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Abstract In this paper, we consider a one-dimensional linear Timoshenko system of thermoelasticity type III
and prove a polynomial stability result for the non-equal wave-propagation speed case.
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1 Introduction

A simple model describing the transverse vibration of a beam, which has the form
⎧
⎨

⎩

ρutt = (K (ux − ϕ))x , in (0, L) × (0,+∞)

Iρϕt t = (E Iϕx )x + K (ux − ϕ), in (0, L) × (0,+∞),
(1.1)

was developed by Timoshenko [24], where t denotes the time variable and x is the space variable along the
beam of length L , in its equilibrium configuration, u is the transverse displacement of the beam and ϕ is the
rotation angle of the filament of the beam. The coefficients ρ, Iρ, E, I and K are respectively the density
(the mass per unit length), the polar moment of inertia of a cross section, Young’s modulus of elasticity, the
moment of inertia of a cross section, and the shear modulus.

Many researchers got interested in studying (1.1) and various damping mechanisms have been used to
stabilize the vibrations of this system. The obtained results show that the presence of dissipation for both equa-
tions leads to uniform stability (exponential or polynomial) regardless to the values of the constants ρ, Iρ, E, I
and K . This has been demonstrated by Kim and Renardy [10], Feng et al. [3], Raposo et al. [21], Santos [22],
Messaoudi and Mustafa [11] and others.
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However, the stability in the case of only one damping in the second equation of (1.1) depends on the

values of the constants ρ, Iρ, E, I and K . Precisely, if the wave-propagation speeds are equal
(

K
ρ

= E I
Iρ

)
,

then a uniform stability can be obtained for weak solutions. This has been showed by Soufyane and Wehbe
[23], Ammar-Khodja et al. [1], Guesmia andMessaoudi [8,9], Messaoudi andMustafa [12,14] andMessaoudi
et al. [13], Fernández Sare and Rivera [4], Messaoudi and Said-Houari [16], Rivera and Racke [18,19] and

Mustafa and Messaoudi [20]. Whereas, in the opposite case
(

K
ρ

�= E I
Iρ

)
, a weaker rate of decay is obtained

for more regular solutions. In this regard, we quote, among others, the work of Fernández Sare and Rivera [4],
Messaoudi and Said-Houari [16].

Regarding stabilization via heat effect, Rivera and Racke [17] considered the following system
⎧
⎨

⎩

ρ1ϕt t − (σ (ϕx , ψ))x = 0
ρ2ψt t − bψxx + k(ϕx + ψ) + γ θx = 0
ρ3θt − kθxx + γψt x = 0,

where ϕ,ψ, and θ are the transverse displacement of the beam, the rotation angle of the filament and the
difference temperature, respectively. Under appropriate conditions of σ, ρi , b, k, γ, they proved several expo-
nential decay results for the linearized system and non-exponential stability result for the case of different
wave speeds.

In the above system, the heat flux is given by Fourier’s law. As a result, this theory predicts an infinite
speed of heat propagation. That is any thermal disturbance at one point has an instantaneous effect elsewhere
in the body. Experiments showed that heat conduction in some dielectric crystals at low temperatures is free of
this paradox and disturbances, which are almost entirely thermal, propagate in a finite speed. To overcome this
physical paradox, many theories have merged such as thermoelasticity by second sound or thermoelasticity
type III. For background related to this theory, we refer the reader to Green and Naghdi [5–7] and the review
paper of Chandrasekharaiah [2].

Messaoudi and Said-Houari [15] considered the following Timoshenko-type system with thermoelasticity
type III

⎧
⎪⎨

⎪⎩

ρ1ϕt t − K (ϕx + ψ)x = 0 in (0, ∞) × (0, 1),

ρ2ψt t − bψxx + K (ϕx + ψ) + βθx = 0 in (0,∞) × (0, 1),

ρ3θt t − δθxx + βψt t x − κθt xx = 0 in (0,∞) × (0, 1),

(1.2)

together with initial and boundary conditions, and showed, under the condition K
ρ1

= b
ρ2

, that weak solutions

decay exponentially. In the present work, we consider (1.2) for the case K
ρ1

�= b
ρ2

and prove a polynomial decay
result for strong solutions.

2 Main result

In this section, we state and prove our main decay result. In order to exhibit the dissipative nature of System
(1.2), we introduce the new variables φ = ϕt and � = ψt , So, System (1.2) takes the form

⎧
⎪⎨

⎪⎩

ρ1φt t − K (φx + �)x = 0 in (0,∞) × (0, 1)

ρ2�t t − b�xx + K (φx + �) + βθt x = 0 in (0,∞) × (0, 1)

ρ3θt t − δθxx + β�t x − κθt xx = 0 in (0, ∞) × (0, 1).

(2.1)

We supplement (2.1) with the following initial and boundary conditions
⎧
⎨

⎩

φ(., 0) = φ0, φt (., 0) = φ1, �(., 0) = �0, �t (., 0) = �1
θ(., 0) = θ0, θt (., 0) = θ1
φx (0, t) = φx (1, t) = �(0, t) = �(1, t) = θx (0, t) = θx (1, t) = 0.

(2.2)

From Eqs. (2.1)1, (2.1)3 and (2.2), we easily verify that

d2

dt2

1∫

0

φ(x, t) dx = 0 and
d2

dt2

1∫

0

θ(x, t) dx = 0.
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So, if we set

φ(x, t) = φ(x, t) − t

1∫

0

φ1(x) dx −
1∫

0

φ0(x) dx

θ(x, t) = θ(x, t) − t

1∫

0

θ1(x) dx −
1∫

0

θ0(x) dx

then simple substitution shows that (φ, �, θ̄) satisfies (2.1), the boundary conditions in (2.2), and more impor-
tantly

1∫

0

φ(x, t) dx = 0 and

1∫

0

θ̄ (x, t) dx = 0, ∀ t ≥ 0. (2.3)

In this case, Poincaré’s inequality is applicable for θ and φ. In the sequel, we work with φ and θ but for
convenience, we write φ and θ instead.

Before stating and proving our stability result, we present a short discussion of the well-posedness and the
semigroup formulation of (2.1) and (2.2). For this purpose, we introduce, as in [17],

L2∗(0, 1) =
⎧
⎨

⎩
u ∈ L2(0, 1) /

1∫

0

u(x) dx = 0

⎫
⎬

⎭

H1∗ (0, 1) =
⎧
⎨

⎩
u ∈ H1(0, 1) /

1∫

0

u(x) dx = 0

⎫
⎬

⎭

So, V := (φ, φt , �, �t , θ, θt )
T satisfies

{
Vt = AV
V (0) = V0

,

where V0 := (φ0, φ1, �0, �1, θ0, θ1)
T and A is the differential operator

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
K
ρ1

∂2x 0 K
ρ1

∂x 0 0 0

0 0 0 1 0 0

− K
ρ2

∂x 0 b
ρ2

∂2x − K
ρ2

0 0 − β
ρ2

∂x

0 0 0 0 0 1

0 0 0 − β
ρ3

∂x
δ
ρ3

∂xx
κ
ρ3

∂xx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The energy space

H := H1∗ (0, 1) × L2∗ (0, 1) × H1
0 (0, 1) × L2 (0, 1) × H1∗ (0, 1) × L2∗ (0, 1)

is a Hilbert space with respect to the inner product

〈V, W 〉H = ρ1
〈
V 2, W 2〉

L2(0,1) + ρ2
〈
V 4, W 4〉

L2(0,1) + b
〈
V 3

x , W 3
x

〉

L2(0,1)

+ K
〈
V 1

x + V 3, W 1
x + W 3〉

L2(0,1) + δ
〈
V 5, W 5

〉

L2(0,1)
+ ρ3

〈
V 6, W 6〉

L2(0,1)

for V = (
V 1, V 2, V 3, V 4, V 5, V 6

)T
and W = (

W 1, W 2, W 3, W 4, W 5, W 6
)T

. The domain of A is then

D (A) :=
{

V ∈ H / V 1, V 3, V 5 ∈ H2 (0, 1)/V 1
x , V 4, V 5

x , V 6
x ∈ H1

0 (0, 1), V 2 ∈ H1∗ (0, 1)
}

.
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Theorem 2.1 Assume that (φ0, φ1, �0, �1, θ0, θ1) ∈ D(A). Then, (2.1) and (2.2) have a unique strong solu-
tion satisfying

(φ, φt , �, �t , θ, θt ) ∈ C1 ([0,∞) ,H) ∩ C0 ([0,∞) ,D (A)) . (2.4)

The proof can be carried similarly to [13].
To state our decay result, we introduce the first and second-order energy functionals:

E1(t) =
1∫

0

(
ρ1φ

2
t + ρ2�

2
t + ρ3θ

2
t + K |φx + �|2 + b�2

x + δθ2x
)
dx (2.5)

E2(t) =
1∫

0

(
ρ1φ

2
t t + ρ2�

2
t t + ρ3θ

2
t t + K |φxt + �t |2 + b�2

xt + δθ2xt

)
dx

Theorem 2.2 Assume that (φ0, φ1, �0, �1, θ0, θ1) ∈ D(A), then the strong solution (2.4) satisfies, for a
positive constant k, independent of t and the initial data, the estimate

E1(t) ≤ k (E1(0) + E2(0))

t
, ∀t > 0

The proof of our result will be established through several lemmas.

Lemma 2.3 Let (φ, �, θ) be the strong solution of (2.1) and (2.2). Then, we have

E ′
1(t) = −κ

1∫

0

θ2t x dx ≤ 0 (2.6)

E ′
2(t) = −κ

1∫

0

θ2t t x dx ≤ 0. (2.7)

Proof Multiplying equations in (2.1) by φt , �t and θt , respectively, integrating over (0, 1) and summing up
we obtain (2.6). Then, differentiating (2.1) with respect to t and multiplying the resulting equations by φt t , �t t
and θt t , respectively, integrating over (0, 1) and summing up we obtain (2.7). �
Lemma 2.4 Let (φ, �, θ) be the strong solution of (2.1) and (2.2). Then, the functional

I1(t) := ρ2

1∫

0

�t� − ρ1

1∫

0

φt

⎛

⎝

x∫

0

�(y, t) dy

⎞

⎠

satisfies, for all ε1 > 0,

I
′
1(t) ≤ −b

2

1∫

0

�2
x + ε1

1∫

0

φ2
t +

(

ρ2 + ρ2
1

4ε1

) 1∫

0

�2
t + β2

2b

1∫

0

θ2t x . (2.8)

Proof By taking a derivative of I1 and using (2.1) and (2.2), we conclude

I
′
1(t) = −b

1∫

0

�2
x + ρ2

1∫

0

�2
t − β

1∫

0

�θt x − ρ1

1∫

0

φt

⎛

⎝

x∫

0

�t (y, t) dy

⎞

⎠ .

Using Young’s inequality and
⎛

⎝

x∫

0

�t (y, t) dy

⎞

⎠

2

≤
1∫

0

�2
t and

1∫

0

�2 ≤
1∫

0

�2
x ,

Estimate (2.8) is established. �
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Lemma 2.5 Let (φ, �, θ) be the strong solution of (2.1) and (2.2). Then, the functional

I2(t) := ρ2ρ3

1∫

0

�t

⎛

⎝

x∫

0

θt (y, t) dy

⎞

⎠− δρ2

1∫

0

θx�

satis f ies, f or all ε2 > 0,

I
′
2(t) ≤ −βρ2

2

1∫

0

�2
t + ε2

1∫

0

(�2
x + φ2

x ) + Cε2

1∫

0

θ2t x . (2.9)

Proof By taking a derivative of I2 and using (2.1) and (2.2), we get

I
′
2(t) = βρ3

1∫

0

θ2t − ρ3b

1∫

0

θt�x + ρ3K

1∫

0

θtφ − K

1∫

0

�

⎛

⎝

x∫

0

θt (y, t) dy

⎞

⎠

+ κρ2

1∫

0

θt x�t − βρ2

1∫

0

�2
t − δρ2

1∫

0

�θt x .

The assertion of the lemma then follows, using Young’s and Poincaré’s inequalities. �
Lemma 2.6 Let (φ, �, θ) be the strong solution of (2.1) and (2.2). Then, the functional

I3 (t) := ρ2

1∫

0

�t (φx + �) + bρ1
K

1∫

0

�xφt

satisfies

I ′
3 (t) ≤ − K

2

1∫

0

(φx + �)2 + ρ2

1∫

0

�2
t + β2

2K

1∫

0

θ2t x +
(

bρ1
K

− ρ2

) 1∫

0

�t xφt . (2.10)

Proof A differentiation of I3, taking into account (2.1) and (2.2), gives

I ′
3 (t) = −K

1∫

0

(φx + �)2 − β

1∫

0

(φx + �) θt x + ρ2

1∫

0

�2
t +

(
bρ1
K

− ρ2

) 1∫

0

�t xφt .

Consequently, (2.10) follows by Young’s inequality. �
Lemma 2.7 Let (φ, �, θ) be the strong solution of (2.1) and (2.2). Then, the functional

I4 (t) := −ρ1

1∫

0

φtφ − ρ2

1∫

0

�t�

satisfies

I ′
4 (t) ≤ −ρ1

1∫

0

φ2
t − ρ2

1∫

0

�2
t +

(

b + 1

2

) 1∫

0

�2
x

+ K

1∫

0

(φx + �)2 + β2

2

1∫

0

θ2t x . (2.11)
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Proof A differentiation of I4, taking into account (2.1) and (2.2), gives

I ′
4 (t) = −ρ1

1∫

0

φ2
t − ρ2

1∫

0

�2
t + b

1∫

0

�2
x + K

1∫

0

(φx + �)2 + β

1∫

0

�θt x .

Using Young’s and Poincaré’s inequalities for the last term, (2.11) follows. �
Lemma 2.8 Let (φ, �, θ) be the strong solution of (2.1) and (2.2). Then, the functional

I5(t) :=
1∫

0

ρ3θtθ + κ

2
θ2x + β�xθ,

satisfies, for all ε2 > 0,

I ′
5(t) ≤ −δ

1∫

0

θ2x +
(

ρ3 + β2

4ε2

) 1∫

0

θ2t + ε2

1∫

0

�2
x . (2.12)

Proof A simple differentiation of I5, taking into account (2.1) and (2.2), leads to

I ′
5 (t) = ρ3

1∫

0

θ2t − δ

1∫

0

θ2x + β

1∫

0

�xθt

Finally, by Young’s inequality, (2.12) is obtained. �
Proof of Theorem 2.2 We define the Lyapunov functional L as follows

L (t) := N (E1 (t) + E2(t)) + N1 I1 + N2 I2 + I3(t) + 1

4
I4(t) + I5(t).

A combination of (2.6)–(2.12) and use of

1∫

0

θ2t ≤
1∫

0

θ2t x ,

1∫

0

φ2
x dx ≤ 2

1∫

0

(φx + �)2 + 2

1∫

0

�2
x , (2.13)

give

L′(t) ≤ −
(
1

4
ρ1 − N1ε1

) 1∫

0

φ2
t −

(
K

4
− 2ε2N2

) 1∫

0

(φx + �)2

−
[

N2βρ2

2
− N1

(

ρ2 + ρ2
1

4ε1

)

− 3

4
ρ2

] 1∫

0

�2
t

−
[

N1b

2
− 3ε2N2 − 1

4

(
1

2
+ b

)

− ε2

] 1∫

0

�2
x − δ

1∫

0

θ2x

−
1∫

0

θ2t − Nκ

1∫

0

θ2xtt − (Nκ − λ)

1∫

0

θ2xt +
(

bρ1
K

− ρ2

) 1∫

0

�t xφt (2.14)

where λ is a positive constant independent of N .
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At this point, we choose our constants carefully. First, let us take N1 large enough such that N1b
4 −

1
4

( 1
2 + b

)
> 0, then pick ε1 so small that 1

4ρ1 − N1ε1 > 0. We then choose N2 large enough so that

N2βρ2
2 − N1

(

ρ2 + ρ2
1

4ε1

)

− 3
4ρ2 > 0. Finally, we select ε2 so small that

N1b

2
− 3ε2N2 − 1

4

(
1

2
+ b

)

− ε2 > 0 and
K

4
− 2ε2N2 > 0.

Therefore (2.14) takes the form

L′(t) ≤ −2ηE1(t) − Nκ

1∫

0

θ2xtt − (Nκ − λ)

1∫

0

θ2xt +
(

bρ1
K

− ρ2

) 1∫

0

�t xφt (2.15)

for some constant η > 0.
Now, we handle the last term in the right-hand side of (2.15), using (2.1)3 as follows:

1∫

0

ψxtφt = 1

β

1∫

0

φt ((κθxxt + δθxx − ρ3θt t )

= − ρ3

β

1∫

0

φtθt t − δ

β

d

dt

1∫

0

θxφx + δ

β

1∫

0

θxtφx

− κ

β

d

dt

1∫

0

θxtφx + κ

β

1∫

0

θxttφx .

Multiplying by ρ1b
K − ρ2, we get

(
ρ1b

K
− ρ2

) 1∫

0

ψxtφt = − d

dt

(
ρ1b

K
− ρ2

) 1∫

0

(
δ

β
θxφx + κ

β
θxtφx

)

+
(

ρ1b

K
− ρ2

)
⎛

⎝
δ

β

1∫

0

θxtφx + κ

β

1∫

0

θxttφx − ρ3

β

1∫

0

φtθt t

⎞

⎠ .

Therefore, recalling Young’ s inequality and (2.13), we get, ∀ε3 > 0,

(
ρ1b

K
− ρ2

) 1∫

0

ψxtφt ≤ − d

dt

(
ρ1b

K
− ρ2

) 1∫

0

(
δ

β
θxφx + κ

β
θxtφx

)

+ ε3

1∫

0

(
φ2

t +�2
x +(φx + �)2

)+
C
(

ρ1b
K − ρ2

)2

ε3

1∫

0

(
θ2xt + θ2xtt

)
. (2.16)

where C is a positive constant depending on δ, β, κ, ρ3 only. We then define

L(t) := L(t) +
(

ρ1b

K
− ρ2

) 1∫

0

(
δ

β
θxφx + κ

β
θxtφx

)
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to get, from (2.15) and (2.16),

L ′(t) ≤ −2ηE1(t) + ε3

1∫

0

(
φ2

t + �2
x + (φx + �)2

)

−
(

Nκ − C ′

ε3

) 1∫

0

θ2xtt −
(

Nκ − λ − C ′

ε3

) 1∫

0

θ2xt . (2.17)

where C ′ = C
(

ρ1b
K − ρ2

)2
. Using (2.5), choosing ε3 small enough and taking N large enough so that L is

positive and Nβκ − λ − C ′
ε3

> 0, (2.17) takes the form

L ′(t) ≤ −ηE1(t).

Simple integration, recalling that E1 is non-increasing, leads to

t E1(t) ≤
t∫

0

E1(s) ds ≤ 1

η
(L(0) − L(t)) ≤ L(0)

η

Consequently,

E1(t) ≤ L(0)/η

t
≤ k (E1(0) + E2(0))

t
, ∀t > 0.

This completes the proof. �
Remark 2.9 Similar results can be established for boundary conditions of the form

φ(0, t) = φ(1, t) = �x (0, t) = �x (1, t) = θx (0, t) = θx (1, t).
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