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Abstract: Based on enhanced upconversion, we demonstrate a highly 
efficient method for converting a full image from one part of the 
electromagnetic spectrum into a new desired wavelength region. By 
illuminating a metal transmission mask with a 765 nm Gaussian beam to 
create an image and subsequently focusing the image inside a nonlinear 
PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state 
Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have 
experimentally achieved an upconversion efficiency of 40% under CW 
conditions. The proposed technique can be further adapted for high 
efficiency mid-infrared image upconversion where direct and fast detection 
is difficult or impossible to perform with existing detector technologies. 

©2009 Optical Society of America 
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1. Introduction 

An efficient way to transform light from one part of the spectrum into another, desired part is 
by using intra-cavity upconversion. Upconversion has been investigated for decades but with 
a particularly strong focus in the late 1960s to mid 1980s [1–7]. However, one important 
parameter limiting the applications of the upconversion process has been the upconversion 
efficiency. Efficient upconversion is important especially for applications requiring high 
sensitivity and can even be traded for increased resolution in the image formation. One 
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method to enhance the efficiency has been intra-cavity upconversion. This was first 
demonstrated using lasers [4], but the efficiency was here limited by the intra-cavity loss 
originating from absorption in the nonlinear crystal. The (non-imaging) upconversion 
efficiency was reported to be 0.38% at best. During the last thirty years only a tiny fraction of 
reported upconversion work has involved imaging. 

Using a diode-pumped, high finesse, solid-state laser at 1342 nm and a tapered diode laser 
at 765 nm, more than 300 mW of upconverted 488 nm light was generated in a periodically-
poled KTiOPO4 (PPKTP) crystal. The power conversion efficiency from 765 nm to 488 nm 
was 32% [8]. It has also been shown that a non-Gaussian tapered diode laser beam can be 
spatially filtered using SFG with a Gaussian solid-state laser beam to produce a SFG beam 
with a nearly Gaussian profile [9]. The spatial filter characteristics depend on the spatial 
overlap in the focus plane of the two interacting beams. If the Fourier transform of a non-
Gaussian tapered diode beam is focused to a size where only its fundamental Gaussian spatial 
component overlaps the Gaussian beam of the solid-state laser, it is possible to obtain a nearly 
Gaussian SFG beam. Similarly, if strong focusing is utilized, all the detailed spatial features of 
the tapered diode laser beam appear in the SFG beam. 

If the input beam comprises several spatial frequencies originating from a coherently 
illuminated object, i.e. not necessarily a near Gaussian field distribution, in this paper it will 
be demonstrated that it is possible to transform the object field at one wavelength into a new 
wavelength, with high conversion efficiency. A special aspect of the reported method is that it 
is all optical and performs an upconversion of a full 2-dimensional image. This is in contrast 
to the more conventional method based on upconverting one point at a time in combination 
with a x,y-scanning device [10], thus gaining in simplicity and speed. 

2. Theory 

In the following, an expression for the intensity profile of an upconverted object field, Eobject = 
Eobject(x,y) will be derived, where x and y denote the transverse coordinates of the field. The 
upconverted image, Eup = Eup(x,y), is the result of the upconversion process between Eobject and 
a Gaussian intra-cavity field, UGauss = UGauss(u,v), where u and v are the transverse coordinates 
at the Fourier plane. The specific system under consideration is shown in Fig. 1. 
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Fig. 1. The system under consideration; An object field is focussed to the Fourier plane inside a 
nonlinear crystal where it interacts with the Gaussian intra-cavity field of a diode-pumped 
solid-state laser to generate an upconverted field at the image plane. 

It is assumed that the object field is subject to coherent monochromatic illumination [11]. 
For simplicity, it is further assumed that the system is operated in the non-saturated regime. 
This assumption implies that the amplitudes of the generating fields, Eobject and UGauss can be 
approximated as being constant throughout the entire interaction length of the nonlinear 
crystal. Further, a plane wave approximation is used, and finally, the length of the crystal is 
considered to be short compared to the confocal length of the interacting beams. All these 
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assumptions are not strictly necessary, but allow derivation of a simple relation between the 
light from the object and the corresponding upconverted image at the image plane. Using the 
mentioned assumptions, Eup can be calculated as: 
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The upconverted wavelength λ3 is determined by the energy conservation law: 

3 1 2

1 1 1

λ λ λ
= + , where λ2 is the wavelength of the intra-cavity Gaussian beam and λ1 is the 

wavelength of light emitted from the object. n1, n2 and n3 are the refractive indices of the non-
linear crystal corresponding to λ1, λ2 and λ3. f and f1 are the focal lengths of the Fourier 

transforming lenses, PGauss is the power of the intra-cavity Gaussian field, 
0
ε is the vacuum 

permeability, c is the speed of light in vacuum, w0 is the radius of the intra-cavity beam at the 
beam waist, deff is the effective second order nonlinearity of the crystal and L is the length of 
the crystal. From Eq. (1), the intensity profile of the upconverted light Iup can be calculated as: 
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  (2) 

Equation (2) shows that a spatial filtering between the object field and the Gaussian field 
is taking place. We note that this expression is a generalization of the usual nonlinear theory 
[12], where two Gaussian beams interact. In the limit where the beam radius w0 of the intra-
cavity Gaussian field becomes sufficiently large (effectively transforming the normalized 
convolution function into a delta-function), a perfect upconverted replica of the original 

image, in the new spectral region can be obtained, scaled with a factor 3 1
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Equation (3) is the main result of the analysis. It is noted that the point spread function 
P(x,y,x0,y0) can be expressed as: 
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Equation (4) is derived assuming that Eobject is a delta function positioned at the 
coordinates (x0,y0). From Eq. (4), it can be seen that the size of the Gaussian beam defines the 
shape of the point spread function, and thus the resolution of the imaging process. The cost of 
increasing the beam size to improve the resolution is a reduced intensity (assuming constant 
power), therefore the conversion efficiency reduces accordingly. However, another important 
and limiting parameter in the image upconversion is the acceptance bandwidth of the 
nonlinear process. The angular acceptance parameter of the SFG process acts as a filter 
limiting the maximum size of Eobject to be converted. Similarly, the spectral acceptance 
parameter defines the spectral width of frequencies that can be upconverted in a specific set-
up. 
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3. Setup 

The setup used in the experiment is shown in Fig. 2. It consists of a single-frequency 765 nm 
external-cavity tapered diode laser (ECDL), a high finesse, Z-shaped 1342 nm solid-state laser 
cavity and an intra-cavity PPKTP crystal. Detailed characteristics of the 1342 nm laser can be 
found in [8,9]. The beam waist of the 1342 nm laser field inside the PPKTP crystal, is located 
approximately 60 mm from mirror M2. The size of the beam waist is 44 µm, ignoring a slight 
astigmatism arising from the tilted mirrors M2 and M3, as well as from the passage of 
Brewster cut PPKTP surfaces. 

The intra-cavity power of the 1342 nm laser is measured to be approximately 120 W when 
the laser crystal (LC) is pumped with 2 W of 808 nm light. 

The 765 nm tapered diode laser is coupled to a single-mode polarization maintaining fiber. 
The Gaussian output beam from the fiber is collimated by a lens L1 (f = 50 mm) to a beam 
diameter of approximately 10 mm. This beam is used for coherent illumination of a 
transmission mask [see Fig. 3(a)] to form an object beam (Eobject). The two slits forming the 
cross are 1 mm by 5 mm in width. (Some minor diffraction effects appear in the transmitted 
image). The 765 nm object is transformed by a lens L2 (f = 100 mm) in combination with 

curved mirror M2 (f = −200 mm) to the Fourier plane inside the PPKTP crystal. The PPKTP 
crystal is placed at the beam waist in the 1342 nm cavity. 

IS O L ATO R
E C D L

765 nm

M 1

M 3 M 4

LC

Pum p

M 2

P
P

K
T

P

488 nm

1342 nm

H W P

H W P

PM fiber

M A S K

X

8 08 nm

L2
L1

L3

 

Fig. 2. Schematic of the experimental setup. The 765 nm beam from a ECDL is masked and 
single-passed through a PPKTP crystal placed in the beam-waist of a high-finesse 1342 nm 
laser for efficient SFG of the image into the blue spectral region. 

The 10 mm long Brewster cut PPKTP crystal is temperature controlled using a Peltier 
element. The temperature is set to 43.5°C to facilitate optimum quasi-phase matching for sum 
frequency generation between the 1342 nm beam and the object field at 765 nm. Finally, the 
upconverted object field is collimated by a lens L3 (f = 75 mm) to form an upconverted image 
at 488 nm. 

4. Results 

Figure 3(a) shows the transmission mask which is coherently illuminated by the collimated 
765 nm external-cavity laser. The transmitted light, after passage through the mask, 
corresponds to Eobject and is shown in Fig. 3(b). The Fourier transform of the object field 
(Eobject) is performed using the lens L2 (f = 100 mm) placed 80 mm from the object plane and 

62 mm from mirror M2 (acting as a negative lens with f = −200 mm). At the position of the 
beam waist inside the PPKTP crystal, the high intra-cavity field of the 1342 nm laser and the 
Fourier transformed object field interact through SFG to generate a blue, 488 nm upconverted 
image. This is shown in Fig. 3(d). Figure 3(c) shows the calculated upconverted image using 
the simple theory outlined in section 2 with some additional stretching (18% on the horizontal 
axis and 3% on the vertical axis) originating from imaging/upconverting through the Brewster 
cut surfaces. The additional stretching along the horizontal axis from Brewster-cut surfaces 
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can be calculated to be 
765 488

cos( ) / cos( )
nm nm

θ θ  where λθ  is the incidence angle required to 

obtain parallel beams inside the crystal with the 1342 nm beam. For the vertical axis a careful 

analysis gives an additional stretching of 
488 765 3 1

sin( ) / sin( ) /
nm nm

n nθ θ =  also originating from 

the Brewster-cut surfaces. 
Comparing the measured and calculated intensity profiles, a reasonably good qualitative as 

well as quantitative agreement is found. Note that the effect of the point spread function 
smearing out the edges of the image is clearly seen. 

(a) (b) (c) (d)  

Fig. 3. (a) Transmission mask positioned at the object plane. (b) Direct image of the 765 nm 
coherently illuminated mask. (c) Theoretically calculated 488 nm light distribution at image 
plane (based on image b). (d) Measured 488 nm upconverted cross at the image plane. Images 
(b)-(d) have been colored to reflect the color of the light creating the patterns. 

The power transmitted through the mask was measured to 15 mW, and the blue image 
contained 6 mW of power. Thus, a 40% power conversion efficiency, corresponding to more 
than 25% quantum efficiency in the image upconversion process, has been obtained. To the 
authors best knowledge, this is the highest upconversion efficiency of real 2-D images 
reported under CW condition. A power conversion efficiency of 40% corresponds to an 
average decrease in Eobject of 14%. Therefore, the underlying assumption of having constant 
Eobject throughout the crystal is reasonable, even at this very high conversion efficiency. 

(a) (b) (c)

(d) (e)  

Fig. 4. Theoretical and experimental examples of offset beams inside the non-linear crystal. (a) 
Theoretical upconverted image arising from a beam displacement of 83 µm (1.9 w0) along x-
axis (idealized crosshair). (b) Same as (a) but calculated from Fig. 3(b). (c) Experimentally 
obtained upconverted image corresponding to image (b). (d) Calculation of the upconverted 
beam with displacement along the x-y axes based on Fig. 3(b). (e) Experimentally obtained 
upconverted image corresponding to image (d). 

To further investigate the predictive capability of the theory, the Fourier transform of the 
object field [Fig. 3(b)] was translated with respect to the Gaussian field along the x- and x-y 
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axes, respectively. Figures 4(a)-4(c) demonstrate that a misalignment of the transverse 
position of the Gaussian 1342 nm beam favors the higher spatial frequency components of the 
object, as expected from Fourier optics theory [11]. 

The experimentally upconverted image is in good qualitative agreement with the 
theoretically predicted upconverted image. 

Similarly, Figs. 4(d)-4(e) show a more complicated example where the translation has 
been made in the x-y plane. Also here we note a good correspondence between the predicted 
and measured results. 

5. Discussion 

The upconverted image in Fig. 3(d) is not sharp due to different types of distortion. The 
concave mirror M2 acts as a negative lens and induces astigmatism in the single-pass 765 nm 
beam due to the oblique angle of incidence. This source of distortion can be removed using a 
resonator geometry where the object beam is transmitted through a plane mirror. Another 
distorting effect is the spatial filtering relating to the point spread function. The 1342 nm 
beam has a Gaussian profile and upconverts the high-frequency components of the image with 
lower efficiency than the low-frequency components. Thus, the upconverted image has no 
sharp edges. A larger 1342 nm beam profile or stronger focusing of the infrared image would 
improve the quality (resolution) of the upconverted image. However, increasing the diameter 
of the 1342 nm beam decreases the conversion efficiency, while stronger focusing is limited 
by the angular acceptance parameter of the nonlinear crystal, i.e. the effective size of the 
object Eobject that can be converted is reduced. Thus, a trade-off is encountered, allowing for 
optimization of one of the two parameters only at the expense of the other. 

An approximate value for the maximum resolution, of the current setup can be estimated 
to be 10x10 pixels. This can however be upgraded easily either by using a shorter crystal, 
allowing for larger angles, or by redesigning the laser cavity to support a larger beam 

diameter. While the resolution scales with 2

0
w  the power efficiency scales inversely according 

to the predictions of Eq. (2) and (3). The drop in conversion efficiency can to some extent be 
countered by increasing the power in the laser cavity, or by using a crystal with higher non-
linearity. 

6. Conclusion 

In this paper, an all optical technique for efficient upconversion of full 2-dimensional images 
in one step is demonstrated. Experimentally, 40% power conversion efficiency is 
demonstrated for upconversion of a 765 nm coherently illuminated object to 488 nm under 
CW condition. An efficiency which to the author’s best knowledge is the highest reported. 
Further optimization of the enhancement cavity is expected to lead to further increase in the 
conversion efficiency, or improved resolution. 

A simple theoretical description is presented, clarifying the basic nonlinear image 
formation parameters as well as the limiting factors. The experimental results are in good 
qualitative as well as quantitative agreement although not all parameters have been included, 
e.g. the angular acceptance parameter of the crystal. 

Generally the presented technique offers the possibility for high-speed upconversion of 2-
D images from parts of the spectrum not easily accessed by conventional detectors to e.g. the 
NIR where simple and efficient Si based image detectors exist. 
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