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Abstract
The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs)
held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from
the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the
villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and
systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial
monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability.
Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as
inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important
contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review
aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-
microbial interactions, and where research in this field is directed.
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The Small Intestinal Epithelium

The small intestinal epithelium allows water, electrolytes, and

nutrients to be absorbed from the digesta while also functioning

as an essential component of the gut barrier. This single-cell-

thick epithelium prevents the entry of harmful microbes, tox-

ins, and antigens from the intestinal lumen into the subjacent

tissue, lymphatics, and vasculature. To permit efficient absorp-

tion, the small intestine has a thin and freely moveable nonad-

herent unstirred mucus layer to inhibit bacterial-epithelial

interactions and diffusion of large molecules.35 Unlike other

parts of the gastrointestinal tract, which have the additional

protection of an inner adherent mucus layer,35 the mucus layer

of the small intestine can be easily and rapidly disrupted in dis-

ease processes and conditions such as shock.67 The loss of

epithelial contiguity can consequently result in serious pertur-

bation of the gut’s barrier function.

A common feature conserved among mammals that possess

small intestinal villi (the duck-billed platypus being an interest-

ing exception that has intestinal folds)40 is that newly generated

intestinal epithelial cells (IECs) within the crypt migrate

toward the villus tip region, where loss of senescent epithelial

cells occurs in the extrusion zone (Fig. 1). IECs have an

extremely short lifetime. There is a rapid, almost complete

renewal of the functional villus epithelium by the stem cells of

the crypts of Lieberkühn every 2 to 6 days50 in most adult mam-

mals. Enterocytes therefore have the highest turnover rate of any

fixed-cell population in the body.28 Mathematical modeling sug-

gests that in the mouse, an estimated 1400 mature enterocytes

are shed from a single villus tip in each 24-hour period,63

equating to 2 � 108 cells being shed from the small intestine per

day. In humans, this daily loss has been estimated at 1011 cells.63

Cell loss at the villus tip is, in normal circumstances,

compensated for by stem cell mitosis within the crypts of

Lieberkühn. The definitive identity of the intestinal stem cell,

however, has been controversial for many years. Proposed stem

cell models include the ‘‘þ4 model’’ put forward by Marshman
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and colleagues49 and the ‘‘stem cell zone’’ model originally

suggested by Cheng and Leblond.13 The ‘‘þ4 model’’ hypothe-

sizes that definitive stem cells occupy the fourth cell position

when counting from the crypt base immediately above

the Paneth cell zone. These putative stem cells positively label

for B-cell lymphoma Mo-MLV insertion region 1 homolog

(Bmi-1), homeodomain-only protein (Hopx), telomerase

reverse transcriptase (Tert), and leucine-rich repeats and

immunoglobulin-like domains protein 1 (Lrig1).68 In the ‘‘stem

cell zone’’ model, it is postulated that the crypt base columnar

(CBC) cells that are interspersed between Paneth cells are the

true stem cells. In mice, in which intestinal cell dynamics have

been best studied, 6 or more crypts63 provide each villus with

new epithelial cells by asymmetric cell division of 14 to 16

CBCs at the crypt base.65 This CBC population, expressing

leucine-rich repeat-containing G protein–coupled receptor 5

(Lgr5),4 produces transit-amplifying daughter cells that

undergo migration along the crypt-villus axis and differentiate

into absorptive enterocytes, goblet cells, or neuroendocrine

cells. In vivo confocal imaging in mice has shown that central

Lgr5-positive CBC cells maintain a position within the crypt

base, while CBC cells in the upper part of the stem cell niche

may be passively displaced into the transit-amplifying cell

population.65 This conveyor belt from the crypt results in a

continuous supply of epithelial cells, which on reaching the

extrusion zone undergo apoptosis and are shed into the lumen.

Paneth cells are an exception and either remain at the crypt

base or migrate downward, depending on which hypothesis

is true. Paneth cells possess prominent eosinophilic granules

containing antimicrobial substances, including a-defensins

and lysozyme,8 and have been hypothesized to protect and

potentially regulate the stem cell niche. However, they are

variably abundant among species, and while exceptionally

abundant in some, such as the giant anteater,79 and prominent

in primates, rodents, and the horse,28 they are absent in dogs,

cats, and pigs,8 which raises questions about the role of these

cells in this regard.

The Epithelial Barrier

Intestinal epithelial cells are arranged as a single-cell-thick, tall

columnar epithelium and possess a microvillus brush border at

their apical plasma membrane. Microvilli are additionally cov-

ered by a matrix of glycoproteins constituting the glyocalyx

and numerous digestive enzymes, including disaccharidases

and aminopeptidases,8 which participate in the membranous

phase of digestion. Individual epithelial cells are anchored at

their basolateral pole to the basement membrane by hemides-

mosomes and attached to their neighbors by a narrow continu-

ous belt of tight junctions (Fig. 2). It is these tight junctions

between epithelial cells that are responsible for maintaining

epithelial barrier function (i.e. excluding intestinal luminal bac-

teria, noxious substances, and enzymes). However, the loss of

whole cells from an epithelial monolayer presents a basic prob-

lem: how can cells detach without creating discontinuities and

defects in the epithelial barrier?

The physiology of epithelial cell loss at the villus tip was

historically viewed as a simple passive process of epithelial

Figure 1. Illustration of small intestinal villi and epithelial cell turnover. New epithelial cells are generated in the crypt and migrate and differ-
entiate during their journey along the villus until they are shed at the extrusion zone at the villus tip. Figure 2. Illustration of intestinal epithelial
cell junctional complexes. Individual intestinal epithelial cells are joined to their neighbors by a continuous belt of tight junctions around the
upper portion of the cell, which are responsible for gut/epithelial barrier function. The lateral spaces between cells allow paracellular transport.
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sloughing of individual cells or clusters of cells.50 In reality,

intestinal epithelial cell shedding is a highly complex process

of orchestrated events that maintains contiguity of

the epithelium and gut barrier function. In species where it

has been extensively studied, insights into the process of cell

shedding have emerged. Understanding this process and its reg-

ulation, both in health and disease, is fundamental to under-

standing intestinal homeostasis.

Uncompensated enterocyte loss results in a decrease in the

villus/crypt ratio. Major questions surround the control of

migration and maturation of IECs and how and why apoptosis

and shedding are restricted to the villus tip extrusion zone. Dif-

ferences in the interaction between IECs and the basement

membrane along the crypt-villus axis have been hypothesized,

via gradients in expression of some basement membrane com-

ponents5 or expression of some integrins by IECs.5 The balance

of cell shedding at the villus tip matching renewal by the crypts

is integral to maintaining small intestinal morphology and

function. The major driving force of crypt proliferation is Wnt

signaling.78 It has been known for many years that organs also

secrete factors that inhibit proliferation, collectively termed

chalones.25 Subsequent investigations have shown that in the

small intestine, the most important of these factors that down-

regulate crypt epithelial production are probably bone morpho-

genic proteins (BMPs), which are generated within the

intravillus mesenchyme.78 Many other factors also influence

the rate of physiological cell loss at the villus tip and the rate

of cell replacement from the crypts, including luminal nutri-

tion,10 growth factors such as transforming growth factor b,8

hormones such as glucagon-like peptide 2,8,10 neural influ-

ences,41 circadian rhythms,37 and, importantly, the intestinal

microbiota.71 In neonatal pigs, for example, prior to achieving

climax flora, an IEC turnover of 7 to 10 days compares to a 2-

to 3-day turnover when pigs are 3 weeks of age.28 This slower

turnover rate occurs in germ-free animals, resulting in longer

villi.71 Germ-free conditions also result in perturbation of nutri-

ent absorption; mice reared in these conditions do not absorb

monosaccharides or develop adipose reserves as efficiently as

conventionally reared mice.3

IEC shedding as a process represents a very challenging

phenomenon to study and understand. The small intestine

undergoes extremely rapid postbiopsy and postmortem autoly-

sis. Despite the high rate of physiological IEC loss from indi-

vidual villi, the very short time it takes for individual cells to

be extruded dictates that shedding events are observed rela-

tively rarely in fixed specimens, even when fixation has been

optimal. In fact, when hematoxylin and eosin (HE)–stained

sections of the human small intestine were systematically

examined, a shedding cell was observed in less than 6% of vil-

lus sections.9 Fixation by definition means that the dynamic

process of extrusion cannot be fully appreciated; rather, various

stages of the process may be observed without an obvious pic-

ture of the sequence of events.

Nonetheless, the morphological features associated with

intestinal epithelial cell death, extrusion, shedding, and detach-

ment have been studied in fixed tissues in several species and

have revealed notable interspecies differences. In the guinea

pig, apoptotic fragments are pinched off effete enterocytes,

leaving junctional complexes intact between neighboring

cells.31 In reindeer and seals, fragments of shedding entero-

cytes are lost either by extrusion or by phagocytosis by under-

lying macrophages.55 In cattle, gd T cells are closely associated

with apoptotic intestinal epithelial cells.76 Histologic studies in

humans have shown shedding to be of the whole-cell extrusion

type and that shed enterocytes are not associated with lympho-

cytes or macrophages.9 Therefore, the mechanism of epithelial

shedding in humans appears morphologically similar to the

process observed in mice, rats, and hamsters, suggesting that

these species are appropriate models of human cell shedding

and regulation.

Whole-Cell Extrusion

Several models have been proposed for the process of whole-

cell extrusion of enterocytes from the villus. The ‘‘zipper

model’’ is based on evidence from freeze-fracture transmission

electron microscopy.47 Enterocytes undergoing extrusion exhi-

bit basolateral movement of tight junctions down the plasma

membrane shared with neighboring enterocytes (Fig. 3).

Neighboring cells extend cytoplasmic processes underneath the

shedding cell as it leaves the monolayer to reform tight junc-

tions and maintain epithelial contiguity.47

Figure 3. Illustration of the ‘‘zipper model’’ hypothesis of epithelial
cell shedding. A complex sequence of orchestrated events (a–f) starts
with detachment from the basement membrane and allows apical
movement of an extruding epithelial cell. This is followed by rearran-
gement of tight junctions and advancement of lamellipodia underneath
the extruding cell during and after the shedding process.
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In the context of physiological enterocyte shedding (Figs.

4–6), in vivo confocal microscopy studies of the small intestine

in anaesthetized mice have shown that one of the first events in

an enterocyte destined to undergo shedding is redistribution of

tight junction protein zonula occludens 1 (ZO-1).29 This occurs

approximately 15 minutes prior to cell shedding, first to the

apical, then to the basolateral region of the shedding cell.29

Guan and colleagues29 observed that permeation of the

membrane-impermeable marker Lucifer yellow only extends

around the shedding cell as far as redistributed ZO-1 protein,

supporting the critical nature of tight-junction proteins in main-

taining the gut barrier. In 15% of these physiological shedding

events, the neighboring cells were also shed within 5 to 10 min-

utes, suggesting that intercellular communication plays a role

in coordinating group IEC shedding. IECs undergoing cell

death and extrusion can be recognized at the villus tip by their

expression of biochemical markers of apoptosis such as active

caspase 3 and cleaved cytokeratin 18.9 It is not known whether

cell death precedes the initiation of detachment or if it is

detachment itself that causes cell death. In the latter scenario,

the loss of anchorage-dependent survival signals from the

underlying extracellular matrix and from neighboring cells

results in a form of programmed cell death termed anoikis.

Fouquet and colleagues23 showed that in an ex vivo mouse

small intestine model, early loss of E-cadherin, integral to

adhering junctions in IECs, resulted in rapid execution of a

Bcl-2 and caspase 9–dependent apoptotic pathway. Although

a temporal relationship, rather than cause and effect, other

groups have shown by active caspase 3 immunostaining that

the apoptotic pathway appears to be activated prior to patholo-

gic cell shedding and prior to IECs reaching the extrusion

zone.22,51,84

Pathological Epithelial Cell Shedding

In many intestinal diseases, cell loss from the villus exceeds the

regenerative capacity of the crypts, due to epithelial injury to

one or both components. Pathological epithelial cell shedding

applies to an increased rate of villus epithelial cell apoptosis

and extrusion in disease states. Acute loss of epithelial cells

is followed by active villus core contraction,54 which effec-

tively minimizes the area of denuded basement membrane to

be reepithelialized.54 The remaining epithelial cells undergo

flattening and attenuation to cover the exposed basement

membrane, which otherwise may cause fusion of adjacent

villi during restitution.28 Full restitution is dependent on a

compensatory expansion of the crypts in the days following

injury.8 Pathological epithelial cell shedding has been

observed by in vivo confocal endomicroscopy in humans with

inflammatory bowel disease (IBD),38 in mice following sys-

temic tumor necrosis factor (TNF) administration,39 and dur-

ing our own light microscopy studies of acute murine

endotoxic shock (Figs. 7–10).84

A diverse range of stimuli and disease processes have been

demonstrated to cause pathological epithelial cell shedding.

These include TNF,26,48,62 bacterial lipopolysaccharide

(LPS),42,84 indomethacin,70 the synthetic double-stranded viral

RNA analogue (and Toll-like receptor 3 agonist) polyinosinic/

polycytidylic acid,51 ischemia,8 ischemia-reperfusion injury,33

burn injury,74 trauma,72 increased lymphatic pressure,44

cocaine- or atropine-induced villus contraction,44 Cryptospor-

idium parvum infection,22 and toxins, such as that from Bacter-

oides fragilis.85

TNF, used extensively to induce pathological intestinal

epithelial cell shedding, has provided valuable insights into the

highly orchestrated events that lead to IEC extrusion and shed-

ding in C57BL/6-Tg(Vil1-mRFP1/TJP1)#Tjr fluorescent-

tagged ZO-1 transgenic mice.29 These studies have shown that

one of the first events observed in cells destined to undergo

shedding is the redistribution of ZO-1 to form a ‘‘funnel’’

around the apical cytoplasmic border of shedding cells. Along

with other tight junction proteins, including claudins, the pro-

cess extends to the basolateral border of the shedding cell com-

pleting extrusion.29

E-cadherin, F-actin, myosin II, Rho-associated kinase

(ROCK), and myosin light chain kinase (MLCK) are redistrib-

uted during this highly dynamic process.29 Both ZO-1 redistri-

bution and MLCK activation have been observed in

neighboring enterocytes in a histologic study of cell shedding

in humans.9 Marchiando et al48 showed that caspase activity,

myosin motor activity (dynamin), and microtubule rearrange-

ment are all required for shedding, thus refining the ‘‘zipper’’

model.47

It is unclear whether neighboring cells cooperate in aiding

the shedding cell to exit the monolayer by forming an actin-

myosin ‘‘purse string.’’ It has been suggested through in vitro

observations in isolated villi that actin rearrangement takes

place only in the enterocytes undergoing shedding and not in

neighboring cells.82 This suggests that forces generated in the

cell undergoing extrusion may be sufficient to complete the

process and that the help of neighboring cells may not be

necessary.

The Role of TNF

TNF is probably a critical mediator for many stimuli of

pathological epithelial cell shedding and acts via two known

receptors: p55/TNFR1 or p75/TNFR2. TNF is synthesized

as a pro-hormone; both secreted (17-kDa) and membrane-

bound (18.5-kDa) forms exert biological effects.69 Membrane-

bound pro-TNF is capable of juxtacrine signaling but can become

solubilized by action of ADAM17,6 otherwise known as TACE

(TNF-converting enzyme).

The cellular response to TNF is highly context dependent

and varies by cell type, the relative expression of the 2 recep-

tors, and downstream signaling responses. TNFR1 is expressed

in a much wider variety of cell types than TNFR2; TNFR1 and

TNFR2 are both present in the small intestinal epithelium.43,73

TNF is a potent stimulus of IEC shedding in mice.48,62 In

histologic studies, intraperitoneal administration of TNF

caused significant duodenal villus atrophy by 60 minutes post-

injection (PI).26,84 Our studies of LPS-induced IEC shedding84
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Figures 4–6. Small intestine; mouse. Lateral border of intestinal villus viewed en face by in vivo confocal imaging. Single epithelial cell nuclei
undergoing physiological shedding (point of cell origin and resulting ‘‘gap’’ indicated by white arrows). Images taken at approximately 2.5-
minute intervals in a terminally anaesthetized mouse. Figures 7–10. Small intestine; mouse. Pathological intestinal epithelial cell apoptosis and
cell shedding induced by intraperitoneal injection of lipopolysaccharide (LPS). Active caspase 3 immunohistochemistry as a marker of apoptosis.
Figure 7. Small intestine; mouse, untreated control. Negligible labeling of intestinal epithelial cells is observed. Figure 8. Small intestine; mouse.
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demonstrated that TNFR1 is a critical receptor for IEC apopto-

sis and cell shedding. Other studies have shown that TNFR1-

deficient mice are resistant to the lethal effects of LPS and

superantigen,61 potentially pointing to the importance of gut

damage compared with other organ systems in the most acute

phases of sepsis or LPS-induced mortality. The intestinal

epithelium has been shown to be more sensitive to acute cyto-

pathic changes and increased permeability than the pulmonary

epithelium in an in vivo model of acute septic shock in cats and

in human epithelia in response to inflammatory cytokines in

vitro.36 These morphological alterations in intestinal epithe-

lium may therefore reflect one of the earliest observable inju-

ries in this type of inflammatory response, which may

coincide with early gut barrier dysfunction.

TNF-induced IEC apoptosis and detachment in mice is

mediated through TNFR1 and is independent of TNFR2 and

p53.62 Following acute TNF administration, epithelial-

specific expression of TNFR1 is necessary to induce apoptosis

and shedding,66 rather than indirect vascular dysfunction caus-

ing ischemia/ischemia-reperfusion injury. This was shown by

analyzing small intestinal IEC loss and apoptosis in a mouse

model of acute TNF administration in which there is a condi-

tional gain of function of the Tnfr1 allele.66 These mice express

TNFR1 within the intestinal epithelium rather than ubiqui-

tously and have similar TNF-induced cell shedding as in

wild-type mice. It is not clear if TNF delivered via the blood-

stream or TNF generated by the epithelium is the most signif-

icant contributor to IEC apoptosis and shedding. It has however

been shown that direct instillation of TNF into the duodenal

lumen can cause intestinal damage in rats34 and that

epithelial-specific dysregulated TNF production is highly

important in driving epithelial damage.30

We reported that IEC apoptosis and cell shedding

in response to LPS was lessened in TNFR2-deficient

Tnfrsf1btm1Imx homozygous mice,84 suggesting that this

receptor plays a role in mediating apoptosis. Alternatively,

the TNFR2 receptor may be responsible for suppressing

TNF production, since markedly elevated amounts of TNF

and increased pulmonary inflammation occur in these mice

in response to LPS administration.60

The Blood Supply of the Villus

In pathological epithelial cell apoptosis and cell shedding, the

shedding process is not confined to the extrusion zone of the

villus tip but extends further down the villus.22,51,84 However,

the frequency of cell shedding still increases toward the villus

tip. Hypoperfusion of the villus tip, particularly in pathological

IEC shedding, has been hypothesized to be highly important in

this effect.7 The vasculature of the villus is organized in such a

way that venules run parallel and in very close proximity to the

central arteriole, allowing countercurrent exchange of oxygen.

This has important implications during hypoperfusion since

when flow velocity decreases, more oxygen is transferred from

the arteriole to the adjacent venules in the basal portion of the

villus, potentially exacerbating the sensitivity of the villus tip

to perfusion deficits.81 Interestingly, even in hypoxic condi-

tions, there is increased production of TNF by intestinal epithe-

lial cells,77 lending support to the notion that a diverse range of

stimuli may converge on the TNF-TNFR1 pathway.

LPS-Induced IEC Apoptosis and Shedding

Although the mechanisms of gut injury that occur in septic or

endotoxic shock have not been fully established, it is thought

to be initiated by the hypoxic and ischemic conditions brought

about by blood maldistribution. In reality, it is likely to be a

multifactorial process. Inducible nitric oxide synthase (iNOS),

an important mediator of vasodilation and hemodynamics, has

been strongly implicated in endotoxic shock-induced intestinal

injury. It has been demonstrated that iNOS is responsible for

rearrangement of tight junctions at later time points after LPS

administration.32 Following LPS administration to cats, Crou-

ser and coworkers16 reported intestinal epithelial necrosis at

2 hours PI; increased iNOS levels and apoptosis were observed

only at 4 hours PI.16 During this study, ileal blood flow and

oxygen saturation over the course of the experiment were rel-

atively unchanged. The concept of gut mucosal damage being

due to gut ischemia has also been challenged by comparing

fluid resuscitation and superior mesenteric artery ligation in

anaesthetized endotoxemic rabbits.46 Considered together with

the resistance of TNFR1-deficient Tnfrsf1atm1Imx homozygous

mice to LPS-induced IEC apoptosis and shedding,84 and given

that this process still occurs when functional TNFR1 is present

only in intestinal epithelium,66 these findings suggest that gut

injury in endotoxic shock is very dependent on epithelial

responses rather than purely on blood flow alterations and

blood oxygenation. Indeed, increased villus epithelial apopto-

sis occurs even when dysregulated TNF production is confined

to the intestinal epithelium.30

What Is the Significance of Pathological IEC Shedding?

The use of in vivo confocal microscopy has shown that after

enterocytes are shed from the apex of the villus, epithelial dis-

continuities or ‘‘gaps’’ develop.20,39,70,83 These gaps contain

residual ZO-1 left by the departing cell and are subsequently

sealed by the process of neighboring epithelial cells re-

forming tight junctions within 20 minutes.29 It has also been

demonstrated that systemic TNF caused 20% of gaps to result

in increased permeability and loss of barrier function.39

Figure 8. (continued) Increased intestinal epithelial cell labeling at 1 hour after LPS administration. Figures 9–10. Small intestine; mouse.
A plateau of positive labeling of IECs is observed at 1.5 hours after LPS administration, with many individual positively labeled apoptotic cells in
the epithelium (arrows) undergoing extrusion/cell shedding (arrowhead) into the intestinal lumen (asterisk). Acriflavine staining in Figs. 4 to 6.
EnvisionTM-DAB with hematoxylin counterstain in Figs. 7 to 10.
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In the context of pathological epithelial cell shedding in the

intestine of patients with IBD, it has been shown by confocal

endomicroscopy that shedding events correlate with permeabil-

ity defects and can aid in the prediction of disease relapse.38 It

has also been shown that epithelial gap density correlates with

disease severity in IBD.45 Additionally, there is a strong asso-

ciation of increased intestinal permeability in patients at high

risk of developing intestinal disease.52 Although a cause-and-

effect relationship is not established, this association suggests

that increased gut permeability is important in the pathogen-

esis and progression of these conditions. Although increased

intestinal permeability has been reported in intestinal diseases

such as IBD,12 probably the best evidence that gut permeabil-

ity can be directly implicated in the pathogenesis of intestinal

disease has been described by Arrieta et al.1 They showed that

interleukin 10 (IL-10)–deficient 129(B6)-Il10tm1Cgn mice

developed increased small intestinal permeability prior to

developing spontaneous colitis. When these mice were admi-

nistered AT-1001, a synthetic peptide that blocks the zonulin

receptor leading to reduced small intestinal permeability, the

mice had a significant reduction in the severity of colitis.

Our studies of LPS-induced apoptosis and cell shedding in

mice suggest that increased gut permeability and clinical diarrhea

temporally correlate with IEC shedding.84 Although these data

imply fluid loss into the gut lumen, it is not until later time points,

after the discontinuation of IEC shedding, that increased gut to

circulation permeability occurs. The temporal change in fluid and

large molecular movement may, however, reflect changing toni-

city of the gut content as it has been demonstrated that hypotoni-

city of the luminal content favors the inward permeation of

solutes.38

The gut is an extremely large reservoir of bacteria, including

LPS-containing Gram-negatives. Gut barrier dysfunction

induced by shock has therefore led to the development of the

‘‘gut origin of sepsis’’ hypothesis. This hypothesis proposes

that shock initiates failure of the gut barrier, which in turn

allows bacteria and/or endotoxin into the circulation in a posi-

tive feedback loop27 (Fig. 11). Previous studies have shown

extensive gut injury with crypt apoptosis several hours after the

induction of endotoxic or septic shock.14,15,30 Increased intest-

inal permeability has been shown in the ileum of rats as early as

2 hours after LPS administration, and in mice, bacterial trans-

location has been detected 24 hours post-LPS administration.19

Some pathogenic bacteria and viruses are known to undergo

intestinal invasion via M cells.28,53 However, it also has been

observed by electron microscopy that Salmonella enterica ser-

ovar Typhimurium DT104 invades the crevices created during

early epithelial cell extrusion at the villus tip in experimental

infection in pigs.53 Ex vivo studies have also demonstrated that

the pathogenic bacterium Listeria monocytogenes invades sites

Figure 11. Diagram outlining the gut origin of sepsis hypothesis.
Microbes or microbial products such as lipopolysaccharide/bacterial
endotoxin translocate across the gut barrier and result in mononuc-
lear cell activation and cytokine release, which worsens gut barrier
function. This may result in a ‘‘cytokine storm,’’ systemic inflammatory
response syndrome (SIRS), and multiple-organ dysfunction (MOD) in
a positive feedback loop. Figure 12. Diagram summarizing a poten-
tial mechanism by which lipopolysaccharide (LPS) induces apopto-
sis in intestinal epithelial cells. TLR4-expressing mononuclear cells
(monocytes/macrophages/dendritic cells) recognize systemic LPS

Figure 12. (continued) and produce tumor necrosis factor
(TNF). TNF is released into the systemic circulation and binds with
TNFR1 on intestinal epithelial cells, triggering apoptosis and shedding
if Nfkb2 encoded protein (p100/p52) signaling dominates or cell sur-
vival if Nfkb1 encoded protein (p105/p50) signaling dominates.
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of epithelial cell extrusion at the villus tip in experimental

infection in rabbits.59 E-cadherin, which is usually inaccessible

beneath tight junctions, has been shown to be exposed at extru-

sion sites and epithelial gaps.48 In the case of L. monocyto-

genes, invasion is mediated via bacterial internalin A and

host E-cadherin interaction.57,59 It is therefore postulated that

intestinal epithelial gaps and microerosions at the villus tip may

also be exploited as portals of entry for commensal bacteria.

The Influence of NF-kB Signaling

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) is the umbrella term for a family of highly evolutiona-

rily conserved cytosolic proteins that are important in preser-

ving intestinal epithelial integrity in response to inflammatory

stimuli.24,30 These proteins, when activated, are released from

their specific inhibitor of kB (IkB) protein, dimerize in various

combinations, and oscillate into and from the nucleus in an

energy-dependent manner.56 In the nucleus, NF-kB proteins act

as transient transcription factors controlling the expression of a

large array of genes, including those involved in regulating

inflammation, cell stress, cell adhesion, and crucially in the con-

text of intestinal epithelial cells, cell death, or survival.

Mice lacking the p65/RelA NF-kB subunit in IECs exhibit

profoundly increased IEC apoptosis, have dysregulated IEC

proliferation, and suffer spontaneous intestinal failure with loss

of the crypt-villus architecture.75 Nuclear translocation of p65/

RelA occurs in villus IECs that resist shedding in a Cryptospor-

idium parvum model of IEC shedding in piglets.22

Our84 and other studies have shown that transgenic mice with

specific NF-kB family member deletion24 or alterations in NF-

kB activation pathways30 have dramatically altered susceptibil-

ity to acute stimuli of small intestinal injury. NF-kB appears to

be important in dictating the fate of the epithelial cell in response

to TNF or LPS, with p105/p50 signaling favoring cell survival

and p100/p52 favoring apoptosis (Fig. 12).84 The mechanisms

responsible for these interactions are however incompletely

understood.

Future Directions and Concluding Remarks

Many questions remain regarding how pathological IEC apop-

tosis and shedding affect gut permeability and what the imme-

diate and longer term consequences of increased gut

permeability may be. Acute epithelial defects appear to be

associated with villus contraction and initial fluid exudation

into the gut lumen, followed later by the movement of large

molecules out of the gut lumen and into the bloodstream. The

most obvious detrimental outcome in acute inflammatory

responses appears to be the serious derangement of fluid and

electrolyte balance, with loss of albumen into the gut lumen.24

This may be followed by bacterial translocation.18 These

events constitute failure of the gut barrier, often concurrently

with multiple-organ failure. Due to the complexity of the termi-

nal sequence of events in shock that culminate in disseminated

intravascular coagulation (DIC) and death, it is difficult to

separate cause and effect. However, in less complex organisms,

such as the fruit fly Drosophila melanogaster, with its simpler

organ and circulatory systems, failure of the gut barrier is a pre-

dictor of imminent death of the organism.64

In more chronic situations, increased gut permeability and

exposure of subepithelial tissues to gut luminal antigens may

trigger inappropriate immune and inflammatory responses.

Diet also seems to play an important role in regulating intest-

inal permeability. High-fat diets cause increased gut permeabil-

ity and metabolic endotoxemia, as well as increased circulating

LPS, originating from the gut,58 with low-grade inflamma-

tion.11 Chronic metabolic endotoxemia, when artificially

induced in mice on a normal diet, has been shown to initiate

obesity and insulin resistance,11 similar to if these animals are

fed a high-fat diet.11 A high-fat diet in mice also increases the

amount of Gram-negative bacteria within the gut and promotes

LPS translocation across the intestinal epithelium.11 Mounting

evidence suggests that epithelial responses and intestinal per-

meability may be highly modulated by the gut microbiota.2,21

Host-microbial interactions likely play a significant role in reg-

ulating intestinal epithelial apoptosis and cell shedding.

IEC apoptosis and cell shedding probably occur in a variety

of clinical scenarios in which there are surges of TNF. Many

patients with IBD are given anti-TNF antibody treatment, but

this is extremely costly, and unfortunately, a proportion of

patients either fail to respond or become refractory.17 Chronic

progressive idiopathic intestinal diseases in animals may also

share a TNF-based pathogenesis. TNF is integral to effective

leukocyte-mediated immune responses, and preventing its sig-

naling, although an improvement on the more nonselective

immune suppression therapy with corticosteroids, results in

defective immune function. A better understanding of how

TNF production affects the epithelial as opposed to the immune

cell compartments is required to allow more targeted treatment

approaches. Targeting regulatory elements downstream of TNF

receptors, such as NF-kB signaling, may also allow for more

sophisticated therapeutic strategies to be developed that pre-

vent pathological intestinal epithelial cell apoptosis and cell

shedding, thereby enhancing barrier integrity.

Intriguingly, the epithelial cell compartment appears to be

an important source of TNF production initiating enterocyte

apoptosis and cell shedding. Transcriptional and posttranscrip-

tional control is critical in determining the outcome of exces-

sive TNF production.30 Modulating this proinflammatory

cytokine via TACE, mitogen-activated protein kinase,30 or

matrix metalloproteinase 1380 may therefore represent alterna-

tive strategies for preventing pathological intestinal epithelial

cell shedding.

Investigating the process of intestinal epithelial cell death

and the key initiating and regulatory factors may further our

understanding of the pathogenesis of idiopathic inflammatory

intestinal diseases and possibly intestinal cancers. It may also

allow prevention of gut barrier dysfunction in intestinal and

systemic disease states. Addressing and understanding the

mechanisms of gut barrier dysfunction may allow future devel-

opment of therapeutic and prophylactic strategies for the
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prevention of the serious sequelae of bacterial translocation,

sepsis, and endotoxemia in human and animal medicine.
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