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INTRODUCTION 

The document contains supporting information about the effect of energy acquisition and 

allocation on egg production in relation to reproductive strategies of 39 fish species. We 

developed these synopses based on our own reviews of the literature and our participation with 

the Northwest Atlantic Fisheries Organization’s (http://www.nafo.int/) Working Group on 

Reproductive Potential. Other experts were consulted during the review process as well (see 

“Species selection” and “Acknowledgements” in the main article). The final list is also presented 

in Table 1 of the main article. 

A specific goal was to include a broad phylogenetic diversity, and the 39 species reviewed here 

are from 21 families and 12 orders. A few species represent each biogeographic zone (boreal, 

temperate, subtropical, tropical) and aquatic biome (marine, estuarine, freshwater) including 

diadromous fishes (i.e., sea lamprey, American and European eel, salmonids). Other selected 

species have been introduced or invaded habitat outside their native range, such as sea lamprey 

and the centrachids. Many species are important fishery species, such as Atlantic cod or 

largemouth bass. Others are important as experimental models in the laboratory, such as 

zebrafish, inland silverside, medaka, mummichog, threespine stickleback, and longjaw 

mudsucker. Many have specific spawning migrations, such as populations of sea lamprey, 

American and European eel, Atlantic and Pacific herring, roach, Atlantic salmon, brown trout, 

Arctic charr, Atlantic cod, walleye and pikeperch, Eurasian and yellow perch, plaice, and winter 

flounder. Fish names follow Nelson et al. (2004) for North American fishes and Wheeler (1992) 

for European fishes; any exceptions were checked against Eschmeyer and Fong (2008) and 

fishbase (www.fishbase.org). 

Viviparous species were not tabulated (Table 1 of main article) or summarised here because of 

potential complications regarding non-lecithotrophic sources of nutrition (matrotrophy, oophagy, 

adelphophagy; Trexler 1997). There are several well-studied viviparous teleosts mentioned in the 

main article, except that we could not find sufficient information on any species of 

Chondrichthyes. 

The format for each synopsis is standardised, usually in a two paragraph format. Each synopsis 

begins with a general description of the geographic range and habitat occupied by the species. 

Next, the reproductive strategy is outlined with respect to the following: 1) breeding opportunity 

(semelparous or iteroparous); 2) synchrony of oocyte development with respect to vitellogenesis 

(synchronous, group synchronous, or asynchronous) and oocyte maturation or ovulation (total or 

batch spawning); and 3) methods used to describe and calculate fecundity (determinate or 

http://www.nafo.int/
http://www.fishbase.org/
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indeterminate). Terminology regarding reproductive strategies is similar to that used by Murua et 

al. (2003) and Kjesbu (2009).  

These aspects of reproductive strategies are followed by a statement whether we consider the 

species as: 1) extreme capital breeders if females did not feed immediately prior to or during 

spawning, 2) mixed capital-income breeders if females mostly rely on capital for breeding, 3) 

mixed income-capital breeders if females mostly rely on income, and 4) extreme income 

breeders if females feed during the spawning period and show no evidence of storing energy for 

growth of gonads or accessory breeding activities. We also include specific evidence regarding 

the ways in which energy (e.g., food amount or type) affects the numbers or size of eggs 

produced per year, and whether this is based on observation, field or laboratory experimentation, 

or modeling of individual fish or at a population level (see also Table 1 of main article). A 

statement about any noteworthy context, particularly as it may relate to future research 

directions, concludes each synopsis. 

  

SPECIES SYNOPSES 

 

Sea lamprey (Petromyzon marinus, Petromyzontidae) 

An anadromous species distributed in the North Atlantic Ocean, sea lamprey has also 

invaded the North American Great Lakes (Hubbs and Pope 1937; Beamish 1980). It is a 

semelparous breeder: females enter rivers and streams in spring, at 5-7 years old, spawn in 

summer, and die within a few days of spawning (Applegate 1950; Wigley 1959; Hardisty 1965). 

Oocytes develop synchronously from primary growth to secondary growth to mature stages 

throughout the life of the lamprey (Fig. 3a-f of main article; Applegate 1950; Lewis and 

McMillan 1965). The absolute fecundity is established in the first year (ammocoete) and remains 

high in individuals from anadromous populations. In contrast, half or more of the oocytes in 

landlocked females do not undergo vitellogenesis or ovulate, but because these landlocked 

females are smaller, their relative fecundity is higher than anadromous populations (Appelgate 

1950; Hardisty 1963, 1964). In both forms, lifetime fecundity can be estimated prior to spawning 

using the determinate fecundity method, and ranges from 20,000 to 100,000 in landlocked 

populations and from 124,000 to 260,000 in anadromous populations (Applegate 1950; 

Vladykov 1951; Wigley 1959; Hardisty 1963). Females can be best characterised as total 

ovulators that behaviourally spawn in batches; they ovulate their eggs in a single wave, from the 

posterior to the anterior of the ovary. Fully ripe eggs are shed into the coelom, and 20-40 eggs 

are released at a time into a nest, at intervals several minutes apart, lasting from 16 hours to 3.5 

days (Appelgate 1950).  

 

Sea lamprey is an extreme capital breeder. Sea lamprey cannot feed during the spawning 

run because their digestive tract degrades (Applegate 1950). Instead, they derive their spawning 

energy requirements from the catabolism of energy stored during the pre-maturation feeding 

phase (Beamish 1979; Beamish et al. 1979). Hardisty (1963; p. 17) notes that “the wide range of 

variability in oocyte numbers [is the result] of variations in nutritional and other environmental 

factors.” Individuals of both anadromous and landlocked populations initially produce a similar 
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number of oocytes but in landlocked lampreys there is a dramatic downregulation of oocyte 

numbers later in life; this suggests that in landlocked conditions, food is either limiting, the 

smaller body size achieved limits the advancement of all potential oocytes, or both (Hardisty 

1963; Applegate 1950). Sea lamprey size, which is related to fecundity, is positively related to 

their prey abundance (Heinrich et al. 1980) or even related to prey type (Salvelinus namaycush 

vs. Coregonus clupeaformis; Kitchell and Breck 1980). Smith and Marsden (2007) report a 

positive correlation between prey (lake trout) abundance and sea lamprey fecundity in the Great 

Lakes. The introduction of sea lamprey into landlocked ecosystems, while generally a nuisance 

to existing fisheries, represents a potential evolutionary model to explore, via the comparative 

method, the nutritional mechanisms that affect egg production. 

 

 

American and European eel (Anguilla rostrata, A. anguilla, Anguillidae) 

These catadromous species are widely distributed in the North Atlantic Ocean, living 

most of their lives in freshwater systems of North America or Europe, respectively (Tesch 1977; 

van Ginneken and Maes 2005). They are semelparous breeders, spawning in the Sargasso Sea at 

10 or even 20 years old (Vøllestad 1992; Oliveira and McCleave 2000). Oocytes develop 

synchronously from primary growth to secondary growth to mature stages (Palstra et al. 2005). 

The spawning cue is not well known but maturation is stimulated by sustained swimming 

activity (Palstra and van den Thillart 2010). The gonadosomatic index is low for females as they 

leave coastal habitat (1-2% of their body weight is gonad), but increases dramatically to 40-60% 

in spawning females (van Ginneken et al. 2005). Lifetime fecundity ranges from 1 to 4 million 

(A. anguilla; Boëtius and Boëtius 1980; van Ginneken et al. 2005) and 2 million to 20 million 

eggs (A. rostrata; Barbin and McCleave 1997). Spawning has only been observed in tanks where 

it appears to result in a nearly instantaneous release of all eggs (van Ginneken et al. 2005; 

Oliveira and Hable 2010). 

 

Both species are extreme capital breeders. Pankhurst and Sorensen (1984) observed the 

degradation of the stomach during experimentally-induced maturation, and several modeling 

studies show that females can mature a clutch of eggs entirely from catabolism of their energy 

stores (e.g., Boëtius and Boëtius 1985; Amin 1991; van Ginneken and van den Thillart 2000). 

There are many hypotheses about what triggers the spawning migration of “silver” eels, but 

among the biotic-oriented mechanisms, Vøllestad (1992) dismisses age or size because they are 

too variable among this life phase. Larsson et al. (1990) note that fat stores in silver eels are 

higher than pre-migratory phase yellow eels, so they propose that energy content triggers 

migration and maturation; although intuitive, this hypothesis remains largely untested. Van 

Ginneken and van den Thillart (2000) create an energy budget indicating that migrating females 

use about 40% of their stored energy for swimming, leaving 60% for egg production. Although 

they successfully argue that mature females have sufficient energy reserves to make it to the 

Sargasso Sea, Kettle et al. (2011) note that this may not be true for all adult source areas, and 

further research is needed to explain the 20-fold variation in fecundity estimates for these 

species. Tagging methods that would allow direct examination of naturally maturing females in 

the ocean are promising (Methling et al. 2011) but have yet to reveal insights into the likely 

relationship between available energy and egg production in Anguilla. Stock assessment working 
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groups are beginning to evaluate condition indices of escaping silver eels for their potential to 

forecast reproductive potential of adults leaving freshwater systems (WGEEL, 2012). 

 

 

Bay anchovy (Anchoa mitchilli, Engraulidae) 

A marine-estuarine species of the western North Atlantic Ocean, bay anchovy lives for a 

maximum of 3-4 years and is an iteroparous breeder: females start spawning in estuaries at 3-10 

months old (Luo and Musick 1991; Zastrow et al. 1991). The reproductive season is usually 

from spring to autumn, shorter at northern latitudes but may extend throughout the year at 

southern latitudes within its range (Houde and Lovdal 1984; Vouglitois et al. 1987; Luo and 

Musick 1991; Zastrow et al. 1991; Lapolla 2001; Bassista and Hartman 2005). Annual fecundity 

is indeterminate. Oocytes develop from primary growth to secondary growth stage 

asynchronously and mature in batches (Luo and Musick 1991). Batch fecundity varies seasonally 

and geographically and ranges from 429 to 1186 eggs g
-1

 ovary-free weight (Luo and Musick 

1991; Zastrow et al. 1991; Bassista and Hartman 2005). Spawning fraction is typically high (> 

0.5) with nearly all females spawning daily during the peak of the spawning season (Luo and 

Musick 1991; Zastrow et al. 1991, Bassista and Hartman 2005). 

 

 Bay anchovy is an extreme income breeder. Luo and Musick (1991) present calculations 

showing that the overall egg production for the 1988 spawning season in lower Chesapeake Bay 

was 45110 eggs per female (55-mm fork length) which is equivalent to 346% of a female’s body 

energy. During peak spawning, daily spawning output was 6.3% of body energy. The authors 

conclude that most spawning energy was derived from daily feeding, not fat reserves. Wang and 

Houde (1994) showed that somatic growth increases significantly in bay anchovy during the 

spawning season (32-33% increase in gutted weight and 26% in total weight), so feeding not 

only meet energy requirements for daily spawning but also provides surplus energy for growth. 

Finally, bay anchovy egg abundance in the field is correlated with the abundance of calanoid 

copepods, the principal prey item for adults (Peebles et al. 1996; Peebles 2002). The correlation 

between instantaneous prey availability and egg production is expected to be higher in income 

breeders, i.e. when spawning energy derives primarily from recent feeding. 

 

 

European anchovy (Engraulis encrasicolus, Engraulidae)  

A marine species of the eastern Atlantic Ocean, the Mediterranean Sea, the Black Sea and 

the Azov Sea, European anchovy lives for a maximum of 4-5 years and is an iteroparous breeder: 

at about 1 year old females start to spawn. They spawn usually from spring to autumn, but 

spawning duration ranges from 2.5 months to year-round depending on stock and temperature 

cycles (Palomera and Rubies 1996, Somarakis et al. 2004). In the Black Sea, some young-of-the-

year (65-95 mm) may spawn towards the end of the spawning season when they are 2-3 months 

old (Lisovenko and Andrianov 1996). Annual fecundity is indeterminate and oocytes develop 

from primary growth to secondary growth stage in an asynchronous manner (Motos 1996; 

Schismenou et al. 2012). Batch fecundity and spawning frequency varies widely between 

seasons, years and stock areas especially in the Mediterranean Sea (Motos 1996; Somarakis et al. 

2004; 2012). For example, estimates of spawning fraction range from 0.06 to 0.40 (Somarakis et 
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al. 2004; 2007; 2012) but values up to 1.00 have been reported in the Black Sea during the peak 

of the spawning period (Lisovenko and Andrianov 1996). In the Bay of Biscay, spawning 

fraction is consistently ~0.4 at peak spawning (Uriarte et al. 2012).   

 

There is substantial field evidence and some comparative studies suggesting that 

European anchovy are largely income breeders. However, energy gained and stored before the 

spawning period might also affect its annual reproductive output. Lisovenko & Andrianov 

(1996) report an increase of up to 49% for mean female gutted weight from the beginning to the 

end of the spawning period in the Black Sea whereas, in the Aegean Sea, anchovy exhibits its 

highest somatic and liver condition during the reproductive period (May-June, Somarakis 

unpublished data). These observations suggest that food intake during the reproductive period 

might be sufficient to support both somatic growth and egg production. The high variability of 

spawning fraction and batch fecundity estimates for European anchovy in the Mediterranean Sea 

has been attributed to the respective high spatial and temporal variability in plankton production 

characteristic of this basin (Somarakis et al. 2004; 2007). In the North Aegean Sea, anchovy 

exhibited better somatic condition and produced more eggs (higher batch fecundity) and at 

higher rates (higher spawning fraction) during June 1993 when zooplankton concentration (adult 

prey) was significantly higher compared to June 1995 (Somarakis 2005). Recently, a strong 

linear relationship has been demonstrated between daily specific fecundity (eggs g
-1

 of the 

population) and the ratio of zooplankton biomass and anchovy biomass (index of per capita food 

availability) indicating that egg production is controlled by a density-dependent mechanism 

(Somarakis et al. 2012). Finally, in the Strait of Sicily, chlorophyll concentration before the onset 

of the reproduction period was correlated with fish condition and reproductive intensity (i.e., 

mean gonadosomatic index during the spawning season) which implies that the level of primary 

production during the winter-early spring bloom might affect reproductive output in the 

subsequent spawning period in summer through the increased condition of adult fish (Basilone et 

al. 2006). Also in the Strait of Sicily, interannual fluctuations in egg abundance are positively 

related to primary productivity (Basilone et al., in press). 

 

 

Japanese anchovy (Engraulis japonicus, Engraulidae) 

A marine species of the western North Pacific Ocean, Japanese anchovy lives for a 

maximum of 4 years and is an iteroparous breeder: at about 1 year old females start to spawn, 

and they typically spawn from early spring to late autumn (Tsuruta and Hirose 1989; Kawaguchi 

et al. 1990; Funamoto and Aoki 2002; Funamoto et al. 2004). Annual fecundity is indeterminate 

and oocytes develop from primary growth to secondary growth stage in an asynchronous manner 

(Imai and Tanaka 1994). There is strong experimental and field evidence that batch fecundity 

increases and egg size decreases with increasing temperature (Tsuruta and Hirose 1989, 

Kawaguchi et al. 1990; Imai and Tanaka 1997; Imai and Kajitori 2000; Funamoto et al. 2004; 

Takasuka et al. 2005). Spawning fraction varies from 0.71 to 0.23, within a year, among years, 

and among stocks (Tsuruta and Hirose 1989; Funamoto and Aoki 2002; Takasuka et al. 2005). A 

positive relationship has been recently demonstrated between spawning fraction and sea surface 

temperature (Takasuka et al. 2005). 
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Japanese anchovy are largely income breeders as evidenced by laboratory experiments 

(Tsuruta and Hirose 1989; Kawaguchi et al. 1990) demonstrating that food availability affects 

imminent reproductive potential. In a starvation experiment (Kawaguchi et al. 1990), fish 

continued to spawn for 22 days at 19
o
C after the onset of starvation but with decreasing rate. Egg 

volume decreased as well. In another study, Tsuruta and Hirose (1989) investigated the effect of 

the amount of food and fish density on egg production. Lower levels of food increased the inter-

spawning interval and decreased batch fecundity and egg size. The condition of fish declined 

during the experiments which indicated that allocation of energy to reproduction was prioritised. 

Food intake affected egg production with a two-week lag. At constant food supply, egg 

production decreased in tanks with high density of fish. However, somatic growth was better in 

the high density tank. This implied that a density dependent mechanism (amount of food per 

individual fish) controlled the allocation of energy to growth or reproduction. At high fish 

density, growth was prioritised. When sea water from the high density tank was transferred into 

the low density tank, egg production decreased in the low density tank.  

 

 

Northern anchovy (Engraulis mordax, Engraulidae) 

 A marine species of the eastern North Pacific Ocean, northern anchovy is an iteroparous 

breeder: at about 1-year (central subpopulation) or 2-years (northern subpopulation) old, females 

start to spawn (Hunter and Macewicz 1980; Laroche and Richardson 1980; Blaxter and Hunter 

1982). Some spawning occurs throughout the year, but the central subpopulation (35
o
N) spawns 

primarily in winter (February-March) (Hunter and Macewicz 1980; Blaxter and Hunter 1982), 

whereas the northern subpopulation (45
o
N) has a more precise and much shorter spawning 

season that peaks in July (Laroche and Richardson 1980; Blaxter and Hunter 1982). Annual 

fecundity is indeterminate. Oocytes develop from primary growth to secondary growth stage in 

an asynchronous manner. Hydration begins in early morning and the eggs are completely 

hydrated by sunset (Hunter and Macewicz 1980; Hunter and Leong 1981; Hunter and Macewitz 

1985a). Batch fecundity estimates for the central subpopulation from Daily Egg Production 

Method applications (peak spawning) range from 445 to 622 eggs g
-1

 whole body weight and 

spawning fraction from 0.09 to 0.16 (Hunter and Macewitz 1985a; Hunter et al. 1985; Somarakis 

et al. 2004). Parrish et al. (1986) demonstrated that the fraction of females with hydrated eggs or 

with day-1 postovulatory follicles increased with female size, and despite a number of 

simplifications and assumptions in their approach, determined annual fecundity to be age-

dependent. An average 4+ yr-old female produces 10 times as many eggs as a 1-yr old female. 

The difference was mainly due to the increase in the spawning period with increasing age. 

 

Northern anchovy are largely capital breeders. Fat accumulates in the body during 

summer (April and July), associated with the annual spring bloom of zooplankton. It usually 

remains high through the end of autumn (December) and then declines to a minimum during the 

winter spawning period (Hunter and Leong 1981). Thus, fat stored from the previous spring and 

summer may be used the following year to support reproduction (Hunter and Leong 1981). 

According to calculations by these authors, about 2/3 of the annual cost of egg production can be 

accounted for by the annual decline in fat stores. There is evidence that feeding conditions may 

not affect greatly the batch fecundity (Hunter and Leong 1981): Females matured in the 

laboratory were fed a high ration and grew about four times faster than those in the sea, yet the 
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batch fecundity was about the same as field-caught specimens, which consume a lower ration. At 

least over the first few months of spawning, batch fecundity does not change significantly, 

implying that it is more stable than other reproductive traits. In laboratory experiments (Hunter 

and Macewicz 1985b), female northern anchovies reacted very quickly to adverse feeding 

conditions by resorbing oocytes and they recovered rapidly when sufficient food was available. 

Females with low levels of alpha atresia (< 50% yolked oocytes affected) spawned about half as 

frequently as did those with no alpha stage atresia. Finally, during ‘El Niño’ years, small pelagic 

fish populations in the California and Humboldt Current systems may exhibit markedly lower 

egg production (Blaxter and Hunter 1982; Alheit 1989).  

 

 

Atlantic and Pacific herring (Clupea harengus, C. pallasii, Clupeidae) 

 These marine species are widely distributed in the North Atlantic Ocean (Clupea 

harengus), including the Baltic Sea, and in the North Pacific (Clupea pallasii). They are 

iteroparous breeders with group-synchronous oocyte development with respect to vitellogenesis 

(Hickling and Rutenberg 1936; Kurita, et al. 2003). Herring have a very distinct mode of 

advanced yolked oocytes from which to measure potential annual fecundity (Hickling 1940), but 

it has been demonstrated that smaller vitellogenic oocytes of this mode are downregulated by 

atresia prior to spawning (Kurita et al. 2003). The fecundity of 34 cm fish, from the spring-

spawning herring population decreased significantly, over 50%, from 113,000 in July to 49,200 

in February/March (Kurita et al. 2003). Herring is a total spawner that ovulates all mature 

oocytes in a single batch (Geffen 2009). Once mature, females normally deposit their eggs on 

gravel or rocks in coastal and offshore bank habitats. Skip spawning by herring was reported to 

be very high as inferred indirectly from fish scales (Engelhard and Heino 2005), but more recent, 

direct examinations of herring gonads during different migratory phases indicated much more 

modest skip spawning rates (Kennedy et al. 2010). 

 

 The herring is an extreme capital breeder (Kennedy et al. 2010). During the spawning 

migration, body reserves accumulated during summer feeding are the only source of energy for 

reproduction, migration, and routine metabolism (Slotte 1999). Potential fecundity is a function 

of the whole body weight for Icelandic summer-spawning herring (Óskarsson and Taggart 2006). 

Wood (1958) and references therein have shown conclusively that the fat content of the herring 

is related to both feeding and time of spawning. Further it was observed that low fat content in 

females, caused by a scarcity of food, can reduce the number of eggs produced (Hempel 1971). 

During summer feeding, when the amount of materials to be invested in reproduction has not yet 

been decided, fish produce high numbers of small vitellogenic oocytes independently of 

condition. In autumn, when the possible amount of investment is determined, and more material 

is needed for oocyte growth, the number and quality of oocytes is downregulated depending on 

nutritional condition (Brooks et al. 1997; Kurita et al. 2003). Fecundity of both Atlantic herring 

(Ma et al. 1998) and Pacific herring (Hay and Brett 1988) is known to vary due to nutritional 

condition of the spawning fish, and its annual variation is related to differences in food intake 

(Hempel 1971; Bowers and Holliday 1961). Differentiating between recruit and repeat spawners 

is potentially important because the timing of oocyte growth, and seasonal change in intensity of 

atresia can be different between the two (Slotte and Fiksen 2000; Óskarsson et al. 2002). Food 

availability also affects the onset of maturity by 1 year in Atlantic herring (Cushing and Burd 
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1956). Skip spawning is related to condition and may follow climate signals (Engelhard and 

Heino 2006). Kennedy et al. (2010) showed how individuals that did not reach a Fulton’s 

condition factor above 0.70 during the feeding season are less likely to begin ovary maturation. 

Below this threshold, the ovary developed later, had a higher intensity of atresia, or were likely 

to skip spawn in the coming spawning season. For both herring species there is extensive 

information about the reproductive biology and the connection between feeding and reproductive 

potential. This is an excellent example of a capital breeder, but herring typically over commit to 

yolked eggs and adjust realised fecundity via atresia. 

 

 

European sardine (Sardina pilchardus, Clupeidae) 

A marine species of the eastern North Atlantic Ocean, the Mediterranean Sea and the 

Black Sea, European sardine is an iteroparous breeder: depending on stock or year, females start 

to spawn at 1-4 years old (Somarakis et al. 2006a; Silva et al. 2006; 2008), usually from autumn 

to spring (Somarakis et al. 2006a; Ganias et al. 2007; Stratoudakis et al. 2007). The duration of 

the spawning period is variable and depends on temperature (preference for spawning at 14-15
o
C 

and avoidance at < 12
o
C and > 16 

o
C; Stratoudakis et al. 2007). Annual fecundity is 

indeterminate. Oocytes develop from primary growth to secondary growth stage in an 

asynchronous manner (Ganias et al. 2004), however, a clear hiatus is established in the oocyte 

size frequency distributions at the late stages of vitellogenesis (tertiary yolk globule stage) 

(Ganias et al. 2004). Mean batch fecundity at peak spawning shows low variation between years 

and stocks and is highly and closely related to average female weight (Ganias et al. 2004; 

Somarakis et al. 2006b). Spawning fraction estimates range from 0.03 to 0.24 (Ganias et al. 

2003; Somarakis et al. 2006b). 

 

Sardine is primarily a capital breeder. There is a strong inverse relationship between 

ovarian condition and somatic condition in the eastern Mediterranean (Ganias et al. 2007) 

implying that egg production relies on energy reserves accumulated during the summer growing 

season. Recently, Mustać and Sinovčić (2009) have described a similar inverse relationship 

between fat content and the sexual cycle of sardine in the Adriatic Sea. Off the Iberian Peninsula, 

Zwolinski et al. (2001) report a 25% decrease in mean gutted weight of sardine from the 

beginning (October) to the end (March) of the spawning season. Furthermore, Silva et al. (2008) 

have demonstrated that the Iberian stock grows and improves condition outside the main 

spawning season (when temperature and food availability are higher). Nonetheless, there is field 

evidence (Ganias 2009) that, besides capitalised energy, current income may fine-tune its 

reproductive effort. In the eastern Mediterranean, Ganias (2009) reports that reproductive 

activity, incidence of recent spawning, and relative batch fecundity were higher in areas with 

increased Chl a concentration. Relative fecundity was significantly higher at sites with increased 

zooplankton. The author therefore concluded that, besides stored energy, sardine also uses 

current income to support egg production. 
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European sprat (Sprattus sprattus, Clupeidae) 

A marine-estuarine species distributed in the eastern North Atlantic Ocean, European 

sprat is also distributed in the North, Baltic, Mediterranean, and Black Seas (Bailey 1980). It is 

an iteroparous breeder: adults mature at age 1 or 2 (yr) (Bailey 1980; Polivaiko 1980).  Oocytes 

develop from primary growth to secondary growth stages asynchronously (Haslob et al. 2012). 

Sprat ovulates eggs in batches (Petrova 1960; Polivaiko 1980; George 1987; Alheit 1988). No 

skip spawning or atretic down regulation of vitellogenic oocytes has been reported. All 

parameters required to estimate fecundity via an indeterminate method vary both spatially and 

temporally. The size at maturity is larger in the Baltic Sea (10-11 cm, Kraus and Köster 2004) 

than in the Black Sea (5.2-11.5 cm; Giragosov 2002). The generally protracted spawning season 

(5-6 months) is longer in warmer waters, and peak spawning varies with latitude: April-August 

in northern vs. November-April in southern European waters (Petrova 1960; Grauman 1969; 

Dulĉić 1998; Giragosov 2002). Individual sprat spawn from 2 to 4.5 months (Alekseev and 

Alekseeva 2005; Giragosov 2002). Number of batches per year ranges from 4 (Shkitsky 1967) to 

13-17 (Alekseev and Alekseeva 2005) in the Baltic sprat and is 34.5 on average in the Black Sea 

sprat (Giragosov 2002). A spawning interval during the main spawning time was estimated of 

approximately 4 days for Baltic sprat (Kraus and Köster 2004; Haslob et al. 2012), and of 2 days 

for Black Sea sprat (Giragosov 2002). Batch fecundity varies in relation to fish size and sampling 

month, region, and year (Polivaiko 1980; Haslob et al. 2005; Alekseev and Alekseeva 2005; 

Haslob et al. 2011, 2013). For example, batch fecundity of Baltic sprat ranges from 206 to 4,244 

eggs per female. Absolute individual fecundity of Black Sea sprat has been estimated to average 

28,193 oocytes (Giragosov 2002).  

 

 European sprat is a mixed income-capital breeder. Feeding by Black Sea sprat declines 

but continues during the spawning period, which provides energy for sprat reproduction. Daily 

rations of fish at age 1+ and 2+ during the spawning period were 2.6 - 2.5% of body weight; 

outside the spawning period maximum daily rations were 8.8-7.7%. After spawning, the gonad 

rest and energy reserves accumulate. During the spawning period, lipid amount in muscles and 

viscera decreased to 3-5 %, whereas in the non-spawning period lipid values rise to 12-15 % 

(Shulman et al. 1985).  Feeding effects on sprat reproduction are inferred from a negative 

correlation between batch fecundity and stock size (Haslob et al. 2005, 2011); however, 

individual fish condition is not correlated with batch fecundity (Haslob et al. 2011) and abiotic 

factors may have confounding effects (Haslob et al. 2005, 2011). Sprat in the Baltic lives at the 

northern boundary of the geographical distribution of this species (Muus and Nielsen 1999) and 

years with a higher temperature may result in better growth, earlier maturation and enhanced 

gonad development leading to a higher egg production. Low water temperatures reduce and 

delay the onset of the spring zooplankton production in the Baltic (MacKenzie et al. 1996) 

especially availability of warm-adapted prey species (Grauman and Yula 1989; Möllmann et al. 

2000), which in turn may negatively affect individual fecundity (Haslob et al. 2005). 

 

 

Roach (Rutilus rutilus, Cyprinidae) 

A freshwater species, the roach has a native distribution throughout Europe and Asia and 

is introduced widely (Vila-Gispert and Moreno-Amich 2000). It is an iteroparous breeder: at 
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about 3 years old females spawn in spring (Mann 1973; Bastl 1995; Nõges and Järvet 2005). 

Oocytes develop from primary growth to secondary growth stages in a group-synchronous 

manner (Rinchard and Kestemont 1996). Oocytes develop from secondary growth to mature 

stages a synchronous manner (Rinchard and Kestemont 1996). We are not aware of reports 

regarding skip spawning or atretic down regulation of this advancing clutch of vitellogenic 

oocytes by this species. Potential annual fecundity varies by age from about 1 to 50 thousand 

eggs per female (MacKay and Mann 1969; Mann 1973; Townsend et al. 1990; Bastl 1995). 

Females are best characterised as total ovulators that behaviourally spawn in batches; they ripen 

their eggs in a single wave and fully ripe eggs are released in several dozen spawning events 

over several days (Rinchard and Kestemont 1996; Wedekind 1996).  

 

Roach is an extreme capital breeder. It spawns in spring, and after a brief period when the 

gonad rests, growth of secondary oocytes resume in late summer concurrent with a drawdown of 

visceral fat reserves (Lyagina 1972; Rinchard and Kestemont 1996). MacKay and Mann (1969) 

document low potential fecundity in roach that fed primarily on detritus; they also cite earlier 

studies that indicate that both food type (i.e., animal versus plant) and amount could affect roach 

fecundity. Several studies of roach populations – in reservoirs or rivers – show that roach 

fecundity varies widely from year to year, and the authors qualitatively attribute this to positive 

associations with feeding conditions (Lyagina 1972, 1975; Kuznetsov and Khalitov 1978; 

Vøllestad and L'Abée-Lund 1990; Bastl 1995). Some of these studies specifically note that when 

potential fecundity was lower, the egg size is larger, suggesting some compensatory effect that 

improves individual offspring fitness. Cryer et al. (1986) demonstrate that large year classes of 

age-0 roach in Alderfen Broad could overgraze their prey, which reduces absolute fecundity of 

conspecific adults (see also Perrow et al. 1990). Wyatt (1988) examined roach in Slapton Ley, 

without such a food limitation, and reported growth rates so fast that maturation occurred a year 

earlier than normally reported. In both systems, population size cycled in a similarly stable 

manner. Townsend et al. (1990) modeled roach dynamics in Alderfen Broad and Slapton Ley to 

demonstrate how two different reproductive responses to food could create stable population 

cycles for relatively long periods. They also demonstrated that such cycles were a special 

condition of very high mortality rates and an overlapping forage base between juveniles and 

adults found in certain lakes, which explains why population cycles are not commonly observed 

for this relatively long-lived fish that typically switches prey types at older ages. 

 

 

Zebrafish (Danio rerio, Cyprinidae) 

A freshwater species native to Asia, zebrafish is a common biological model used in 

laboratory experiments (Ulloa et al. 2011). It is a semelparous breeder: females spawn spring-

autumn, offspring mature as early as 10-11 weeks, and females do not live more than one year in 

nature (Eaton and Farley 1974a,b; Spence et al. 2007). Primary growth oocytes develop 

asynchronously into secondary growth oocytes so that annual fecundity is indeterminate (Selman 

et al. 1993; Forbes et al. 2010). In the presence of a male, females spawn daily batches of 2-5 

dozen eggs; spawning frequency decreases when separated from a male or over long periods of 

spawning (Eaton and Farley 1974a).  
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Zebrafish are income breeders. Experiments demonstrate that food amount interacts with 

nearly the entire suite of reproductive traits. Higher food amounts cause female-biased sex ratios 

(Lawrence et al. 2008), earlier maturation (Uusi-Heikkilä et al. 2011), increased numbers of 

oocytes, but lower egg size and reduced hatching rates (Forbes et al. 2010). 

 

 

Arctic charr (Salvelinus alpinus, Salmonidae) 

Widely distributed among streams, oligotrophic lakes, and the marine environment, 

Arctic charr are found throughout the arctic, subarctic, boreal and temperate climate regions of 

the Holarctic ecozone. It is often the only fish species in alpine lakes, spawning in the summer 

and autumn (Sandlund et al. 1992; Klemetsen et al. 2003). Reproduction is iteroparous: age at 

first maturity ranges from 2 to 6 years in small resident populations, from 4 to 8 years in 

anadromous populations (Nordeng 1983). More than one year is required for post-spawners to 

restore their energy reserves to the same level as mature, non-reproductive charr (Dutil 1986), 

and the time needed increases as fish length increases. Bimodal populations (both large [normal] 

and small [dwarf] morphs occurring within a cohort) increase in frequency with latitude and are 

characteristic of large, deep lakes with few fish species (Griffiths 1994). Griffiths (1994) 

suggests that much of the variation in charr size structure is a consequence of increased 

seasonality in food supply in more northerly environments, coupled with feeding size thresholds. 

The latter result in larger members of a cohort being able to maintain growth rates on seasonally 

abundant prey while smaller individuals, which cannot catch these items, form a second mode of 

more slowly growing fish. Oocytes develop from primary growth to secondary growth stages in 

a group-synchronous manner and from secondary growth to mature stages a synchronous manner 

(Frantzen et al. 1997). Fecundity is determinate, and annual fecundity ranges from between 13 

and 9200, increasing with body size (Sandlund et al. 1992; Dempson & Green 1985). Ovulation 

occurs in a single wave (Frantzen et al. 1997), and female lays the eggs in a nest (Sandlund et al. 

1992; Seppä et al. 2001). 

 

Arctic charr are extreme capital breeders (Nordeng 1983). They display considerable 

phenotypic plasticity and variability in life-history traits, including in responses to food 

availability. In females but not in males, the gonadosomatic index was predicted by growth rates 

in the months leading up to maturation, and among the females that matured, faster growing fish 

produced more eggs (Adams and Huntingford 1997). Within a single cohort of Arctic charr, fish 

that grow faster and ultimately become larger during the year prior to maturation were more 

likely to mature than those that grow less well (Woodhead 1960; Adams and Huntingford 1997). 

To the contrary, Sandlund et al. (1992) suggest that early encounters with sticklebacks in 

juvenile stage can induce a shift to predation on stickleback in the largest juveniles of 

planktivorous/ piscivorous morphs, resulting in increased growth rate and delayed maturation, 

e.g. diet shift from invertebrates to piscivory as juveniles results increased growth rate and 

delayed maturation in resident lake charr. The latter is in accordance with study by Rikardsen 

and Elliott (2000), who conclude that under unfavourable feeding and competition conditions the 

charr grow slower and mature earlier. They therefore have a disadvantage when migrating to the 

sea because of their small size, and therefore the proportion of resident individuals is higher 

(Rikardsen and Elliott 2000). But according to Nordeng (1983), an increase in amount of food 

accelerates the development in the offspring and increases the proportion of resident individuals, 



14 

 

which shows that the pattern of segregation to morphs depends upon genetic constitution and 

access to food (Nordeng 1983). In conclusion, food quantity has a positive effect on 

gonadosomatic index and fecundity, but there is no clear pattern whether the food amount and 

type affects the onset of maturation and the proportion of resident individuals in case of Arctic 

charr. 

 

 

Atlantic salmon (Salmo salar, Salmonidae) 

An anadromous species inhabiting temperate and arctic zones of the North Atlantic 

Ocean, there are also landlocked stocks of Atlantic salmon in large deep lakes (Klemetsen et al. 

2003) and a non-migratory male type. Atlantic salmon is an iteroparous breeder: most will 

mature after 1-3 winters at sea, but there is considerable variation in age at maturity within and 

between populations (Jonsson et al. 1991a; Klemetsen et al. 2003). Younger fish tend to spawn 

more often but expend less energy per spawning event than older females (Jonsson et al. 1991b; 

Klemetsen et al. 2003). Oocytes develop from primary growth to secondary growth stages in a 

group-synchronous manner and from secondary growth to mature stages a synchronous manner 

(Taranger et al. 2010). Fecundity estimation is determinate. Potential annual fecundity varies by 

body size from about 33 eggs to 18 thousand eggs per female (Gibson et al. 1996, Randall 1989, 

Klemetsen et al. 2003) and egg numbers are typically correlated with egg size (Klemetsen et al. 

2003). The eggs are ovulated in a single batch, and can remain in the body cavity for around one 

week prior to egg deposition (spawning) and fertilisation (Taranger et al. 2010). Eggs are laid in 

a number of separate nests with the average of 24 h between successive spawning events 

(Fleming 1996). 

 

Atlantic salmon is an extreme capital breeder. Maturing sea-run salmon feed heavily and 

store body reserves in the spring prior to spawning, which means that cues associated with the 

accumulation of surplus energy are decoupled from cues associated with spawning (Rowe and 

Thorpe 1990; Kadri et al. 1996; Simpson et al. 1996). Also, in laboratory or in caged conditions, 

individual life-history decisions to smolt or mature is made in the previous year, and is 

influenced by growth rate, metabolic rate, lipid stores and social status of the fish (Kadri et al. 

1996; Simpson et al. 1996). Kadri et al. (1996) additionally demonstrated that differences in 

feeding motivation lead to differences in growth, lipid deposition and body condition between 

immature and maturing adult Atlantic salmon. This is regarded as an example of an endogenous 

modulation of appetite which ensures that fish will only reproduce if they are in adequate 

condition (Kadri et al. 1996). Maturing females are already larger and have higher fat contents 

than non-maturing fish after the grilse stage (first sea winter) (Schaffer and Elson 1975). It is 

concluded that fish that have been growing well are more likely to subsequently adopt the 

development pathway of early maturation (Simpson et al. 1996) and if spring growth is 

inadequate, maturation is switched off physiologically (Rowe and Thorpe 1990). Another aspect 

found is that the faster the parr grow in fresh water before smolting, the smaller their relative egg 

size becomes when they attain maturity. This phenotypic response has been explained as an 

adaptation to the potential growth opportunities in their nursery river. This assumes that feeding 

opportunities the parents experienced as juveniles in rivers is a good predictor of what their 

offspring experience (Jonsson et al. 1996; Klemetsen et al. 2003).  
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Brown trout (Salmo trutta, Salmonidae) 

Inhabiting both fresh and salt waters, brown trout spawns in small streams as well as 

large rivers from the Atlas Mountains in North Africa to the Barents Sea, and from the western 

limits of the European coastline to the Ural Mountains and Caspian Sea. It has also been 

introduced widely outside Europe, spawning in autumn at northern latitudes and in winter further 

south (Klemetsen et al. 2003; Jonsson and Jonsson 2006). Brown trout are iteroparous: mean age 

at maturity ranges from 1 to 5 years in resident populations and from 2 to 8 years in anadromous 

populations (Jonsson and Jonsson 2006). Younger females spawn every year, older females 

spawn every other year (Jonsson et al. 1991c). Vitellogenic eggs develop group synchronously 

and mature eggs ovulate in a single wave (Billard 1987). Females spawn only a portion of eggs 

at the time, in nests, and may be reproductively active over a few days (Klemetsen et al. 2003). 

Fecundity estimation is determinate, and potential annual fecundity ranges from about 300 eggs 

to 1500 eggs per female, increasing with body size (Klemetsen et al. 2003) 

 

Anadromous brown trout (sea trout) exhibit an alternative life-history strategy compared 

to resident trout, where the juveniles migrate to the estuary or coastal areas for feeding and return 

to freshwater for spawning or wintering. The profit of migration is increased food consumption 

with higher growth rate, energy density and reproductive potential than those of resident fish. 

Increased reproductive potential results from larger body size, higher gamete production and 

improved competitive ability during spawning. The cost to migration includes high mortality at 

sea and the energy need to move between the spawning and nursery grounds in fresh water and 

the sea (Jonsson and Jonsson 1993; Jonsson and Jonsson 2006). Jonsson and Jonsson (1993) 

therefore suggest that anadromous individuals adopt migration as a consequence of energetic 

limitation in fresh water (Jonsson and Jonsson 1993). In experiments, Wysujack et al. (2009) 

reported that low food availability increased the numbers of migratory fish. 

 

Anadromous forms are extreme capital breeders (Ruzzante et al. 2004). Bagenal (1969) 

concluded from the tank experiments with brown trout that more of the better fed fish were 

mature, they grew faster and they contained significantly more and smaller (by dry weight) eggs, 

even after adjusting for fish size. Also there were indications of earlier spawning time (Bagenal 

1969). However, Jonsson and Jonsson (1997) found that heavy feeding as sub-adults gave large 

eggs even in small females, evening out the variation due to fish size (Jonsson and Jonsson 

1997). According to stomach content study by Jonsson et al. (1999), the age and size at which 

brown trout became piscivorous decreased with increasing individual growth rate of the fish. Age 

at sexual maturity increased with the age at which the fish became piscivorous. The growth rate 

for a trout feeding on invertebrates was slower than that of a fish-feeder. It is assumed that fish 

may have increased their net reproductive rate by postponing maturity after switching to fish-

feeding (Jonsson et al. 1999). Comparison of trout from infertile and fertile streams indicated 

that fish originating from infertile streams were older at first sexual maturity and produced fewer 

eggs because of smaller average size than trout from fertile streams (McFadden et al. 1965). Fish 

of the same size produced a smaller total weight of eggs in infertile waters than in fertile waters. 

In low productivity systems, few eggs are produced per adult but such low reproductive rates 

keep these brown trout populations in equilibrium with the low basic productivity of the 

environment (McFadden et al. 1965).  
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Atlantic cod (Gadus morhua, Gadidae) 

A marine boreal species widely distributed in the eastern and western parts of North 

Atlantic as well as around Greenland, Iceland, and Faroe Islands, Atlantic cod is an iteroparous 

breeder. In general, cod spawn in coastal areas as well as inlets and fjords in spring (ICES 1990, 

1991). Considerable variation in age and size at maturity has been observed among stocks 

inhabiting different geographical areas (Lambert et al. 2003 and references therein). Mean age 

and size at 50% maturity for cod have been observed to vary among stocks by as much as 1.5 to 

9.5 years of age and 27 to 72 cm in length. Baltic cod demonstrates a more prolonged period of 

spawning (March-October) possibly connected with match or mismatch of environmental 

conditions in the spatially-limited spawning grounds of the Baltic Sea, where there are strong 

variations in salinity and oxygen concentrations that frequently reach the species’ tolerance 

limits. Fall spawning is also known in populations along western parts of North Atlantic 

(Chambers and Waiwood 1996).  

 

Oocytes develop from primary growth to secondary growth stages as well as from 

secondary growth to mature oocytes in a group-synchronous manner (Shirokova 1977; Burton 

1998; Kjesbu et al. 1998). Atretic down regulation appears to play an important role in final 

annual fecundity generation (Skjaeraasen et al. 2006; Thorsen et al. 2006). Therefore a 

determinant fecundity method to estimate potential annual fecundity is more accurate shortly 

prior to spawning, when difference between potential and realised fecundity is minimal. Annual 

potential fecundity, which ranges from 0.1 to 19 million ova per female (Serebryakov et al. 

1984; Kjesbu 1988), is dependent on fish size, age, condition, feeding regime (or a ration in pre-

spawning year) and prey availability (Kraus et al. 1997, 2000; Lambert and Dutil 2000; Marshall 

et al. 2003). In the field, Atlantic cod spawn 3-8 batches (Sorokin 1957), and as many as 19-20 

batches in laboratory conditions (Kjesbu 1989). In lab, batch fecundity changes with a dome-

shape pattern: rises from the start of spawning (60-70 thousand eggs) to the maximum (300-310 

thousand eggs) in the 10-13
th

 batch and then decreases again; total number of batches and inter-

batch intervals are associated with the sizes and levels of female condition (Kjesbu 1989).  

 

Atlantic cod is a capital breeder. After spawning in spring, there is a period of the gonads 

resting. New portions (clutches) of vitellogenic oocytes for the following year begin to develop 

in fall. Some mature fish in low condition might skip spawning. Experimental work on captive 

fish has demonstrated that skipped spawning is highly influenced by individual energy reserves 

(Skjæraasen et al. 2009, 2012).  In the field, skip spawning appears to range from almost zero 

noted in Baltic cod (Kraus et al. 2002) to 30-40 % reported for various cod populations (Walsh et 

al. 1986; Burton et al. 1997; Rideout et al. 2000; Skjæraasen et al. 2012). Onset of maturation in 

a population varies also by years and appears to be affected by the feeding conditions 

experienced by fish in the pre-spawning season (Ajiad et al. 1999; Yaragina et al. 2003); 

portions of mature fish demonstrate a density dependent effect (Cardinale and Modin 1999; 

O'Brien 1999). Sherwood et al. (2007) note from field studies that a food type can affect 

reproductive potential; they report that a more pelagic diet (particularly capelin rather than 

shrimp) produced higher somatic condition, higher liver index (lipid stores) and greater 
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spawning potential (decreased incidence of atresia). Quality of eggs larvae can depend on fish 

attributes like size, condition and age of females (Marteinsdottir and Steinarsson 1998). 

 

 

Haddock (Melanogrammus aeglefinus, Gadidae) 

Haddock is a marine demersal fish of the eastern and western North Atlantic Ocean. 

Reproduction is iteroparous, in the winter-spring, with females maturing at 2-3 years of age 

(Clark 1959; Wigley 1999). Oocyte development is group synchronous, and there is a well 

defined gap in size between previtellogenic and vitellogenic oocytes (Hickling and Rutenberg 

1936; Robb 1982; Clay 1989). Ovulation and spawning of pelagic eggs occurs in multiple 

batches (Hislop et al. 1978; Trippel and Neil 2004), however additional recruitment of 

vitellogenic oocytes during the spawning season does not occur, permitting annual fecundity 

estimation via determinate methods (Alonso-Fernandez et al. 2009). Fecundity estimates 

increase with size and age, and across different haddock stocks range from < 100K to > 1500K 

(summarised in Blanchard et al. 2003; Skjæraasen et al. 2013).  

 

Haddock is a capital breeder. Variability in fecundity for different stocks and years has 

been related to various measures of condition including relative condition, Fulton’s condition 

factor, and hepatosomatic index (Blanchard et al. 2003; Alonso-Fernandez et al. 2009). 

Laboratory studies have demonstrated increased fecundity and dry weight of eggs with increased 

ration (Hislop et al. 1978), but the fecundity of high ration haddock was not much higher than 

wild fish of the same weight. They concluded, therefore, that the upper limit of fecundity had 

been set prior to ration manipulations (which began in November), indicative of a capital 

spawning pattern. Although maximum fecundities may be established during early oocyte 

development, it appears that haddock are able to ‘tune’ (downregulate) fecundity in response to 

food quantity during the months leading up to spawning (evidenced by the ration effect they 

observed). The recruitment of haddock on the Scotian Shelf was found to be positively related to 

growth (length at age-4) and condition (weight at 50 cm), and they concluded true reproductive 

potential of the stock was poorly described by spawner biomass (Marshall and Frank 1999). 

More recently, Friedland et al. (2008, 2009) demonstrated strong correlations between 

recruitment of Georges Bank haddock and magnitude of the fall phytoplankton bloom the prior 

year, which they suggested enhanced the quantity of reproductive output. Thus, haddock appear 

able to exploit pulses of environmental productivity (more or better quality food) to increase 

their reproductive output. Condition can, however, have a variable effect on fecundity across 

years (Blanchard et al. 2003), possibly due to the timing of energy inputs available to produce 

eggs in relation to oocyte development/ovarian organization. This timing can be segregated into 

two major periods: 1) initially, fairly soon in the post-spawning period, the maximum number of 

eggs is set when the vitellogenic cohort is determined by group synchronous development; 2) 

later, closer to but still prior to spawning, downregulation may occur to right-size the egg 

numbers relative to the cumulative energy actually acquired and needed for oocyte maturation 

and ovulation. The relative importance of these two modes of fecundity regulation likely depends 

on properties of both the ecosystem (timing and type of energy pulses) and stock (biomass or 

condition).   
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Pouting (Trisopterus luscus, Gadidae) 

A marine species found in the eastern North Atlantic Ocean, pouting is distributed from 

the Skagerrak and the British Isles to southern Morocco and into the western Mediterranean 

(Wheeler 1978; Whitehead et al. 1986). Pouting is an iteroparous breeder: females mature as age 

1-2 for this short-lived species (5-9 yr) (Labarta et al. 1982; Puente 1988; Merayo 1996). 

Primary growth oocytes develop into secondary growth oocytes asynchronously, and mature 

oocytes develop group-synchronously, for an average of 20 batches during the spawning season 

(Alonso-Fernández et al. 2008). Despite the lack of a hiatus between primary and secondary 

oocytes, indicating asynchronous vitellogenesis, there appears to be no de novo vitellogenesis 

once a female becomes ripe, so determinate methods have been used to estimate potential annual 

fecundity for this species (Alonso-Fernández et al. 2008). Batch fecundity ranges from 1,900 to 

80,000 eggs and potential annual fecundity ranges from 0.025 to 1.6 million follicles (Alonso-

Fernández 2011). Potential annual fecundity, batch fecundity, spawning period length, and also 

egg size increase with fish size (Merayo 1996; Alonso-Fernández et al. 2008; Alonso-Fernández 

et al. 2011; Alonso-Fernández 2011; Alonso-Fernández and Saborido Rey 2011). 

 

Pouting are mixed capital-income breeders (Alonso-Fernández and Saborido Rey, 2012). 

They accumulate energy reserves as lipids stored in the liver and use this for oocyte recruitment; 

however, energetic provision through concurrent feeding during a protracted (4–5 months) 

spawning season may also contribute to egg production. Spawning rates in the field and 

laboratory vary 3-4 fold (every 2-7 days), so it is possible that income breeding processes could 

affect batch sizes and spawning frequencies (Alonso-Fernández et al. 2011). No direct 

information regarding food effect is available for pouting; however, significant effects of energy 

reserves on reproductive potential have been detected. Potential annual fecundity and egg dry 

mass are positively related to fish size and energy reserves (Alonso-Fernández 2011). Also 

timing of gonad development seems to be affected by level of energy reserves, i.e., gonad 

development starts earlier in those females that acquire adequate levels of stored energy sooner 

than those that do not achieve such reserves (Alonso-Fernández and Saborido Rey 2011). 

 

 

Inland silverside (Menidia beryllina, Atherinopsidae) 

An estuarine and freshwater species of eastern North America, inland silverside has been 

introduced throughout the continent (Hubbs 1982, Coorey et al. 1985, Stoeckel and Heidinger 

1988) and is used widely in laboratory experiments (Hemmer et al. 1992). Inland silverside is a 

short-lived (2 years), semelparous breeder. It typically matures in its second season, spawning 

during a short summer season in the north or a longer (spring-summer) season in the south 

(Middaugh and Hemmer 1992). In the south, temperatures may become too hot by late summer 

for continued spawning (Hubbs 1982), but when growth conditions are favorable, larger young-

of-year females mature in their first year, which produces a minor, autumn-spawning pulse 

(Hubbs 1982; Middaugh and Hemmer 1992). Primary growth oocytes develop asynchronously 

into secondary growth oocytes so that annual fecundity is indeterminate (Coorey et al. 1985). 

Females produce batches of 200-2000 eggs; size-specific fecundity is much higher in freshwater 

lakes than estuaries (Hubbs 1982, Middaugh and Hemmer 1992). Inland silversides spawn 

cyclically, on or near the full and new moons (Hubbs 1982, Sherrill and Middaugh 1993).  
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Inland silversides are income breeders. Growth occurs principally in two discrete stanzas. 

First, rapid somatic growth occurs primarily in the first year, when approximately 27% of its 

total growth is completed prior to the onset of winter (Huber and Bengtson 1999b). In laboratory 

experiments, increasing temperatures without increasing photoperiod increase liver and visceral 

fat weight, which appears to be a pre-overwintering response rather than storage of surplus 

energy for reproduction (Huber and Bengtson 1999a). Silversides emerge emaciated from the 

winter and once temperatures and photoperiod increase sufficiently (~May) rapid growth of 

soma, liver, and gonad occurs simultaneously (Huber and Bengtson 1999a, b). In a short (< 2 

month) laboratory experiment, more food provided to overwintered females induces larger fish 

with relatively larger gonads (Huber 1995). Hubbs (1982) remarked that ~14% daily ration 

produced ~7% egg production, and Huber and Bengtson (1999b) concluded that metabolic 

burnout of spawning adults cumulated in a disappearance of mature fish by the end of the second 

year. In some systems, where inland silversides are the dominant planktivore, this may be an 

important mechanism to reduce intraspecific competition (Chizinski et al. 2007). Efforts to 

extend these observations and experiments by use of bioenergetic models failed to predict 

growth of actively spawning adults, leading Chizinski et al. (2008) to conclude that such models 

require further development for short-lived species that experience such a brief, intense 

spawning period. 

 

 

Medaka (Oryzias latipes, Adrianichthyidae) 

A freshwater species of the western Pacific rim, medaka is a semelparous breeder: 

females spawn spring-autumn, offspring mature as early as 10-12 weeks, and females do not live 

more than one year in nature (Yamamoto and Yoshioka 1964; Howard et al. 1998; Dhillon and 

Fox 2004). Primary growth oocytes develop asynchronously into secondary growth oocytes so 

that annual fecundity is indeterminate (Wallace and Selman 1981a). Females can spawn daily 

batches of eggs over several months to typically produce 1000-2000 eggs in a lifetime 

(Yamamoto and Yoshioka 1964; Howard et al. 1998). Medaka is a small, short-lived, 

eurythermal fish, widely used in laboratory studies (Shima and Mitani 2004). 

 

Medaka are primarily income breeders. In laboratory experiments, fish fed more food 

during the spawning period produced more eggs in general (Hirshfield 1980), but Hirshfield 

(1980) also showed that fatter fish laid more eggs early in the spawning period, especially at high 

temperatures that are associated with above average batch size. There was a cost to high 

reproductive effort, since the proportion of a female’s energy budget allocated to reproduction 

was greater at higher temperature, and at some point more food no longer increased reproductive 

effort and was even associated with higher mortality. Dhillon and Fox (2004) showed that higher 

food consumption prior to maturation caused medaka to grow faster and mature earlier, at least 

up to the highest thermal limit (~33
o
C); however, at this upper thermal limit length and age at 

maturity increased, thereby demonstrating the independent effect of temperature at this extreme 

limit of bioenergetics.  
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Mummichog (Fundulus heteroclitus, Fundulidae) 

An estuarine species of the east coast of North America, from the Gulf of Maine to 

Florida, mummichog has subpopulations north and south of New York and New Jersey (Able 

and Felley 1986). It is an iteroparous breeder: maturation occurs in the first or second year for 

this short-lived (4 years) fish (Fritz and Garside 1975; Able 1990). Females spawn from spring to 

autumn (Wallace and Selman 1981b; Able 1990) and fecundity estimation is indeterminate. 

Primary growth oocytes develop asynchronously into secondary growth oocytes (Hsiao et al. 

1994), and females ovulate batches either continuously in the north or with lunar periodicity in 

the south (Fig. 3m-r of main article; Taylor et al. 1979; Wallace and Selman 1981b; Hsiao et al. 

1996). Egg size varies for a variety of reasons: it increases with female size; it is both larger and 

more variable in the southern population; it decreases as the season progresses (Marteinsdottir 

and Able 1988; Hsiao et al. 1994).  

 

 Mummichog is an income breeder, as evident from laboratory experiments. Fish starved 

for as few as three days stop maturing new oocytes, but renewed feeding for three days restores 

oocyte maturation (Wallace and Selman 1978). In a related experiment, oocyte maturation 

resumes in starved fish by injecting them with human chorionic gonadotropin, leading Wallace 

and Selman (1980, p. 352) to conclude: “Available food supply thus may be the ultimate control 

for egg production in the [northern] population”. In the south, where mummichog has a more 

protracted spawning season, mature females kept and fed in the laboratory still stopped spawning 

after 5-8 cycles, demonstrating that other factors – particularly photoperiod influence on 

gonadotropin regulation – control length of the spawning season (Taylor 1986; Hsiao et al. 

1994). Conover (1990) and Schultz et al. (1996) used a counter-gradient hypothesis to explain 

that northern fish spawn early and frequently compared to southern fish because the growing 

season is shorter in the north and size-selective predation is a selective mechanism during the 

overwintering period. Taylor (1986) experimentally increased feeding in spawning females, 

reporting that somatic growth increased but egg number did not, suggesting at an upper limit of 

batch size exists after which energy is diverted to maternal soma. Field work relating food 

amount to fecundity was pioneering but equivocal. In an early comparative study, Fritz and 

Garside (1975) compared fecundity between two lakes to suggest that higher fecundity was 

found in the lake that appeared to have lower productivity; however, this study inappropriately 

used a determinate fecundity method to measure annual fecundity. In addition, they did not 

provide direct estimates of productivity at the appropriate trophic level for mature mummichog. 

In a review of field data, Wallace and Selman (1981b) asked if latitudinal differences in 

spawning frequency were related to food, but they concluded that this approach was confounded 

by the subpopulation structure across latitudes. Although egg size variations are well 

documented within and among mummichog populations, and larger eggs are associated with 

higher egg and larval survival (Marteinsdottir and Able 1992), we are not aware of any work 

investigating food effects on mummichog egg size or other proxies for egg quality. Dramatic 

variations in mummichog spawning ecology occurs over very small spatial and temporal scales 

(meters, days; Able and Hagan 2003; Hunter et al. 2009), and common garden experiments are 

possible, so continued work with this species as an experimental model is warranted. 
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Threespine stickleback (Gasterosteus aculeatus, Gasterosteidae) 

Residing in both freshwater and coastal systems of the northern hemisphere, the 

threespine stickleback is an iteroparous breeder: Females start to spawn at 2-3 years old and most 

(but not all) fish die after their first breeding season (Reimchen 1992). Several clutches of eggs 

are produced over a breeding season that lasts from spring to early summer (Wootton 1973; 

Wallace and Selman 1979; Ali and Wootton 1999a). Annual fecundity is indeterminate. Oocytes 

develop from primary growth to secondary growth stage in an asynchronous manner (Wallace 

and Selman 1979). The minimum observed inter-spawning interval is 3 days (Fletcher and 

Wootton 1995).  

 

Threespine stickleback is largely an income breeder. There is strong experimental 

evidence of the effect of food amount on egg production (Wootton 1973; 1977; Ali and Wootton 

1999a, b; Fletcher and Wootton 1995; Wootton and Fletcher 2009). Specifically, low food intake 

during the breeding season increases the inter-spawning interval, which reduces annual 

fecundity. Spawning frequency is very sensitive to food intake but batch fecundity is less so 

(although it is significantly lower at low rations) and egg characteristics (size, quality) are 

relatively conservative. Mean reproductive investment per inter-spawning interval is higher at 

the highest rations but it declines over successive spawnings irrespectively of ration. The study 

of Wooton and Fletcher (2009) is one of the most comprehensive studies of the effect of food 

amount on reproductive parameters of a batch spawner along the course of the breeding season. 

 

 

European seabass (Dicentrarchus labrax, Moronidae) 

 A marine species of the eastern North Atlantic Ocean, European seabass ranges from the 

British Isles to North Africa (Vinagre et al. 2009). It is an iteroparous breeder: at about three 

years old females start spawning offshore during winter-spring (Felip et al. 2001; Pawson et al. 

2007; Vinagre et al. 2009). Oocytes appear to develop from primary growth to secondary growth 

stage and from secondary growth to mature oocytes in a group-synchronous manner, but the size 

hiatus that characterises group-synchrony is not unambiguous (Mayer et al. 1990). Annual 

potential fecundity, measured with a determinate method, is dependent on fish size, and ranges 

from 0.5 to 2.0 million (Wassef and Emary 1989; Mayer et al. 1990). European seabass spawn 3-

4 batches during the spawning season; batch fecundity declines rapidly with each successive 

batch (Mylonas et al. 2003).  

 

 European seabass appear to be a mixed capital-income spawner, although experimental 

studies, together with the ambiguity of oocyte synchrony, make this conclusion preliminary. In 

the lab, reduced food provided to females spawning for their second time produced no obvious 

effects on immediate reproductive potential (Cerdá et al. 1994a). Compared to females fed full 

rations, females fed half rations spawned about the same number of eggs, and although these 

eggs were smaller, the egg quality was about the same (i.e., as measured by percent buoyant and 

larval survival to day 40). Nonetheless, females fed half rations grew less, in both length and 

weight, and had significantly lower condition than females fed full rations so that reproduction is 

prioritised over somatic growth. Therefore, a reduced food amount does not immediately reduce 

reproductive potential but presumably lowers future reproductive potential (see above, size effect 
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on fecundity). European seabass is cultured for food, particularly around the Mediterranean Sea, 

so the lack of knowledge of the effect of food quality on reproductive potential is a bottleneck 

for hatchery production (Carrillo et al. 1995; Bell et al. 1997; Bruce et al. 1999). Artificial diets 

have produced poor egg quality, in terms of buoyancy and hatch rates, compared to natural diets 

(Navas et al. 2001). Fish fed artificial diets with about 32-33% protein and carbohydrate showed 

several adverse effects compared to fish fed diets with higher protein and lower carbohydrate 

compositions (Cerdá et al. 1994b). The former group produced fewer eggs, these eggs were less 

buoyant, fewer hatched, and there were more deformities among those eggs that did hatch. A 

better understanding of how diet composition affects reproductive potential relative to the 

reproductive strategy of European seabass has immediate practical importance. 

 

 

Largemouth bass (Micropterus salmoides, Centrarchidae) 

 A freshwater species native to North America, largemouth bass originate in the St. 

Lawrence (Great Lakes), Mississippi River basin and Atlantic drainages. This popular sport fish 

has been widely introduced elsewhere including the tropics and high elevation lakes (Dadzie and 

Aloo 1990; Martin et al. 1999; Lorenzoni et al. 2002; Curtis and Wehrly 2006; Neal and Noble 

2006). Within the native range, northern largemouth bass (M. salmoides salmoides) is considered 

genetically distinct from Florida largemouth bass (Micropterus salmoides floridanus), naturally 

occurring in south Florida, but these types interbreed to yield an intergrade subspecies (Isely et 

al. 1987; Kassler et al. 2002; Rogers et al. 2006). Males exhibit parental care by building and 

defending nests, and post-spawning brood care can last up to a month. Largemouth bass are 

iteroparous breeders: maturity occurs by age 3-5 years and longevity is 24 years in the northern 

extent of the range (Beitinger and Fitzpatrick 1979; Curtis and Wehrly 2006). However, 

introduced populations in the tropics show very different traits, where maturity occurs as early as 

four months and longevity decreases to as few as three years (Beitinger and Fitzpatrick 1979; 

Neal and Noble 2006). Similarly, spawning duration shows a clear latitudinal gradient: less than 

a month in Canada, about two months in northern temperate areas of the U.S., 3-4 months in 

southern temperate areas, more than four months in S. Florida and S. Texas, six months in Puerto 

Rico and eight months in Equatorial Kenya (Lamkin 1900; Stranahan 1908; Clugston 1966; 

Jackson 1979; Maraldo and MacCrimmon 1981; Isely et al. 1987; Dadzie and Aloo 1990; Gran 

1995; Gross et al. 2002; Rogers et al. 2006; Waters and Noble 2004; Curtis and Wehrly 2006). 

Rogers et al. (2006) demonstrated both a temperature and genetic influence on spawning 

periodicity of largemouth bass for Florida and intergrade subspecies just within the latitudinal 

range of Florida (31–25
o
N). Growth rates increase from the northern range to the subtropics, but 

at more tropical locations it appears that excess allocation to reproduction results in a trade-off 

with annual growth (Neal and Noble 2006). 

 

 Based upon field and controlled rearing studies, individual female largemouth bass have 

been noted to ovulate multiple batches (Lamkin 1900; Stranahan 1908; Kelley 1962; Jackson 

1979; Gran 1995). Their oocytes appear to develop asynchronously from the primary to the 

secondary growth phase and group synchronously through maturation (comparing figures of 

oocyte size progression in Kelley 1962; Timmons et al. 1980; and Gran 1995). While 

investigators recognise the potential for extended seasonality and multiple spawning in Florida 

and intergrade largemouth bass (Rogers 2006; Neal and Noble 2006) there may be some 
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uncertainty over the seasonality and consequent reproductive potential of northern largemouth 

bass. Recent interpretations of the reproductive timing describe northern largemouth bass having 

evolved fairly brief spawning periods so that offspring match the seasonal peak in prey 

availability (DeVries et al. 2009). These interpretations may in part be based upon earlier 

investigations of reproductive histology that suggest northern largemouth bass have only one 

spawning episode (James 1946; Goubier et al. 1997). Jackson (1979), noted contrary results to 

James (1946) and the latitudinal trend (above) certainly suggests that extended seasonality and 

multiple spawnings occur throughout much of the natural and introduced range. Further, Carlson 

(1973) and Jackson (1979) have induced protracted spawning in northern largemouth bass by 

manipulating photoperiod and temperature which suggests a good deal of plasticity may exist.  

Adult Micropterus spp. (largemouth and smallmouth bass) have been noted to be inhibited from 

spawning (skipped spawning) due to several factors including temperature, photoperiod, 

eutrophication, dietary steroids, crowding and sensitivity to rearing conditions (Osburn 1923; 

Chew 1972, 1974; Smith 1976; Jackson 1979; Cantin 1987; Raffetto et al. 1990; Rosenblum et 

al. 1995; Martin et al. 1998, 1999). The descriptions of inhibited spawning appears similar in 

that secondary oocytes begin maturation but become arrested, followed by prolonged resorption 

of degenerating follicles. Workers often referred to this condition as “over-ripened” however in a 

review of omitted annual reproduction, Rideout et al. (2005) referred to this as the “reabsorbing” 

type of omission.  

 

All fecundity references to date applied a determinate methodology (Kelley 1962; 

Timmons et al. 1980; Dadzie and Aloo 1990; Brown and Maceina 2002; Lorenzoni et al. 2002; 

Rodriguez-Sanchez et al. 2009). However, there is strong evidence that largemouth bass exhibits 

an indeterminate fecundity type: 1) There is no hiatus between primary and secondary growth 

oocytes suggesting asynchronous development 2) they are a batch spawner with extended (two to 

several months) spawning season that increases from temperate to tropical reaches of their range, 

and 3) they exhibit a tropical growth pattern that can be energetically accounted for in females by 

substantial energy allocation to reproduction in the form of an indeterminate multiple spawning 

strategy (Neal and Noble 2006). 

Largemouth bass show a high degree of capital energy allocation based upon studies 

conducted in temperate areas. Condition indices reflect annual feeding and energy allocation 

patterns (Heidinger and Crawford 1977; Adams et al. 1982; Brown and Murphy 2004). Somatic 

growth is maximised and females build gonads and store visceral fat in the fall. This coincides 

with a piscivore foraging advantage in this season (Adams et al. 1982; Brown and Murphy 

2004). There is evidence for winter to early spring translocation of more energy from muscle, 

mesenteric and visceral stores, and liver to complete gonad development by early spring; the 

liver appears not to be the long-term storage organ seen in other fish families (Adams et al. 1982; 

Brown and Murphy 2004). Consumption (by females) increases in spring and remains high 

during spawning and post-spawning periods. So some degree of income allocation to spring 

reproduction may occur in temperate areas (Adams et al. 1982). An inference from Neal and 

Noble (2006) is that there is much higher energy allocation to reproduction in the tropics, where 

there is less seasonal pattern to consumption: thus energy allocation should follow an increased 

income pathway. The latitudinal shift from capital to income allocation was independently 

predicted using a dynamic state model incorporating largemouth bass bioenergetic functions 

(Garvey and Marschall 2003). But the model limited reproductive allocation to no more than 

10% of wet mass (deterministic assumption) and the prediction of income investment at lower 
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latitudes was only distinguishable when high rations were provided. The few investigations of 

food and reproduction have been directed at broodstock management. Pelleted diets with 

increased lipid, protein and balanced archidonic acid content resulted in increased growth, 

mesenteric fat and fecundity in comparison to either pellets or forage fish with lesser amounts of 

these ingredients (Snow 1970; Rosenblum et al. 1994; and Rosenblum et al. 1995). There is 

some evidence that energetic allocations are likely a function of size or age. Goodgame and 

Miranda (1993) cite an M.S. thesis (Reagan 1969) that made proximate analysis measures and 

documents that fat percentage increases exponentially with length. Goodgame and Miranda 

(1993) suggest that length-related differences in energy reserves may allow larger largemouth 

bass to spawn earlier, which they documented, but gave no inference about the potential to 

spawn more times over a longer duration. Largemouth bass is probably one of the best known 

species regarding energetics of growth, feeding and metabolism but surprisingly little is known 

regarding the effects of food on female reproductive allocation. A clear gradient of life history 

response to latitude is evident with potentially much higher reproductive allocation moving 

towards the tropics. Renewed investigation of the reproductive biology would likely improve our 

understanding of largemouth bass life history tradeoffs and recruitment.  

 

 

Pumpkinseed (Lepomis gibbosus, Centrarchidae) 

 A freshwater species native to eastern temperate habitats of North America, New 

Brunswick to South Carolina, pumpkinseed has been broadly introduced throughout North 

America, South America and Europe and is considered invasive in some areas (Copp et al. 

2004). It is an iteroparous breeder, wherein males build nests and exhibit parental care. 

Pumpkinseed live to about 8 years in the wild and mature between ages 2 to 5, but these traits 

vary across the range and in introduced populations (Deacon and Keast 1987). There is a spring-

summer spawning season in temperate areas but spawning occurs year-round in the tropics 

(Magalhães and Ratton 2005). Females are best characterised as multiple ovulators, spawning in 

batches (Fox and Crivelli 2001; Zieba et al. 2010). While pumpkinseed fecundity has most often 

been estimated using determinate methodology (Deacon and Keast 1987; Crivelli and Mestre 

1988; Fox and Keast 1991; Gutiérrez-Estrada et al. 2000; Vila-Gispert and Moreno-Amich 2000) 

there is strong evidence that the fecundity type is indeterminate due to batch spawning, extended 

spawning seasons across a latitudinal gradient and lack of size hiatus between primary and 

secondary growth oocytes supporting de novo vitellogenesis. An indeterminate approach was 

undertaken by Fox and Crivelli (1998) who showed that populations in Canada and France 

allocated between 11.5 and 27% of prespawning biomass to reproduction. Fox and Crivelli 

(1998) considered these levels of allocation to be relatively low compared to other multiple 

spawning species. 

 

Pumpkinseed females exhibit an income pattern of energy allocation to reproduction with 

evidence that energy for oocyte maturation is gained just prior to or during the reproductive 

period (Justus and Fox 1994). Overall body condition shows little seasonal fluctuation, however, 

the liver and gonad both increase in mass coincident with the onset of spawning (Crivelli and 

Mestre 1988). Field studies support the linkage between food and reproduction with observations 

of stunted growth, poor condition, reduced fecundity, and reduced egg size attributed to intra-

specific competition and low food availability (Deacon and Keast 1987; Danylchuk and Fox 
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1994; Copp et al. 2004). A high proportion of small mature females may not reproduce, or may 

delay reproduction in a given season if food resources are inadequate (Danylchuk and Fox 1994). 

In general, a high degree of plasticity of growth, maturity and fecundity is noted although effects 

are not isolated in field studies. This plasticity together with increased reproductive allocation 

moving towards the tropics and high r-selected life history endpoints may explain success in 

introductions and invasions. 

 

 

White crappie (Pomoxis annularis, Centrarchidae) 

A freshwater species native to temperate areas of eastern North America (Canada to the 

northern coast of the Gulf of Mexico) and introduced to western North America, white crappie is 

an iteroparous breeder: it matures from age-1 to age-3 and lives about 10 years (Hansen 1951; 

Carlander 1977; Bunnell 2002). Similar to other centrarchids, males build and defend nests. 

There is a latitudinal gradient in spawning duration; about 1 month in the northern range and 2-3 

months in Florida (Pine and Allen 2001). Spawning also begins about a month earlier in the 

southern range (late March-May in Texas) compared to the northern range (May-June in 

Ontario) (Schloemer 1947; Thomas and Kilambi 1981). Previous studies assume a determinate 

fecundity type (Mathur et al. 1979; Thomas and Kilambi 1981; Baker and Heidinger 1994; 

Dubuc and DeVries 2002) and one to a few ovulations per mature individual per season have 

been noted (Siefert 1968; Thomas and Kilambi 1981) which supports this assumption. 

Vitellogenesis appears to be group synchronous but no clear size hiatus is evident between 

primary and secondary growth oocytes (Thomas and Kilambi 1981; Pope et al. 1996) indicating 

some uncertainty.  

 

White crappie gain and store energy for reproduction months before the spawning period 

consistent with being a capital breeder. Following the summer growth period, condition increases 

and gonads develop in the fall well ahead of spring spawning (Neumann and Murphy 1992; 

Gabelhouse 1991; Bunnell and Marshall 2003). Field studies, rearing experiments and model 

observations link the effect of food on reproductive output. Based upon field studies accounting 

for lake productivity, high food availability is associated with high fall condition (total lipids, 

relative weight, and liver weight), which in turn is correlated with ovarian development in the 

pre-spawning period (Neumanm and Murphy 1992). Further, condition level and ovarian energy 

density is a function of size or age (Neumann and Murphy 1992; Gablehouse 1991; Dubuc and 

DeVries 2002; Bunnell et al. 2005). Based on an outdoor pool experiment established four 

months prior to spawning, Bunnell et al. (2007) found that high-fed females increased egg size 

and built both liver mass and gonads directly. In contrast, intermediate- and low-fed females 

sacrificed liver stores to develop gonads. They also found that 8% of low- and intermediate-fed 

females did not develop gonads which is similar to the average reported (9%) from 7 reservoirs. 

As a criterion to match gonad investment patterns observed in field studies, an individual-based 

model predicted that fall allocation to ovaries occurred in response to the risk of poor spring 

feeding conditions rather than recent summer feeding success (Bunnell et al. 2003).  While field 

studies reveal that productivity of closed freshwater systems affects adult condition and 

reproductive development, the results are equivocal regarding reproduction and recruitment 

success. Spawning stock biomass is a significant predictor of recruitment in one study (Bunnell 

et al. 2006) but not in others (Maceina 2003). Crappies are notorious for variable recruitment in 
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lakes and reservoirs—presumably reflecting differing productivity levels and hydrodynamic 

conditions acting on both adult and larval stages. As a consequence, explanatory mechanisms are 

often based upon inference due to uncontrolled effects (Maceina 2003; Bunnell et al. 

2006).White crappie appear to be rather fixed in their reproductive timing and capital allocation 

pattern over a broad latitudinal gradient in contrast to other centrarchids. 

 

 

Eurasian and yellow perch (Perca fluviatilis, P. flavescens, Percidae) 

Two freshwater species of temperate and subarctic regions of Eurasia and North 

America, the Eurasian and yellow perch became separated about 8 million years ago (Craig 

2000); they are so similar in morphology, physiology, behavior and ecology that they can be 

considered biologically equivalent (Thorpe 1977). Both species are iteroparous and spawn once a 

year in spring (Thorpe 1977; Treasurer 1981; Craig 2000; Heibo et al. 2005). There is 

considerable variation in the rates of growth, maturation, and fecundity of perch populations, 

which demonstrates lower reproductive investment at higher latitudes (Heibo et al. 2005) and life 

history tradeoffs resulting in stunting (Jansen 1996). Several aspects of perch reproduction are 

worth mentioning: two primordial ovaries are fused into a single organ, and all eggs are shed at 

once in a single gelatinous ribbon (Treasurer and Holliday 1981). In addition to total spawning at 

the individual level, spawning is highly synchronised at the population level often concentrated 

to a few days (Tsai and Gibson 1971). Perch have group-synchronous oocyte development, with 

a distinct cohort of advancing oocytes suitable for determinate fecundity estimation (Treasurer 

and Holliday 1981; Sulistyo et al. 1998). Fecundity increases with perch size and age, and varies 

widely both annually and across populations (Tsai and Gibson 1971; Sztramko and Teleki 1977; 

Thorpe 1977; Treasurer 1981; Jansen 1996; Lauer et al. 2005).  

 

Perch are extreme capital breeders. Perch feed opportunistically on insects, crustaceans, 

crayfish and fish (Craig 1980; Thorpe 1977) which can influence age at first reproduction (Hayes 

and Taylor 1990). If suitable fish prey are present, perch become piscivorous and attain greater 

growth rates and sizes but delay maturation (Heibo et al. 2005). After spawning, they recover 

rapidly, as a new batch of oocytes may begin vitellogenesis as soon as one month after spawning 

(Treasurer and Holliday 1981). The bulk of energy investment into the gonad occurs during 

autumn but continues through the winter as perch feed even under the ice. Several studies have 

suggested some of the annual variation in fecundity of perch is related to food supply (Petrovski 

1960; Tsai and Gibson 1971; Thorpe 1977; Craig 1980). The inclusion of energy allocated to 

reproduction in yellow perch bioenergetic models also provides evidence that high fecundity in 

spring – and strong recruitment to follow – is related to the condition of females in the preceding 

autumn (Henderson et al. 2000). It is also apparent that not all mature perch females spawn 

annually (i.e. skip spawning), and this skipped spawning is related to the energetic condition in 

the preceding year (Henderson et al. 2000; Holmgren 2003). There is no evidence of 

downregulation of fecundity through atresia in perch, but occasionally spawning may be 

disrupted (due to environmental or behavioral factors), as evident by observations of egg-bound 

females and massive postovulatory degeneration (Treasurer and Holiday 1981).  
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Walleye and pikeperch (Sander vitreus, S. lucioperca, Percidae) 

Two freshwater species of temperate and subarctic regions of North America and 

Eurasia, walleye and pikeperch are closely related (Sloss et al. 2004). Both species are 

iteroparous and spawn once a year in spring (Hokanson 1977; Lappalainen et al. 2003; Rennie et 

al. 2008). There is wide variation in the rates of growth, maturation and fecundity of Sander 

populations across latitude (Lappalainen et al. 2003; Rennie et al. 2008). They are total ovulators 

and lay their eggs in a benthic nest (Hokanson 1977; Lappalainen et al. 2003). They have group-

synchronous oocyte development (Malison et al. 1994; Malison and Held 1996), suitable for 

determinate fecundity estimation (Carlander 1945; Wolfert 1969). Fecundity increases with size 

and age (Lappalainen et al. 2003). Slower growing populations live longer so they have an 

equivalent lifetime egg production compared to faster growing populations (Craig et al. 1995).  

 

Sander are extreme capital breeders. After spawning, they begin to store energy and 

develop a new batch of vitellogenic oocytes (Golovanenko et al. 1970). Ovarian lipids are 

derived from visceral fat deposits, and gonadal development will stop if there is insufficient 

surplus energy through the winter (Henderson et al. 1996). Relative fecundity was positively 

correlated with higher ovarian lipids, but whole-body lipid concentrations was negatively 

correlated with smaller egg size, suggesting a compensatory mechanism that could limit 

reproductive potential (Moles et al. 2008). Annual variation in fecundity has been related to fish 

age, habitat quality (i.e., dissolved oxygen), and food supply (Lappalainen et al. 2003). Increased 

population density is associated with delayed maturity (Schueller et al. 2005), decreased 

population density was associated with higher fecundity (Baccante and Reid 1988), and a newly 

transplanted population of walleye had extraordinarily high fecundity (Maule and Horton 1985). 

Year class strength has been positively correlated with the amount of surplus energy available to 

spawners (Henderson and Nepszy 1994). Madenjian et al. (1996) reported a correlation between 

shad abundance and subsequent walleye recruitment. 

 

 

Pebbled butterflyfish (Chaetodon multicinctus, Chaetodontidae) 

 A tropical, marine species, pebbled butterflyfish is endemic to the Hawaiian Islands 

(Craig et al. 2010). It is a semelparous breeder: maturation occurs at about 13 months and a 

series of multiple spawning bouts, primarily in winter-spring, last as long as one year (Tricas 

1986; Tricas and Hiramoto 1989). Fecundity estimation is indeterminate. Primary oocytes 

develop asynchronously to the secondary growth stage, and secondary growth oocytes develop 

group-synchronously to the mature stage (Tricas 1986; Tricas and Hiramoto 1989). Batch 

fecundity, which range from 1,000 to 20,000 eggs, increases with fish size, but other factors such 

as season or lunar cycle confound the fecundity-size relationship (Tricas 1986). 

 

 Pebbled butterflyfish are mixed capital-income breeders. Females spawn continuously for 

months, but Tricas (1986) noted that both sexes deposit large visceral fat stores during summer, 

prior to the reproductive season. Summer coincides with maximal growth of corals, their primary 

prey. Living in pairs, large males defend the largest territories and mate with the largest females 

(Tricas 1986; Driscoll and Driscoll 1988). Corals with the highest energy content and lowest 

handling costs are preferred prey, and territory size is a function of food abundance and 
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competitor density; however, corals are inherently low in energy so pebbled butterflyfish spend 

over 90% of their time budget feeding on scleractinian coral polyps (Tricas 1986; 1989a; 1989b; 

Aeby 2002). Thus, regardless of the energy gained by feeding during a protracted spawning 

period (e.g., income breeding), Tricas (1986) concluded that the length of the spawning period 

itself appeared to be limited by the amount of energy stored as fat during the summer preceding 

this period. 

 

 

Spiny chromis (Acanthochromis polyacanthus, Pomacentridae) 

A reef-associated marine species of the Indo-West Pacific (Allen 1991, Planes et al. 

2001), spiny chromis is an iteroparous breeder: breeding generally begins in 3-year old fish 

(Thresher 1985) but may occur among 2-year olds on outer-shelf reefs (Kingsford and Hughes 

2005), and as early as nine months among juveniles hatched and reared in captivity (Kavanagh 

2000). Spawning occurs between monogamous pairs, mostly during austral spring and early 

summer (October-January) (Thresher 1985; Hilder and Pankhurst 2003). Primary growth oocytes 

develop group synchronously into secondary growth oocytes, but they can do so multiple times 

within a year, so that annual fecundity is indeterminate (Nakazono 1993; Pankhurst et al. 1999). 

Several hundred eggs are produced per ovulated batch (Donelson et al. 2008). Typically only one 

or two batches of mature eggs are produced each season (Thresher 1985), but up to five batches 

were produced in laboratory conditions with high ration (Donelson et al. 2008). Although they 

have the capacity to spawn more than one batch in a season, in nature, multiple broods are a 

response to loss of a mate or egg predation. Another special reproductive feature of this species 

is that parental care occurs for both eggs and fry (there is no independent planktonic larval 

stage), which makes this species a reliable experimental model in the laboratory (Robertson 

1973; Donelson et al. 2008). 

Spiny chromis is primarily a capital breeder. If the first clutch is successful, no further 

clutches are spawned, and energy and time is diverted to parental care. Field-based studies 

suggest that food abundance or energy reserves limits spiny damselfish reproductive output. For 

example, high densities of adults are associated with delayed spawning and reduced initial clutch 

size (Thresher 1983), as well as reduced steroidogenic capacity and lower fecundity (Pankhurst 

et al. 2008). Also, when multiple clutches are produced within a year, subsequent batches have 

distinctly reduced reproductive output (Thresher 1985; Pankhurst et al. 1999). In laboratory 

experiments, breeding pairs fed high amounts of food for two months before breeding had better 

condition, commenced breeding earlier, had higher reproductive output (number of eggs × mean 

egg volume), and their eggs exhibited increased survival during embryogenesis than breeding 

pairs fed low rations (Donelson et al. 2008). Experimentally manipulated high food rations, 

resulting in high condition of breeders, also improved larval quality (Donelson et al. 2009). 

Finally, increased temperatures, well above typically encountered now but postulated under 

certain climate change scenarios, reduce reproductive output of spiny chromis (Donelson et al. 

2010).  
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Lesser sandeel (Ammodytes marinus, Ammodytidae)  

A marine species of the eastern North Atlantic, lesser sandeel inhabitats offshore 

sandbanks (Mitchell et al. 1998). It is an iteroparous breeder: maturation occurs in the first year, 

and over half the fish are mature in the second year, with a maximum age of three years 

(Boulcott et al. 2007). Females spawn during winter (December-January; Winslade 1974b; 

Gauld and Hutcheon 1990) and fecundity estimation is determinate (Bergstad et al. 2001; 

Boulcott and Wright 2008). Primary growth oocytes develop group synchronously into 

secondary growth oocytes during summer (Boulcott and Wright 2008). Specific information on 

total spawning for lesser sandeel was unavailable, but the congener, A. personatus, spawns only 

one batch per year (Yamada 2009).  

 

 Lesser sandeel are extreme capital breeders. They bury in the sediment during most of 

autumn to spring, such that allocation of energy for reproduction comes from energy stored 

during the late-spring to summer feeding period (Winslade 1974a; Boulcott and Wright 2008). In 

a laboratory experiment, the growth of age-1, tagged individuals was followed from early 

summer (June) to just prior to spawning (November), where Boulcott and Wright (2008) 

observed a critical period for maturity determination. Fish in better condition during the early 

summer – but not later – were more likely advance a clutch of secondary oocytes and thereby 

mature and spawn the following winter.  

 

 

Longjaw mudsucker (Gillichthys mirabilis, Gobiidae) 

An estuarine species of the west coast of North America, longjaw mudsucker ranges from 

central California to Baja California (Barlow 1963). It is an iteroparous breeder: maturation 

occurs in the first year for this short-lived (4-6 years) fish, and females spawn from spring to 

autumn (Walker et al. 1961; de Vlaming 1972a; McGourty et al. 2009). Fecundity estimation is 

indeterminate. Primary growth oocytes develop asynchronously into secondary growth oocytes 

(de Vlaming 1972a), and females spawn 2-3 times per spawning season (Walker et al. 1961; 

Barlow and de Vlaming 1972). Barlow (1963) and de Vlaming (1972a) recognised a prolonged 

spawning season by the population, in association with prolonged seasonal productivity, but the 

short period of batch spawning by individuals demonstrates that spawning by the population of 

females was not synchronised.  

 

 Longjaw mudsucker are primarily capital breeders. In one experiment, gonads regressed 

when food was withheld completely from females prior to spawning. In other experiments, 

gonads recrudesced when food was withheld from post-spawning, regressed females, but at great 

cost to stored energy (de Vlaming 1971). Under more typical condition, somatic growth is fastest 

in the hot summer months when gonads are regressed (Walker et al. 1961), demonstrating that 

longjaw mudsuckers typically partition somatic and reproductive growth into separate seasons. 

This species is tolerant of wide range of environmental conditions (e.g., Gracey et al. 2001; 

Evans and Somero 2008; Logan and Somero 2008), and in addition to food-related effects, the 

effects of the abiotic and physiological mechanisms on this gobiid’s reproductive biology have 

been investigated experimentally (de Vlaming 1971; 1972b; 1972c).  
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Turbot (Scophthalmus maximus, Scophthalmidae) 

 A temperate, marine species of the eastern North Atlantic Ocean, turbot is distributed 

from Norway to the Iberian peninsula (Millner et al. 2005). It is an iteroparous breeder: at 4-5 

years old females start spawning during summers (Jones 1974; Roff 1981). Oocytes develop 

from primary growth to secondary growth stage in a group-synchronous manner, and turbot 

ovulate in batches (Jones 1974; McEvoy 1984; Bromley et al. 2000). Potential annual fecundity, 

measured with a determinate method, ranges from 1 to 8 million eggs (Jones 1974; Bromley et 

al. 1986). Spawning frequency, batch fecundity, and potential annual fecundity all increase with 

size and age, but egg diameters decline with each successive, within-year batch (Bromley et al. 

1986; McEvoy and McEvoy 1991; Mugnier et al. 2000).  

 

 Turbot are capital breeders, as evident from experimental adjustment to the timing and 

amount of food with respect to specific stages of vitellogenesis. Reduced rations during 

vitellogenesis, 4 months prior to spawning, were particularly disruptive by preventing maturation 

in significant numbers of females (Bromley et al. 2000). Reduced rations prior to vitellogenesis, 

4-8 months to spawning, followed by full rations during vitellogenesis, had less of an effect, but 

still produced smaller gonads and lower fecundity (Bromley et al. 2000). The experimental 

design used by Bromley et al. (2000) was specifically compelling because all fish started as a 

similar size, and since they were feed the same amount during the experiment (i.e., the full, half, 

or reduced rations were staggered), spawning fish were of similar sizes at the end of the 

experiment. The decline in egg size for individual females as spawning progresses is also 

evidence of depleted yolk reserves by the end of the spawning season (McEvoy and McEvoy 

1991; 1992). 

 

 

Plaice (Pleuronectes platessa, Pleuronectidae) 

A temperate, marine species of the eastern North Atlantic Ocean, plaice is distributed 

from Norway to the Iberian peninsula (Millner et al. 2005). It is an iteroparous breeder: nearly all 

females mature by age 5 in this long-lived fish (Bagenal 1966; Roff 1981; Rijnsdorp et al. 1991). 

Females spawn in spring (Barr 1963) and fecundity estimation is determinate (Horwood 1990; 

Urban 1991). Primary growth oocytes develop group synchronously into secondary growth 

oocytes (Horwood 1990). Females spawn in batches, and batch fecundity increases with fish size 

(Urban 1991). 

 

 Plaice are extreme capital breeders. They feed during an extended post-spawning period, 

when soma growth and total energy increases steadily in summer and autumn (Rijnsdorp 1989; 

1990). They fast during winter, prior to spawning, when energy is transferred from the soma to 

the gonad. They do not feed prior to the spawning season and they draw heavily on protein and 

lipid reserves for spawning (Dawson and Grimm 1980; Rijnsdorp and Ibelings 1989). Bagenal 

(1966) and Nash et al. (2000) associated high fecundity in stock areas with lower density, 

inferring better feeding. The decision of how much energy to devote to spawning apparently 

occurs during the feeding season. In the laboratory, small rations led to skipped spawning, when 

no vitellogenic clutch developed (Horwood et al. 1989; Rijnsdorp 1990; Kennedy et al. 2008). 



31 

 

Plaice collected at sea have very low levels of atresia (Armstrong et al. 2001), and in the lab, 

higher levels of atresia induced by small rations is only evident well before spawning (Horwood 

et al. 1989; Kennedy et al. 2008). Therefore, plaice set up their annual fecundity irreversibly, 

well before the spawning season. 

 

 

Winter flounder (Pseudopleuronectes americanus, Pleuronectidae) 

A marine-estuarine species of the western North Atlantic Ocean, winter flounder spawn 

earliest (winter-spring) south of New England and later (spring-summer) in Canada (Pereira et 

al. 1999; Wuenschel et al. 2009). It is an iteroparous breeder: females spawn first at about 2-3 

years old (Roff 1981; Witherell and Burnett 1993; McBride et al. 2013). Oocytes develop from 

primary growth to secondary growth stages in a group-synchronous manner (Dunn 1970). 

Oocytes develop from secondary growth to mature stages synchronously (Fig. 3g-l of main 

article; Topp 1968; Burton 1998; Wuenschel et al. 2010; Rowinski et al. 2010). Mature females 

may skip spawning in some years, but if not, one clutch of secondary oocytes develop per year 

with little evidence of atretic down regulation of this advancing clutch of oocytes (Tyler and 

Dunn 1976; McElroy et al. 2013). Therefore, a determinate fecundity method and estimates of 

potential annual fecundity should be similar to realised annual fecundity. Potential annual 

fecundity is typically 100s of thousands of eggs and as high as 1.5 million eggs per female 

(Smith 1898; McElroy et al. 2013). Females can be best characterised as total ovulators that 

behaviourally spawn in batches; they ripen their eggs in a single wave (Burton 1998). Fully ripe 

eggs (which are demersal) have been observed to be released in several spawning events over 

several days (Stoner et al. 1999).  

 

Winter flounder are extreme capital breeders. Immediately after spawning, they develop a 

clutch of vitellogenic oocytes for the following year. However, some mature fish will skip 

spawn. Whether to skip or spawn depends on nutritional status of the fish early in the feeding 

season (i.e., summer). As demonstrated experimentally in the laboratory, it is condition not age 

that determines whether a female will skip; skipping occurs when a vitellogenic clutch of oocytes 

does not advance in post-spawning females (Tyler and Dunn 1976; Burton and Idler 1984, 1987; 

Burton 1991, 1994). In the field, skip spawning appears to range from zero on Georges Bank, 

less than 5% in southern New England, but as high as 10-30% in more northern populations 

(Burton 1999; Wuenschel et al. 2009; McBride et al. 2013; McElroy et al. 2013). Regulatory 

options for winter flounder have been considered based on egg-per-recruit models (Boreman et 

al. 1993) but because skip spawning will lower estimates of spawning stock biomass, this needs 

to be explicitly accounted for (Burton 1999).  

 

 

Sole (Solea solea, Soleidae) 

A temperate, marine species of the eastern North Atlantic Ocean, sole is distributed from 

Norway to the Iberian peninsula (Millner et al. 2005). It is an iteroparous breeder: nearly all 

females are mature by age 4 in this medium-lived (9 years) fish (Roff 1981; Rijnsdorp et al. 

1991; Teixeira and Cabral 2010). Females spawn in spring, earliest in the south and latest in the 

north (Koutsikopoulos and Lacroix 1992; Fox et al. 2000; Teixeira and Cabral 2010). Various 
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studies have advocated that a determine fecundity method can be used in northern populations 

(Horwood and Greer Walker 1990; Witthames and Greer Walker 1995; Witthames et al. 2009). 

Nonetheless, primary growth oocytes develop asynchronously into secondary growth oocytes in 

many if not all populations (Urban 1991; Witthames and Greer Walker 1995; Rijnsdorp and 

Witthames 2005). Females spawn in batches, and uncharacteristically for a fish, there is no 

correlation between batch fecundity and fish size (Urban 1991; Witthames and Greer Walker 

1995). Potential annual fecundity is related to fish size (Millner et al. 1991), but very high levels 

(~28%) of atretic vitellogenic oocytes have been observed during the spawning season 

(Witthames and Greer Walker 1995; Armstrong et al. 2001). 

 

 Sole have been referred to as both capital and income breeders (Witthames et al. 1995; 

Kjesbu and Witthames 2007). A direct connection between feeding and reproductive potential 

was not established but may be inferred by the relationship that fish with higher condition during 

the spawning season had higher fecundity (Millner et al. 1991). Feeding is reduced during the 

spawning period but does not stop (Devauchelle et al. 1987; Molinero and Flos 1992). The 

spawning period in the northern part of its range has been estimated at 60 days (Armstrong et al. 

2001), so it is evident that income contributions can occur during breeding. Laboratory 

experiments have not, however, focused attention on the link between nutrition or energy and 

reproductive potential. Nonetheless, Millner et al. (1991) report substantial variations in 

fecundity between stock areas and years, Devauchelle et al. (1987) report that fecundity was 

negatively affected by high temperatures during oogenesis, and Bromley (2003) and Kjesbu and 

Witthames (2007) report that larger females have higher reproductive potential than smaller 

females. Since sole appears to straddle the capital-income continuum, demonstrates clinal 

variation in life history traits along a latitudinal gradient (Türkmen 2003; Mollet et al. in press), 

and is a frequent subject for aquaculture (Imsland et al. 2003), this species is well suited for 

further study.  
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