double-stranded RNA-dependent protein kinase-like ER
kinase (PERK), and activating transcription factor 6 (ATF6).
Activation of these sensors is dependent on the dissociation
of the ER-resident chaperone glucose-regulated protein of
78 kDa (GRP78), also known as BiP, from their luminal
domains [52]. This occurs during ER stress conditions when
GRP78 is required for the folding of proteins in the ER
and thus is recruited away from IRE1, PERK, and ATF6,
thereby activating the UPR. Activation of the UPR pathways
is often used as an indicator of ER stress due to the
technical difficulties in directly measuring compromised ER
integrity or protein aggregates in the ER [1]. Figure 1 depicts
an overview of mammalian UPR signalling pathways.

Homodimerization and autophosphorylation of PERK
following dissociation of GRP78 leads to its kinase activity.
PERK phosphorylates the α subunit of eukaryotic initiation
factor 2 (eIF2) resulting in translational attenuation [53].
Translation of certain mRNAs with short open reading
frames in the 5′-UTR is enhanced by phosphorylation of
eIF2α. ATF4 is an example of such mRNA and its expres-
sion results in activation of C/EBP homologous protein
(CHOP) which is a proapoptotic transcription factor [54].
GADD34 (growth-arrest and DNA-damage-inducible pro-
tein 34) is induced by CHOP, which acts to dephosphorylate
eIF2α as a negative feedback loop and relieve the cell of
the translational repression during prolonged ER stress [55].

Similar to PERK, IRE1 is a type 1 transmembrane ser-
ine/threonine receptor protein kinase/endonuclease which
upon dissociation of GRP78 homodimerizes leading to
autophosphorylation and activation of its kinase and endori-
bonuclease functions [48]. Unfolded proteins may also
directly bind to IRE1 promoting its homodimerization and
autophosphorylation [56–58]. Activation of IRE1 results in
splicing of XBP1 mRNA, a process by which a 26-nucleotide
sequence of XBP1 mRNA is excised leading to a shift in its

reading frame. Unlike the unspliced XBP1 protein, which
is rapidly degraded, spliced XBP1 (XBP1s) encodes a bZIP
transcription factor with a potent transactivation domain
[59]. XBP1s translocates to the nucleus where it leads to
expression of a number of UPR target genes including
genes involved in protein folding and secretion, protein
degradation and ER translocation [1, 60]. Consistent with
its transcriptional target genes, XBP1 is required for the
secretory function of certain highly secretory cell types such
as antibody-producing plasma cells [61].

ATF6, the third arm of the UPR, is comprised of
two transmembrane bZIP transcription factors, ATF6α and
ATF6β, which under normal conditions are held in the ER
in a complex with GRP78 [62]. ER stress and dissociation
of GRP78 from ATF6 leads to its translocation to the Golgi
where it is cleaved by site 1 and site 2 proteases, a process
similar to that of the SREBPs. The sequential proteolysis by
S1P and S2P leads to the release of the N-terminal cytosolic
domain of ATF6 which then upon entry into the nucleus
activates UPR target genes [63]. Among these target genes
are XBP1, CHOP, and ER chaperones such as GRP78 which
allow the ER to cope with the increased protein-folding
demand [62, 64]. Interestingly, ATF6 and XBP1 possess very
similar DNA-binding specificity [60] and can heterodimerize
suggesting that they may have common target genes [65].

4. ER Stress and Lipid Metabolism

It is has been known for about a decade that ER stress can
lead to altered lipid metabolism and hepatic steatosis. A study
by our group demonstrated that homocysteine-induced ER
stress can lead to hepatic steatosis and altered cholesterol
and TG biosynthetic pathways, both in cultured cells and in
livers of hyperhomocysteinemic mice [66]. Overexpression
of GRP78, which attenuates ER stress and UPR activation,
has been shown to decrease hepatic steatosis by reducing
SREBP-1c activity [5]. More recently, specific arms of the
UPR and their downstream signalling molecules have been
examined in cell culture and animal models to decipher
their function and role in lipid metabolism. It is now well
established that various components of the UPR signalling
network play a role in the regulation of lipid metabolism [4–
10]. Figure 2 summarizes the interactions between various
components of UPR signalling and lipid metabolism.

4.1. PERK Pathway. Activation of PERK is transient and has
often been difficult to detect [10], but recently the Phos-
tag gel approach has proven to be a successful tool for
detection of PERK phosphorylation [67]. Furthermore, the
phosphorylation status of eIF2α, a downstream target of
PERK, is often assessed to monitor PERK activity. Changes in
nutritional status such as fasting and feeding result in altered
phosphorylation status of eIF2α. Fasting followed by 4 hours
of feeding leads to an increase in phospho-eIF2α levels in the
liver, which were even greater in high-fat-diet-fed mice [10].
To study the effects of compromised PERK-eIF2a-dependent
UPR signalling, transgenic mice with enforced expression of
GADD34 were generated [10]. GADD34, by associating with
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Figure 1: ER stress and activation of the UPR signalling pathways. Accumulation of misfolded or unfolded protein aggregates in the ER
lumen, a condition known as ER stress, leads to activation of three ER transmembrane proteins, PERK, IRE1, and ATF6. GRP78, a ubiquitous
ER chaperone that is normally bound to these ER stress sensors and keeps them inactive, dissociates from them in order to assist with the
folding of proteins in the ER lumen. However, this dissociation leads to activation of the 3 UPR pathways. (1) PERK homodimerization
and autophosphorylation results in the subsequent phosphorylation of the α subunit of eIF2 which by inhibiting global protein synthesis
reduces the ER protein load. ATF4 expression, however, increases upon eIF2α phosphorylation which translocates to the nucleus allowing for
transcription of UPR target genes by binding to the UPR response element (UPRE). These genes include CHOP, a proapoptotic transcription
factor that results in cell death if ER stress conditions persist, and GADD34, which acts as a negative regulator of the PERK pathway by
dephosphorylating eIF2α. (2) IRE1 is activated in a similar manner to PERK by homodimerization and autophosphorylation. Additionally,
interaction of misfolded or unfolded proteins with the luminal domain of IRE1 can also further promote its activation. XBP1 mRNA is an
IRE1 substrate that undergoes splicing to produce XBP1s, encoding a transcription factor that can lead to upregulation of ER chaperones
and other UPR target genes. (3) ATF6 activation leads to its translocation to the Golgi where it is sequentially cleaved by site 1 and site
2 proteases. This leads to the release of the N-terminal ATF6 fragment which translocates to the nucleus, binds to the ER stress response
element (ERSE) thereby activating UPR target genes.

protein phosphatase 1, acts to specifically dephosphorylate
eIF2α. Therefore, these mice were defective in activating the
gene expression program downstream of eIF2α phosphory-
lation upon feeding and under severe ER stress conditions
[10]. Close examination of the metabolic changes in the
transgenic mice indicated that defective eIF2α-mediated
signalling results in fasting hypoglycemia, reduced liver
glycogen stores, and enhanced insulin sensitivity. Addition-
ally, under dietary stress of a high-fat diet, the transgenic

mice exhibited reduced hepatosteatosis and greater insulin
sensitivity as compared to wild-type mice [10]. Expression
of PPARγ and its lipogenic target genes was reduced in the
transgenic mice with the eIF2α phosphorylation defect only
when fed a high-fat diet. Repressed expression of C/EBPα
and C/EBPβ proteins was also observed in livers of transgenic
mice [10].

Rutkowski et al. generated mice harbouring a S51A
mutation in eIF2α rendering them unable to phosphorylate
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Figure 2: Crosstalk between UPR signalling pathways and lipogenesis. Phosphorylation of eIF2α and activation of the PERK pathway under
high-fat diet-induced ER stress conditions allow for enhanced lipogenesis by inducing C/EBPα and decreasing Insig1 protein translation
which increases activation of SREBP. However, under severe or prolonged ER stress conditions, CHOP expression may lead to dysregulation
of the C/EBPs. Similarly, high-carbohydrate-diet-induced ER stress conditions depend on XBP1 for expression of lipogenic genes and
increase of C/EBPα activity, both of which promote lipogenesis. However, severe ER stress conditions, imposed by tunicamycin, lead to
XBP1-mediated inhibition of lipogenic gene expression. Furthermore, both XBP1 and ATF6 are important for apolipoprotein B secretion
from hepatocytes and activation of fatty acid oxidation pathways (PPARα, PGC1α) under such conditions. These pathways culminate in
attenuation of lipogenesis and prevention of fatty liver disease under severe ER stress.

eIF2α and therefore allowing constitutive expression of the
unphosphorylated form of eIF2α [7]. This transgenic mouse
model was also utilized to examine the PERK/eIF2α arm of
the UPR and its role in ER-stress-mediated hepatic lipoge-
nesis [7]. Similar to the findings by Oyadomari et al., mice
with constitutive eIF2α expression also exhibited suppressed
hepatic C/EBPα protein expression. In contrast, however,
after a tunicamycin challenge, these mice developed fatty
liver [7]. These differences point to the source and severity
of ER stress (chronic and adaptive dietary stress versus
direct and acute ER stress challenge) as important factors in
the regulation of lipid metabolism.

Another recent study examined the role of PERK in
the regulation of lipogenesis in adipocytes and mammary

epithelial cells [4]. Absence of PERK in mouse embryonic
fibroblasts differentiating into adipocytes and in mammary
epithelium attenuated lipogenesis and expression of genes
such as SREBP1, SCD1, FAS, and ACL [4]. As a result, the
mammary glands from PERK-deficient mothers had lower
TG and FA content which lead to growth retardation in the
pups. This study also demonstrated that SREBP1 activation is
dependent on decreased Insig1 translation which occurs due
to PERK and eIF2α-dependent translational attenuation [4].

Due to its upstream open reading frames, the ATF4
mRNA is among the transcripts that escape the global
translational attenuation that occurs upon phosphorylation
of eIF2α. ATF4-knockout mice exhibit smaller white adipose
tissues relative to total body weight [68], which prompted
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a closer examination of these mice. Yoshizawa et al. revealed
that ATF4 alters glucose metabolism by decreasing insulin
sensitivity in the liver, adipose and muscle tissue [68].
Wang et al. reported decreased expression of lipogenic genes
and increased beta-oxidation in the white adipose tissue of
ATF4-knockout mice [69]. Interestingly, these observations
were not reproducible in primary cell cultures which led
to the identification of osteoblastic ATF4 expression as the
regulator of whole-body energy homeostasis [68]. Taken
together, these results suggest that the PERK-eIF2α pathway
plays an important role in promoting lipogenesis both in the
liver and other tissues.

4.2. IRE Pathway. A recent study by Zhang et al. demon-
strated that IRE1α has an important role in preventing ER
stress-induced hepatic steatosis [9]. Given that Ire1α-null
mice die during embryogenesis, hepatocyte-specific Ire1α-
null (Ire1αHepfe/−) mice were generated to understand the
function of IRE1α in hepatocytes. These mice appeared phe-
notypically normal in the absence of a stress challenge. How-
ever, treatment of Ire1αHepfe/− mice with tunicamycin, an ER-
stress-inducing agent that inhibits protein N-glycosylation
[46], led to identification of a defective adaptation to
ER stress and altered lipid metabolism in the absence of
IRE1α [9]. Expression of ER stress-induced proapoptotic
transcription factors ATF4, CHOP, and ATF3 were increased
in tunicamycin treated Ire1αHepfe/− mouse livers as compared
to control mice. The number of TUNEL-positive apoptotic
cells and cleaved caspase-3 expression was also higher in
Ire1αHepfe/− livers [9]. Furthermore, evaluation of hepatic fat
content and plasma lipids revealed that Ire1αHepfe/− livers
have enhanced hepatic steatosis and reduced plasma lipids
due to suppressed apoB-containing lipoprotein secretion.
Increased expression of key lipogenic transcription factors
such as PPARγ, C/EBPβ, ChREBP, and LXRα and greater
expression of mRNA encoding lipogenic enzymes such
as SCD1, DGAT2, DGAT1, and ACC1 were observed in
Ire1αHepfe/− livers, in particular after tunicamycin treatment
[9]. Taken together, these findings suggest that IRE1α is
required to suppress hepatic lipid accumulation, particularly
under severe ER stress conditions.

A report by Iqbal et al. demonstrated that IRE1β may
also have an important role in lipid metabolism primarily in
intestinal cells [70]. Ire1β−/− mice fed a high-fat and high-
cholesterol diet developed hyperlipidemia due to enhanced
microsomal triglyceride transfer protein (MTP) expression
in enterocytes which led to increased chylomicron secretion
[70].

Interestingly, XBP-1 a transcription factor downstream
of IRE1 activation has a role in hepatic lipid regulation
independent of being an ER stress-response mediator [6].
Xbp1-null mice die during embryogenesis; however, deletion
of XBP1 in the liver led to hypodyslipidemia and reduced
expression of genes encoding lipogenic enzymes such as
DGAT2, SCD1, and ACC2 [6]. Livers from mice with an
XBP1 deletion had diminished hepatic TG secretion and
lipid synthesis but the rate of apoB protein turnover was
not affected [6]. These findings indicated that XBP1 is
required for de novo lipid synthesis in the liver. While

liver XBP1 deficiency did not itself cause ER stress or any
obvious liver or body abnormalities, there was evidence
for increased activation of its upstream kinase IRE1, likely
due to a regulatory feedback mechanism [6]. This may in
part explain why absence of hepatic IRE1α led to increased
lipid accumulation, while deficiency in its downstream target
XBP1 did not affect steatosis. Increased activation of IRE1
which is required to suppress lipogenesis may be influencing
the phenotypic outcome in the mice deficient in hepatic
XBP1. XBP1 likely does not regulate ER stress-mediated
steatosis as tunicamycin-induced fatty liver occurred both
in the presence and absence of spliced XBP1 [7]. There is
evidence suggesting that in adipocytes, XBP1 binds to the
promoter region of C/EBPα which promotes adipogenesis
and lipid deposition [71]. XBP1 also plays an important role
in phosphatidylcholine synthesis, the main ER membrane
phospholipid which allows for ER biogenesis and expansion
under ER stress conditions [72].

4.3. ATF6 Pathway. ATF6 and SREBPs are ER membrane-
bound transcription factors and their activation is dependent
on cleavage by the same proteases in the Golgi, followed
by nuclear translocation of the N-terminal fragment to the
nucleus [63, 73]. ER stress has been linked to the activation
and cleavage of both ATF6 and SREBP2 [64, 74, 75]. A close
examination of the relationship between ATF6 activity and
SREBP2-mediated lipogenesis revealed that nuclear ATF6
interacts with the nuclear form of SREBP2 and thereby
antagonizes SREBP2-regulated transcription of lipogenic
genes and lipid accumulation in cultured liver and kidney
cells [73]. The authors suggest that this negative regulation of
SREBP2 activity by ATF6 accumulation in the nucleus would
allow the cell to cope with ER stress conditions and save on
cellular energy resources.

Several recent studies have examined the role of ATF6 in
vivo by studying the role of ER stress on fatty liver disease and
lipid droplet formation in ATF6α-knockout mice [7, 76, 77].
Interestingly, similar to Ire1αHepfe/− mice, ATF6α-knockout
mice exhibited no apparent phenotype under physiological
conditions; however, when given an ER stress insult by
injection of tunicamycin, the livers in the knockout mice
were unable to recover [76, 77]. Livers from tunicamycin-
injected ATF6α-knockout mice showed signs of dysfunction
as measured by serum ALT, protein content, and albumin
levels [76]. Furthermore, the livers in the knockout mice
had greatly reduced expression of ER chaperones following
tunicamycin injection and increased numbers of TUNEL-
positive apoptotic cells, suggesting that ATF6 protects hep-
atocytes from ER stress-induced damage and apoptosis [76].
The differences observed in tunicamycin-injected ATF6α-
knockout mice as compared to wild-type mice are likely not
due to increased cytotoxicity of tunicamycin in the ATF6α-
knockout mice as no significant differences were noted in the
upregulation of cytochrome P450 isoforms and cleavage of
nuclear PARP between the groups of mice [7].

The phenotypic outcome of the ER stress insult in
ATF6α-knockout mice was hepatic steatosis caused by induc-
tion of lipid droplet formation due to reduced β-oxidation
of FA and attenuated VLDL formation [76]. Specifically,
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there was sustained expression of CHOP in the livers of
ATF6α-knockout mice compared to wild-type mice as well
as a decrease in PPARα expression and apoB-100 protein
levels, favouring the accumulation of lipids in the liver [7,
76]. De novo lipogenesis was ruled out as a mechanism for
the increased lipid droplet accumulation in livers from these
mice as expression of lipogenic genes (SCD1, FASN, and
DGAT2) was suppressed in tunicamycin-injected ATF6α-
knockout mouse livers [7]. In addition, while steatosis was
the most evident phenotype, upon closer examination it
was discovered that after 48 hours of tunicamycin treat-
ment, ATF6α-knockout mice became profoundly resistant
to exogenous insulin [7]. This finding is intuitive given that
ER stress can lead to insulin resistance [12]. Taken together,
the findings from these studies suggest that loss of ATF6
predisposes the liver to stress-induced insulin resistance and
lipid accumulation.

The studies to date suggest that lipogenic genes and lipid
metabolism are differentially regulated under physiological
conditions such as high-carbohydrate or high-fat diet feeding
in comparison to acute or unresolved ER stress conditions
that arise when mice are injected with tunicamycin. For
example, while XBP1 increases hepatic de novo lipogenesis,
its upstream kinase IRE1α, or ATF6 which shares DNA-
binding sites with XBP1, was protective against hepatic lipid
accumulation. Indeed, a recent study by Rutkowski et al.
demonstrated that it is the acute or unresolved form of
ER stress that leads to hepatic steatosis [7]. Injection of
tunicamycin in mice deficient in one of the UPR sig-
nalling components led to chronic upregulation of CHOP,
defective eIF2α phosphorylation, and decreased C/EBPα
gene expression [7]. CHOP was reported to be at least
partially responsible for the suppression of gene expression
seen in tunicamycin-injected mice with compromised UPR
signalling [7]. While wild-type mice exhibited rapid but
transient CHOP induction, ATF6-knockout and Ire1αHepfe/−

mice presented with persistent upregulation of CHOP and
nuclear localization [7]. CHOP can heterodimerize with
the C/EBP family of transcription factors in the nucleus
repressing their target gene expression [78]. Negative regu-
lation of C/EBPα by prolonged nuclear CHOP expression
due to unresolved ER stress appears to play a key role
in the profound metabolic disruption under severe ER
stress conditions which results in fatty liver disease. Indeed,
the promoter region of both Srebp1 and Pparα possesses
potential binding sites for C/EBPα [7]. The differential effects
of acute/unresolved ER stress conditions in comparison to
diet-induced adaptive ER stress conditions also explain why
phosphorylation of eIF2α can lead to hepatic steatosis in
one study model while defective eIF2α phosphorylation can
accelerate lipid accumulation and steatosis in another study.

5. The Impact of Lipids on ER Stress

The relationship between ER stress and lipid metabolism
is bidirectional. While activation of ER stress pathways can
result in lipogenesis and altered lipid homeostasis, lipids
and aberrant lipid metabolism can also cause ER stress [79–
82]. Saturated fatty acids such as palmitate and stearate

are known inducers of ER stress in various cell types and
can modulate survival and apoptotic signals in the cell
[81, 82]. A recent study carried out comparative proteomic
and lipidomic analysis of fractionated ER from lean and
obese liver tissues [79]. The results suggested enrichment
of metabolic enzymes involved in lipid metabolism and
a downregulation of ER-associated protein synthesis genes in
the obese ER proteome. These findings implied that the ER
in obese liver cells shifts from being the major site of protein
synthesis to carrying out lipid synthesis and lipid metabolism
functions [79]. Furthermore, the analysis revealed that there
is a greater proportion of de novo synthesized saturated
fatty acids incorporated into hepatic ER lipids than dietary
polyunsaturated fatty acids. Another interesting finding was
the increased proportion of phosphatidylcholine (PC) in
comparison to phosphatidylethanolamine (PE), both abun-
dant ER membrane phospholipids, in the liver ER from obese
mice [79]. The increased PC/PE ratio led to perturbation in
the calcium transport activity of the SERCA pump resulting
in impaired ER calcium retention. Since ER calcium is
important for ER homeostasis and chaperone function, such
changes in calcium concentrations would lead to protein
misfolding and ER stress. This appears to be a plausible
mechanism for hepatic ER stress in obesity [79]. Hepatic ER
stress can promote de novo lipogenesis and insulin resistance
as described above which then in turn may lead to further
exacerbation of the ER stress situation, creating a vicious
cycle.

6. Therapeutic Potential Targeting ER Stress
in Dyslipidemia and Obesity

ER stress and UPR activation have been implicated in
the pathogenesis of a number of diseases such as diabetes,
obesity, cancer, renal, cardiovascular, and neurodegenerative
diseases as well as fatty liver disease [48, 83–86]. As such,
potential ways of attenuating ER stress and UPR activation
would provide opportunities in pharmacological interven-
tion in a wide array of diseases. A recent study revealed for
the first time in humans that obese insulin-resistant subjects
express markers of ER stress in their white adipose tissue
[17]. Similarly, an association between ER stress and obesity
was also found in obese nondiabetic subjects [15]. Gastric
bypass surgery-mediated weight loss in obese patients was
effective at reducing ER stress in adipose and liver tissues
and improved insulin sensitivity [16]. Furthermore, when
ER stress was reduced by hepatic overexpression of GRP78 in
ob/ob mice, hepatic TG and cholesterol content was reduced
and insulin sensitivity improved [5]. These findings together
with data in rodents indicating the presence of ER stress in
tissues of obese animals [12, 13] suggest a strong association
between ER stress and obesity. Therefore, the ER serves as
an important new treatment target against obesity and its
metabolic complications.

The use of small molecules called chemical chaper-
ones has been examined in a number of disease models
as potential tools for lowering ER stress and preventing
the activation of UPR pathways. These chaperones similar
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to molecular chaperones nonselectively stabilize mutant
proteins and assist in their folding and translocation across
membranes [87]. Most chemical chaperones are osmolytes
and equilibrate cellular osmotic pressure. These can be
categorized into 3 classes: carbohydrates (such as glycerol
and sorbitol), amino acids (such as glycine and taurine), and
methylamines (such as betaine) [87, 88]. The drawback to
the use of most chemical chaperones is their nonspecificity
and high-dose requirement for effective protein folding
properties. However, two such chemical chaperones, 4-
phenylbutyric acid (4-PBA) and tauroursodeoxycholic acid
(TUDCA) have been approved by the US Food and Drug
Administration (FDA) and are used in humans. Currently, 4-
PBA is approved for use in children with urea-cycle disorders
as an ammonia scavenger, while TUDCA is being tested for
its liver-protecting properties in cholestatic liver disease in
humans [87].

The low-molecular-weight fatty acid 4-PBA has been
tested in a number of disease models for its ability to facilitate
protein folding and trafficking, ultimately relieving ER stress
[13, 89–98]. The chaperoning property of 4-PBA was first
identified when investigating its effect on the translocation
and trafficking of a mutant cystic fibrosis transmembrane
conductance regulator protein (CFTR). Addition of 4-PBA to
the cells allowed for stabilization of the mutant CFTR protein
and facilitated their translocation to the cell membrane
[99]. In addition to its chaperone properties, 4-PBA also
possesses HDAC inhibitor activity and is under investigation
as an anticancer drug [100–102].

Another effective reagent that has been shown to have
chaperone properties is TUDCA, which can be classified
as a hydrophilic endogenous bile acid [87]. TUDCA has
antiapoptotic properties by reducing calcium efflux and
blocking ER-stress-mediated caspase-12 activation [103].
Furthermore, TUDCA also activates cell survival pathways
such as PI3K signalling, thereby inhibiting cell death [104].
Apart from these signalling properties, TUDCA can inter-
act with the mineralocorticoid receptor and promotes its
dissociation from cytosolic chaperones thereby preventing
its translocation to the nucleus for transcriptional activity.
In the case of primary neurons, addition of TUDCA
was effective at preventing amyloid beta-peptide-induced
apoptosis through its chaperoning properties [105].

In recent years, several studies have identified beneficial
effects of 4-PBA and TUDCA supplementation on insulin
resistance, obesity, and diabetes. Oral administration of
4-PBA and TUDCA to obese and insulin-resistant ob/ob
mice normalized hyperglycemia, restored insulin sensitivity
in the liver, muscle, and white adipose, and diminished
fatty liver disease [92]. Our group examined the effect of
4-PBA supplementation on diet-induced obesity. For this
purpose, C57BL/6 mice were placed on a high-fat diet with
or without 4-PBA supplementation in the drinking water.
Mice treated with 4-PBA gained significantly less weight,
exhibited lower plasma glucose, TG, and leptin levels, and
had smaller adipocytes as compared to mice on a high-fat
diet alone [89]. Chemical chaperones also have chaperone
activity within the central nervous system [13, 106]. Leptin,
an adipocyte-derived hormone which acts on hypothalamic

neurons to suppress appetite, is important in regulating
energy expenditure and body weight [107]. ER stress may
be one of the factors resulting in leptin resistance in the
brain, as injection of tunicamycin, an ER-stressor-induced
hypothalamic ER stress, increased food consumption and
weight gain despite elevated blood leptin concentrations
[13]. Both 4-PBA and TUDCA were shown to be effec-
tive at lowering hypothalamic ER stress and increasing
the sensitivity of neurons to leptin, thereby reducing body
weight in genetic and diet-induced obesity models [107].
In the context of atherosclerosis, 4-PBA was effective at
protecting macrophages against palmitate-induced ER stress
and apoptosis in culture [108]. A reduction in ER stress
and apoptosis was also observed in the macrophages within
the atherosclerotic lesions of mice treated with 4-PBA, which
were smaller in size [108]. These findings indicate that 4-
PBA treatment can protect cells from the deleterious effects
of lipid accumulation on disease progression.

ER stress has been linked to fatty liver disease and liver
injury [109, 110]. Lipid-induced ER stress inhibits apoB100
secretion in liver cells promoting the development of steato-
sis [111]. Treatment of hepatoma cells with 4-PBA leads
to the inhibition of lipid-induced ER stress and enhanced
apoB100 secretion [111]. Consistent with the studies on
macrophages and progression of atherosclerosis, alleviating
lipid-induced ER stress in hepatocytes also protects the cells
from ER-associated apoptosis [112]. Since hepatocellular
injury and damage can lead to progression of fatty liver
disease into steatohepatitis [113, 114], blocking ER stress
serves as an important treatment strategy [95]. A recent
study examined the effects of oral administration of TUDCA
on hepatic steatosis and hepatic gene expression in ob/ob
mice [115]. Yang et al. found a significant decrease in liver
fat content and reduced expression of genes involved in de
novo lipogenesis with TUDCA treatment [115]. However,
they did not find any differences in body weight or insulin
sensitivity over the three-week duration of the study. Exam-
ination of the effects of orally administered TUDCA on
insulin sensitivity in obese human subjects revealed a 30%
improvement in insulin sensitivity in muscle and liver tissues
but no alterations in hepatic TG content were observed
[116]. The differences in the mechanism of action between
oral treatment and intraperitoneally injected TUDCA may
explain some of these contrasting outcomes [115].

The effectiveness of chemical chaperones such as 4-PBA
and TUDCA as a treatment strategy for dyslipidemia, cardio-
vascular disease, diabetes, and obesity require further study
in human subjects. Both 4-PBA and TUDCA have additional
functions which may be directly or indirectly alleviating ER
stress conditions. Investigation into the discovery of new
chemical and biological approaches to enhance ER function
and facilitate the trafficking of proteins would be useful
for treating ER-stress-related diseases. Furthermore, ways
of targeting specific UPR pathways would allow for better
specificity in targeting ER stress in various disease states
[87]. Currently, small molecules that can target IRE1α and
alter its endonuclease activity offer hope for further study.
These kinase-inhibiting RNase attenuators can also selec-
tively enhance XBP1 mRNA splicing and lead to prevention
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of apoptotic cell death, while attenuating IRE1α-mediated
decay of mRNA such as those encoding ER chaperones [117].
The recent finding that unfolded peptides can directly bind
to IRE1 and promote its oligomerization and activation
suggests that compounds that can target its peptide-binding
groove and oligomerization interface may be effective at
regulating IRE1 activity [58]. Finally, given the challenges
with directly measuring ER stress, assay systems which can
assess actual cellular ER stress will prove to be useful [118].

7. Conclusions

A growing body of evidence links ER stress and UPR
activation to diseases associated with lipid metabolism.
The UPR signalling pathways and activation of transcrip-
tion factors such as XBP1 and ATF6 have novel roles in
controlling the transcriptional regulation of lipogenesis.
While IRE1α itself is protective against ER-stress-induced
lipogenesis and hepatic steatosis, its downstream mediator
XBP1 promotes transcription of genes involved in fatty
acid and cholesterol biosynthesis. Phosphorylation of eIF2α
downstream of PERK affects the transcriptional activity of
C/EBPs, PPARγ, and SREBP-1c thereby leading to lipid
accumulation and hepatic steatosis under high-fat-diet con-
ditions. Similar to IRE1α, ATF6α also protects against ER
stress-induced steatosis and lipid droplet formation in mice.
Furthermore, nuclear ATF6 attenuates SREBP2-mediated
lipogenesis. The exact mechanisms by which ER stress sig-
nalling pathways affect lipid homeostasis are incompletely
understood. Given the temporal differences in the activation
of the three arms of the UPR, a closer examination of each
branch of the UPR will allow for a better understanding of
how various components of this signalling network impact
on lipogenesis and disease progression. Such studies will
further enhance our understanding of biological and phar-
macological tools needed to effectively treat ER-associated
diseases.
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