
MINI REVIEW
published: 20 January 2022

doi: 10.3389/fmed.2021.798958

Frontiers in Medicine | www.frontiersin.org 1 January 2022 | Volume 8 | Article 798958

Edited by:

Eleni Gavriilaki,

G. Papanikolaou General

Hospital, Greece

Reviewed by:

Sanda Predescu,

Rush University Medical Center,

United States

Suowen Xu,

University of Science and Technology

of China, China

*Correspondence:

Carmine Savoia

carmine.savoia@uniroma1.it

Specialty section:

This article was submitted to

Hematology,

a section of the journal

Frontiers in Medicine

Received: 20 October 2021

Accepted: 23 December 2021

Published: 20 January 2022

Citation:

Gallo G, Volpe M and Savoia C (2022)

Endothelial Dysfunction in

Hypertension: Current Concepts and

Clinical Implications.

Front. Med. 8:798958.

doi: 10.3389/fmed.2021.798958

Endothelial Dysfunction in
Hypertension: Current Concepts and
Clinical Implications
Giovanna Gallo, Massimo Volpe and Carmine Savoia*

Clinical and Molecular Medicine Department, Cardiology Unit, Sant’Andrea Hospital, Sapienza University of Rome, Rome,

Italy

Endothelium plays a fundamental role in the cardiovascular system, forming an

interface between blood and adjacent tissues by regulating the vascular tone through

the synthesis of nitric oxide, prostaglandins and other relaxing factors. Endothelial

dysfunction is characterized by vasoconstriction, cell proliferation and shifting toward a

proinflammatory and prothrombic state. In hypertension endothelial dysfunction may be

involved in the initiation and development of vascular inflammation, vascular remodeling,

and atherosclerosis and is independently associated with increased cardiovascular

risk. Different conditions such as impaired vascular shear stress, inflammation and

oxidative stress, activation of the renin angiotensin system have been described as

important pathophysiological mechanisms involved in the development of endothelial

dysfunction. The release of extracellular vesicles by neighboring cells in the vascular

wall has emerged as an important regulator of endothelial function and with potential

antihypertensive properties and beneficial effects by counteracting the hypertension

mediated organ damage. Furthermore, macrovesicles are emerging as an innovative

therapeutic approach for vascular protection, allowing the delivery of bioactivemolecules,

such as miRNA and drugs interacting with the renin angiotensin system. In this review

we summarize the available evidence about the pathophysiological implications of

endothelial dysfunction in cardiovascular diseases, focusing on hypertension and its

sequelae, and the potential innovative therapeutic strategies targeting the endothelium

with the aim to improve vascular function and remodeling.
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INTRODUCTION

Vascular endothelium plays an important role in cardiovascular (CV) physiology, forming an
interface between blood and adjacent tissues and it is involved in nutrients and metabolites
transport as well as in the interaction with circulating cells, hormones, and cytokines (1).
Endothelial cells regulate the vascular tone through the synthesis of nitric oxide (NO),
prostaglandins and other relaxing factors. Moreover, healthy endothelium provides antioxidant,
anti-inflammatory, and antithrombotic functions and contributes to the maintenance of vascular
tone, serving as a gatekeeper for organ/tissue homeostasis and blood pressure control (2).

Endothelial dysfunction is characterized by a shift of the actions of the endothelium toward
reduced vasodilation, cell proliferation, platelet adhesion and activation and proinflammatory

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.798958
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.798958&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carmine.savoia@uniroma1.it
https://doi.org/10.3389/fmed.2021.798958
https://www.frontiersin.org/articles/10.3389/fmed.2021.798958/full


Gallo et al. Endothelial Dysfunction and Hypertension

and prothrombic state. Endothelial dysfunction occurs in
association with several CV risk factors, including hypertension,
hypercholesterolemia and insulin resistance, contributing to
inflammation in the vascular wall, of resistance arteries as
well as to increased lipoprotein oxidation, smooth muscle cell
proliferation, extracellular matrix deposition, cell adhesion, and
thrombus formation in conducting arteries (3–5).

It should be noted that the manifestations of endothelial
dysfunction may precede the development of hypertension
(6). Essential hypertension is characterized by functional
and structural alterations in resistance arteries which lead
to increased peripheral vascular resistance (7). Endothelial
dysfunction may contribute to the increased peripheral
resistance by several mechanisms that leads to the enhanced
constriction and vascular remodeling (i.e., structural,
mechanical, and functional alterations) of resistance arteries,
which is associated to the development and complications
of hypertension (6, 8). In particular, endothelial dysfunction
may participate to the increased myogenic tone of resistance
arteries through the activation of the renin-angiotensin
system (RAS), endothelin-1, catecholamines, and growth
factors production, leading to vasoconstriction, vascular
remodeling and then to increased resistance to blood flow
and ultimately to increased peripheral blood pressure. The
induction of inflammatory processes in the vascular wall may
be associated to endothelial dysfunction and may contribute
further to the remodeling of resistance arteries (6, 9), and
conduit arteries which is associated with the increased risk
of atherosclerosis and the development of CV disease (CVD)
(6, 10–12).

In this review we will discuss the available evidence on the
pathophysiological implications of endothelial dysfunction in
hypertension, as well as the potential innovative therapeutic
strategies targeting the endothelium.

MECHANISMS OF ENDOTHELIAL
DYSFUNCTION IN HYPERTENSION, AND
THERAPEUTIC INTERVENTION

Mechanical Stimuli
Endothelial function is tightly regulated by the activation of
several mediators and systems including NO, prostaglandins and
other relaxing factors as well as by mechanical stimuli including
vascular shear that stimulates numerous downstream signaling
pathways to maintain and regulate endothelial function and
vascular tone (13, 14). A fundamental distinction should be
made between steady laminar and oscillatory flow (Figure 1).
It has been shown that laminar flow enhances the production
of vasodilator factors such as NO, prostacyclin, tissue-type
plasminogen activator by the activation of mechanosensors
and mechanosensitive channels which have been proposed to
regulate a broad range of endothelial and vascular functions
(15). Laminar shear activates the glycocalyx mechanosensing
which is transferred by the cytoskeleton to integrins that
distribute the force via actin microfilaments, microtubules,

and intermediate filaments through the focal adhesion of c-
Src kinases (15) leading to the maintenance of endothelial
integrity. Increased laminar shear stress results also in elevated
concentration of endothelial cytosolic calcium, leading to
the activation of NO synthase (eNOS) and the increased
production of NO. Elevated cytosolic calcium levels also
trigger the opening of calcium-activated potassium channels,
which is associated to endothelial cells hyperpolarization
and thereby to vasorelaxation. Moreover, platelet endothelial
cell adhesion molecule-1 (PECAM-1) along with caveolin,
tyrosine-specific phospho-transferase Fyn, vascular endothelial
growth factor (VEGF)-receptor 2 and the vascular endothelial
cadherin (VE-cadherin) forms a mechanosensory complex
which confers an adequate responsiveness to the beneficial
effects of shear stress in endothelial cells (16). In particular,
in laminar flow the force exerted on PECAM-1 triggers
the activation of VEGF- receptor 2 in the absence of its
ligand, which in turn induces integrin-mediated signaling
and ultimately leads to the suppression of inflammatory
pathways (17).

In response to increased shear stress, AMPK-induced
phosphorylation and sirtuin-1-mediated deacetylation
promoted eNOS compartmentalization and activation
with atheroprotective effects in an in vivo mouse
model (18), thus contributing to vascular protection.
Moreover, laminar flow increases JNK-mediated p53
phosphorylation, GADD45 and p21cip1, inhibiting endothelial
cells growth and atherosclerotic plaque development
(19, 20).

On the other hand, oscillatory flow reduces eNOS expression,
promotes leukocyte infiltration, smooth muscle proliferation
and the secretion of proinflammatory molecules, such as MCP-
1 (monocyte chemotactic protein 1), PDGFs (platelet derived
growth factor), and endothelin-1 leading to vasoconstriction,
increased blood pressure (BP) and atherosclerosis development
in larger arteries (21). These processes involve the activation
of mechanosensitive genes in endothelial cells, inducing the
increase of reactive oxygen species (ROS) and the activation
of several transcription factors, such as Kruppel-like factor
[KLF2/4], NF-κB, AP-1, early growth response-1, c-Jun, c-
fos, and c-myc, as well as the activation of mitogen-
activated protein kinases (MAPKs) and small ubiquitin-
like modifier (SUMO) signaling (15, 22–24). Interestingly
the SUMOylation process can downregulate the expression
of the protective transcription factor p53 which in turn
can be associated to the development of CV complications
in hypertension. Furthermore, oscillatory flow induces the
activation of the PI3Kinase-Akt pathway which leads to the
assembly of the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase-2 and to the production of ROS (15), thus
contributing to the vascular inflammation and remodeling.
Other possible mechanisms involved in endothelial dysfunction
triggered by oscillatory flow include the expression of the
transcriptional factor Yes-associated protein (YAP) and its
related coactivator PDZ binding motif (TAZ) that enhances
cell cycle regulatory genes such as cyclin A1 (CNNA1) and
E2F transcription factor 1 (E2F1) and increases inflammation
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FIGURE 1 | Factor contributing to endothelial function and dysfunction. ACE-2, angiotensin converting enzyme-2; AMPK, AMP-activated protein kinase; Ang,

angiotensin; AT1R, type 1 angiotensin II receptor; EGF, epidermal growth factor eNOS, endothelial nitric oxide synthase; EVs, extracellular vesicles; ICAM, intercellular

adhesion molecule 1; IGF-1, insulin-like growth factor-1; lncRNA, long-non-coding RNA; LPS, lipopolysaccharide; MCP-1, monocyte chemotactic protein 1; NAPDH,

nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; PDGF, platelet derived growth factor; PPAR, peroxisome

proliferator receptor; ROS, reactive oxygen species; TGF-β, tumor growth factor-β; TNFα, tumor necrosis factor.

and monocyte attachment, contributing in turn to endothelial
dysfunction (15).

Role of Oxidative Stress and Inflammation
A large body of evidence over the past years has shown
that ROS are involved in endothelium dysregulation. In the
vascular system the major source of ROS production is NADPH
oxidase whose expression is increased in hypertensive conditions
by several stimuli including shear stress alterations, renin
angiotensin system (RAS) and endothelin activation (25).

ROS are key signaling molecules through which vasoactive
agents such as angiotensin II (Ang II), endothelin-1 and
prostanoids mediate effects at cellular level, and may
modify cell function through highly regulated redox-
sensitive signal transduction. This may occur through the
alteration of intracellular calcium homeostasis contributing to
vasoconstriction, cell growth and inflammation which lead to
hypertension development and hypertension mediated organ
damage (HMOD) (26, 27). ROS stimulate multiple signaling
pathways involved in inflammation, cell growth and vascular
remodeling. These pathways include the activation of NF-κB,
MAPK, JAK-2, STAT, p21Ras, Pyk-2 (Proline-rich Tyrosine
Kinase 2) and AKT, receptor tyrosine kinases such as EGFR
(Epidermal Growth Factor Receptor), IGFR (Insulin-like Growth
Factor Receptor 1) and PDGFR (Platelet Derived Growth Factor
Receptor), protein tyrosine phosphatases and redox-sensitive

transcriptor factors such as Activator Protein 1 (AP)-1 and
Hypoxia-inducible factor 1 (HIF-1) (15, 22–24, 28–33).

In hypertension, oxidative stress promotes aberrant cell
signaling and post-translational modification (oxidation and
phosphorylation) of proteins and in turn cell and tissue damage
(34). In particular, protein phosphatases such as tyrosine
phosphatases and protein serine/threonine phosphatases
are inactive in the oxidized state, resulting in increased
phosphorylation and activation of downstream protein
targets involved in cell growth and inflammation which
may contribute to vascular remodeling and hypertension
development (34, 35) (Figure 1). ROS can also inhibit SIRT1
activity through oxidative modifications on its cysteine residues.
Decreased activity of SIRT1 enhances the NF-κB signaling,
which supports inflammatory responses (36). Moreover,
reduced SIRT1 activity is associated with a decreased AMP-
activated protein kinase (AMPK) activation, which results in a
reduced expression of antioxidant enzymes such as manganese
superoxide dismutase, catalase, γ glutamylcysteine synthase, and
thioredoxin (37).

Increased ROS concentration induces the reduction
of NO bioavailability by the increased quenching (34).
Furthermore, the ROS-dependent phosphorylation of ERK5
by phosphokinase-C-ζ (PKCζ) and the activation of tumor
necrosis factor α (TNFα)- mediated pathway induces the
degradation of eNOS leading to the reduced production of NO
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concentration and in turn contributing further to endothelial
dysfunction (34).

Role of Renin Angiotensin System and Its
Antagonism
RAS and in particular its key effector Ang II play a fundamental
role in the development of hypertension and its sequelae,
contributing to endothelial dysfunction, cell growth, oxidative
stress, vasoconstriction and inflammation. Ang II induces
hyperplasia and hypertrophy of vascular smooth muscle
cells (VSMC) in resistance arteries by modulating the
endogenous production of mitogenic factors (including
TGF-β (tumor growth factor-β), PDGF (platelet-derived
growth factor), EGF (epidermal growth factor), IGF-1
(insulin-like growth factor 1) (38) and by enhancing basal
superoxide production through the activation of cSrc, PKC,
phospholipase A2 (PLA2) and phospholipase D (PLD) and
increased NADPH oxidase and ROS generation (27, 39, 40).
Moreover, Ang II stimulates the production of E-selectin and
plasminogen activator inhibitor-1 (PAI-1), contributing to
a prothrombotic state and to atherosclerotic plaque rupture
(41). In addition, Ang II downregulates PPARs which have
been largely demonstrated to reduce inflammatory response
in experimental animals and to decrease serum markers
of inflammation in humans (42). Through the stimulation
of AT1 (Ang II type 1) receptors, Ang II also induces the
synthesis of aldosterone which activates mineralocorticoid
receptors enhancing inflammation, fibrosis, and endothelial
damage (43).

As a matter of fact, RAS inhibitors and mineralocorticoid
receptor antagonists have been demonstrated to reduce the
proinflammatory and pro-fibrotic effects of Ang II and
aldosterone, improving endothelial function and reducing
oxidative stress (44).

Available evidence suggests that RAS blockade obtained
by angiotensin converting enzyme (ACE) inhibitors or
angiotensin receptor blockers (ARBs) is associated with
improved function and structure of resistance arteries (6, 45, 46).
The activation of complementary protective axes of the
RAS may potentially contribute to the beneficial effects of
RAS blockers. This includes the expression of angiotensin
II type 2 receptor (AT2R) through the activation of a
functional crosstalk between AT1R/AT2R during selective
AT1R blockade (47–50). AT2R may contribute to improve
endothelial dysfunction and arterial remodeling in hypertensive
conditions, as its activation is linked to vasodilation, NO
production and antiproliferative and anti-inflammatory
effects (51). Thus, AT2R may participate to the mechanisms
whereby therapeutic use of ARBs induces cardiovascular
protection (52).

Experimental studies suggest that also the activation of
ACE-2/Ang (1–7)/MasR axis may in part counteract the Ang
II–induced actions in the cardiovascular system, including
endothelial dysfunction, vasoconstriction and cell growth (53).
In this regard, we have recently shown that ACE-2/Ang (1–
7)/MasR axis plays an important role in arterial protection

during selective AT1R blockade through the improvement of
endothelial function and remodeling of resistance arteries via the
reduction of ROS production and increased NO bioavailability
(54) (Figure 1).

Effect of Other Antihypertensive Drugs and
Endothelial Dysfunction
Other antihypertensive agents recommended in clinical practice
have also shown vascular protective effects. Mineralocorticoid
receptor antagonists have been demonstrated to reduce arterial
stiffness and to improve endothelial function, measured by
flow-mediated dilation (55). Calcium channel blockers have
been demonstrated to have pleiotropic effects leading to the
improvement of endothelial function and to the reduction of
central aortic pressures (56). These effects are not directly
linked to the antagonism of voltage-dependent calcium channels
but rather are associated to the reduction of ET-1, monocyte
chemoattractant protein-1 and C-reactive protein (57). Third
generation beta-blockers with α1-adrenergic receptor antagonist
activity have also been shown to improve endothelial function
through antioxidant mechanisms and cause NO-dependent
vasodilation (57) (Figure 2). Furthermore, endothelin receptor
antagonists, might represent feasible future therapeutic agents to
prevent endothelial dysfunction, vascular remodeling and organ
damage in hypertension (58).

RELATIONSHIP BETWEEN ENDOTHELIUM
AND EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) are released in plasma from cells
after the fusion of multivesicular bodies with the plasmic
membrane and can deliver their cargo, including mRNA,
microRNA (miRNA), small amounts of DNA, transcription
factors, cytokines, and growth factors, to other cells in
remote locations (59, 60). EVs can also be released into
the extracellular space by neighboring cells through paracrine
mechanisms along with the systemic release in plasma (61).
Available findings have shown a correlation between endothelial
dysfunction and circulating levels of EVs, particularly in
patients with hypertension, coronary artery disease (CAD)
and diabetes, although conflicting evidence exists with respect
to their protective or harmful role (62–64). EVs have been
identified as potential novel biomarkers and bioactivators in
the development of hypertension affecting vascular tone in
patients with endothelial dysfunction (65). It has been shown that
EVs may reduce endothelial-dependent vasodilation and impair
acetylcholine (ACh) induced vasorelaxation in a concentration-
dependent manner. However, it has not been completely clarified
how circulating EVs may affect resistance artery function
during the basal state and when overt hypertension may
occur (66). A recent study has demonstrated that an enriched
EVs preparation from normotensive individuals (humans or
rats) impair vasodilation in response to endothelial-dependent
vasodilators, potentially through L-NAME inhibitory effects on
eNOS. These findings support a paracrine/endocrine role of
circulating EVs in the regulation of vascular tone in resistance
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FIGURE 2 | Effects of antihypertensive agents in improving endothelial function. ACE, angiotensin converting enzyme; ACE-i, angiotensin converting enzyme

inhibitors; ARBs: angiotensin receptor blockers; AT1R, type 1 angiotensin II receptor; CCBs, calcium channel blockers; CRP, C-reactive protein; eNOS, nitric oxide

synthase; G6PD, glucose-6-phosphate dehydrogenase; IL-18, interleukin-18; MCP-1, monocyte chemotactic protein 1; MRA, mineralocorticoid receptor antagonists;

NAPDH, nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; ROS, reactive oxygen species.

arteries (67). Other animal studies showed that the dilatation of
mouse mesenteric arteries induced by shear stress was impaired
by the infusion of EVs isolated from diabetic patients (68) and
that endothelial derived EVs decreased NO and increased ROS
production, impairing ACh-mediated vasorelaxation, at aortic
ring level (69).

On the other hand, EVs have shown beneficial effects
on endothelial cells by inhibiting hyperproliferative pathways,
through the activation of eNOS signaling mediated by miRNA
(70, 71). Moreover, MiR-143/miR-145 contained in EVs has been
shown to reduce atherosclerotic lesion formation in the aorta
of ApoE–/– mice (72). MiR-19a72 and miR-23b70 mediate the
atheroprotective laminar shear stress-induced cell cycle arrest via
a decrease in E2F1 and hypophosphorylation of retinoblastoma
or directly targeting cyclin D1 (73).

Interestingly, an increasing body of evidence have shown that
long non-coding RNA (lncRNAs) can be selectively packaged
into EVs and may act as regulators of endothelial function which
may represent a promising therapeutic tool, although further
studies are required to clarify the specific targets (74, 75).

POTENTIAL FUTURE THERAPEUTIC
STRATEGIES BASED ON NANOPARTICLES

Over the past decades several non-pharmacological (i.e.,
diet, antioxidants, and vitamin supplementation) and
pharmacological approaches have been suggested in order
to improve endothelial function as mentioned previously.
Recently, selective, and more specific approaches such as
nanoparticles have been proposed. Nanomedicine is emerging
as an innovative approach with the aim to target specific
endocytic pathways throughout the formulation of different

nanoparticles, encapsulating therapeutic agents with enhanced
bioavailability and ensuring treatment effectiveness. Indeed,
the challenge to drug delivery in the endothelium consists
in the selection of appropriate targets and in the design of
nanoparticle-formulations with appropriate binding-properties
to the vascular endothelium inmicro, small, medium and in large
vessels against continuous flowing blood (76, 77). In particular,
the delivery through nanoparticles of many clinically used drugs
such as antihypertensive agents, statins, antidiabetic drugs and
interleukin 1β monoclonal antibodies may represent a potential
target for treatment of endothelial dysfunction thus yielding
potential new therapeutic approaches (78).

Future application may include the use of several types
of small molecules that target complementary epigenetic
pathways. More specifically, histone deacetylase inhibitors, DNA
methyltransferase inhibitors, histone methyltransferases and
demethylase inhibitors have been demonstrated to play an
essential role in the regulation of endothelial stem/progenitor
cell functions through modifying chromatin structure. In such a
context, nanoparticles might be used to modulate the activities
of epigenetic enzymes to enhance the vascular repair function of
endothelial cells (79).

CONCLUSIONS

Several lines of evidence support the role of endothelium in
physiology of peripheral arteries. Impairment of vascular flow,
RAS activation, oxidative stress and inflammation have been
demonstrated to play a fundamental role in the development
of endothelial dysfunction in hypertensive patients, leading to
vascular remodeling, atherosclerotic plaques progression and
eventually increased risk of CV events (Figure 1).
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The modulation of vascular inflammation through
RAS blockers and other antihypertensive drugs is a well
assessed therapeutic approach to improve vascular function
and remodeling.

Recent evidence suggests that EVs have attracted increasing
interest both as biomarkers or mediators of disease, as well
as vehicles for delivering bioactive molecules, such as miRNA
and drugs interacting with RAS, with potential beneficial effects
on the endothelium. Hence EVs have emerged as important
regulators of endothelial function and potentially as a promising
novel therapeutic approach to improve endothelial dysfunction.

Moreover, a better molecular understanding of
organ vasculature-bed heterogeneity and of organ/tissue

microenvironment-governed endothelial cell phenotypic
changes may represent the lead foundation for innovative tissue
specific therapies (80).
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