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Abstract Most probabilistic seismic-hazard analysis procedures require that at least
three seismic source parameters be known, namely the mean seismic activity rate λ, the
Gutenberg–Richter b-value, and the area-characteristic (seismogenic source) maximum
possible earthquake magnitudemmax. In almost all currently used seismic-hazard assess-
ment procedures that utilize these three parameters, it is explicitly assumed that all three
remain constant over time and space. However, closer examination of most earthquake
catalogs has indicated that significant spatial and temporal variations existed in the
seismic activity rate λ, as well as in the Gutenberg–Richter b-value. In this study, the
maximum likelihood estimation of these earthquake hazard parameters considers
the incompleteness of the catalogs, the uncertainty in the earthquake magnitude deter-
mination, as well as the uncertainty associated with the applied earthquake-occurrence
models. The uncertainty in the earthquake-occurrence models is introduced by assum-
ing that both the mean seismic activity rate λ and the Gutenberg–Richter b-value are
random variables, each described by the gamma distribution. This approach results in
the extension of the classic frequency–magnitude Gutenberg–Richter relation and the
Poisson distribution of the number of earthquakes with their compounded counterparts
(Benjamin, 1968; Campbell, 1982, 1983). The proposed procedure was applied in the
estimation of the seismicity parameters in an area that had experienced the strongest and
most devastating earthquake in contemporary South African history, namely the 29
September 1969 Mw 6.3 Ceres–Tulbagh event. In this example, it was shown that the
introduction of uncertainty in the earthquake-occurrence model reduced the mean return
periods, leading to an increase of the estimated seismic hazard. Additionally, this study
confirmed that accounting for magnitude uncertainties had the opposite effect, that is,
it brought about increases in the return periods, or, equivalently, a reduction of the esti-
mated seismic hazard.

Introduction

The problem of incomplete seismic-event catalogs is
often encountered in the analysis of seismic hazard. The sig-
nificant aspects that influence the completeness of earthquake
catalogs include the historical and socioeconomic context
and the demographic variations and alterations in the seismic
network. In most instances, the degree of completeness is a
monotonically increasing function of time, where the more
recent portion of the catalog is more complete than the older
part. In this study, we propose a methodology for the assess-
ment of the key seismic-hazard parameters in the form of
the mean seismic activity λ, the b-value of the frequency–
magnitude Gutenberg–Richter relation, and mmax, the area-
characteristic maximum possible earthquake magnitude. The
proposed methodology extends the procedures by Kijko and
Sellevoll (1989, 1992) to include the instance where the
uncertainty of the earthquake-occurrence model is taken into

account. Henceforth, the Kijko and Sellevoll procedures are,
respectively, referred to as KS-I (Kijko and Sellevoll, 1989)
and KS-II (Kijko and Sellevoll, 1992).

Both KS-I and KS-II provide for the incompleteness
of the earthquake event catalogs by accounting for historical
(largest event only) and instrumental complete records with
different levels of completeness. KS-II also accounts for the
uncertainty in earthquake magnitude determination.

Figure 1 shows a typical scenario encountered when
conducting area-characteristic seismic-hazard assessments,
based on historical and complete catalogs. It is assumed that
the complete part of the catalog can be divided into s sub-
catalogs (i � 1;…; s). Each of these subcatalogs is consid-
ered to be complete for event magnitudes exceeding a certain
magnitude level m�i�

min, during a certain period of time ti. The
magnitude m�i�

min denotes the level of completeness for each
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subcatalog. This approach permits the occurrence of gaps
(Tg) to account for missing event records. Missing records
could be caused by, for example, seismic networks being
nonoperational. The KS-II procedure can also account for
uncertainties in determining seismic-event magnitudes by
considering the assumption that the observed magnitude is
the true magnitude, subject to a random error. It is assumed
that this random error follows a Gaussian distribution, having
a zero mean and a known standard deviation (Tinti and Mu-
largia, 1985; McGuire, 2004; Márquez-Ramírez et al., 2015).

In addition to providing for incompleteness and the
magnitude uncertainty in earthquake catalogs, the ultimate
methodology for earthquake hazard assessment should also
consider the inevitable discrepancy between the data and the
applied models describing the earthquake occurrence. The
statistical tools applied in the development of such method-
ology are described in the following section.

Earthquake-Occurrence Model

The classic assumption about the temporal distribution
of the number of earthquakes within a specified area is that it
can be described by a Poisson process (Cornell, 1968; Lom-
nitz, 1973; Gardner and Knopoff, 1974). Therefore, the prob-
ability that a total of n earthquakes will be observed during
the specified time interval t within a specified area is de-
scribed as

EQ-TARGET;temp:intralink-;df1;55;114Pn�λ; t� �
�λt�n
n!

exp�−λt�; n � 0; 1; 2…; �1�

in which λ≡ λ�mmin� refers to the parameter of the Poisson
distribution and describes the mean (usually annual) area-
characteristic activity rate of earthquake occurrence, with the
magnitude equal to or greater than mmin.

Based on observations, it is commonly assumed that the
distribution of the number of seismic events, with respect to
their magnitude, follows the classic Gutenberg–Richter rela-
tion (Gutenberg and Richter, 1942, 1956)

EQ-TARGET;temp:intralink-;df2;313;338 logN�m� � a − bm; �2�

in which N�m� is the number of seismic events with magni-
tude m ≥mmin occurring within a specified period of time.
Coefficients a and b depend on the tectonic features of
the relevant seismogenic source. Equation (2) is equivalent
to the assumption that the cumulative distribution function
(CDF) of seismic-event magnitude is of the form (Aki, 1965):

EQ-TARGET;temp:intralink-;df3;313;232FM�m�≡P�M ≤m� � 1 − exp�−β�m −mmin��; �3�

for m ≥mmin and β � b ln�10�.
An explicit assumption relevant to most seismic-hazard

assessment procedures, as indicated by authors such as
Cornell (1968) and McGuire (1976, 1978), is that the param-
eters λ and b remain constant over time. However, closer
examination of most seismic-event catalogs has indicated
that there were temporal changes in both these parameters.
For some seismic areas, the b-value has been reported to in-
crease or decrease before the large seismic events. Usually,
such changes are explained by the state of the stress, namely
the higher the stress level, the lower the b-value (Gibowicz

Figure 1. The data that can be used to obtain basic seismic-hazard parameters for the area in the vicinity of the selected site by the
procedure used. The approach permits the combination of largest earthquake data and complete data that have variable threshold magnitudes.
It allows the use of the largest known historical earthquake (mobs

max), which occurred before the start of the catalog. It also accepts gaps (Tg)
when records are missing or the seismic networks are nonoperational. Uncertainty in earthquake magnitude is also taken into account, in that
an assumption is made that the observed magnitude is the true magnitude subjected to a random error, which follows a Gaussian distribution,
having a zero mean and a known standard deviation (after Kijko and Sellevoll, 1992 [KS-II]).
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and Kijko, 1994; Sharma et al., 2013; Scholz, 2015). Other
theories link the b-value with the homogeneity of the rock,
namely the more heterogeneous the rock, the higher the
b-value (Wyss et al., 1997; Wesseloo, 2014; Wesseloo et al.,
2014). Regardless of the mechanism, the space–time fluc-
tuation of the b-value is a well-known phenomenon. Awide
range of opinions concerning changes of patterns in seismic-
ity, together with those mentioned above, as well as reference
lists, are available in a monograph by Simpson and Richards
(1981). In addition, the aforementioned are also available in
two special issues of Wyss et al. (1999) and Mora et al.
(2001). A list of well-documented instances of the temporal
variation of seismic activity worldwide is also provided by
Cornell and Winterstein (1988), Ogata and Abe (1991),
Kijko and Graham (1998), Karakaisis et al. (2002), and more
recently Talbi and Yamazaki (2009).

One of the easiest ways to account for fluctuations in the
λ and b parameters is by introducing compound distributions.
Compound distributions (sometimes referred to as Bayesian
distributions) provide a tool that accounts for the instance in
which a parameter, in the distribution of a random variable, is
also a random variable (DeGroot, 1970). These distributions
are used in many probabilistic models applied in engineering
(Hamada et al., 2008), as well as in the insurance and risk
industry (Klugman et al., 2008). To our knowledge, the first
authors to apply compound distributions in seismic-hazard as-
sessment were Benjamin (1968) and Campbell (1982, 1983).

When compound distributions are utilized to account for
the uncertainty in λ and b, the seismic parameters are treated
as random variables that are distributed according to certain
specified distributions; for example, the gamma distribution.
The gamma distribution is used extensively to model various
random variables, as it does not impose too many limitations,
and it can fit a large variety of shapes. The probability density
function (PDF) of gamma distribution is defined as (Abramo-
witz and Stegun, 1970)

EQ-TARGET;temp:intralink-;df4;55;301fX�x� � x�q−1�
pq

Γ�q� exp�−px� x; p; q > 0; �4�

in which Γ�q� is the gamma function:

EQ-TARGET;temp:intralink-;df5;55;244Γ�q� �
Z ∞
0

yq−1 exp�−y�dy q > 0: �5�

The distribution parameters p and q are related to the mean
μx and the variance σ2x of the distribution according to

EQ-TARGET;temp:intralink-;df6;55;174μx �
q
p
; �6�

EQ-TARGET;temp:intralink-;df7;55;131σ2x �
q
p2

: �7�

The coefficient of variation expresses the uncertainty related
to a given parameter, in this instance the variation of a param-

eter relative to its mean. A higher value indicates a greater
dispersion of the parameter, and is given by

EQ-TARGET;temp:intralink-;df8;313;709vx �
σx
μx

: �8�
The Poisson distribution (1) is combined with the gamma
distribution (4) to create the Poisson–gamma compound dis-
tribution to obtain the probability to observe n seismic
events, within a time interval t, for temporal varying seismic
activity λ (Benjamin, 1968), as follows:

EQ-TARGET;temp:intralink-;df9;313;613Pn��λ; t; vλ� �
Z ∞
0

Pn�λ; t�fΛ�λ�dλ

� Γ�n� qλ�
n!Γ�qλ�

�
pλ

t� pλ

�
qλ
�

t
t� pλ

�
n
; �9�

in which Γ�n� is the gamma function (5), pλ and qλ are the
parameters of gamma distribution (4), such that pλ � �λ=σ2λ ;

qλ ≡ ν�−2�λ � �λ2=σ2λ , and �λ denotes the mean value of the ac-
tivity rate λ.

The compound CDF of earthquake magnitudes is derived
in a similar way by combining the classic Gutenberg–Richter
earthquake magnitude distribution (3) and the probability
density gamma distribution of β (4). The resulting compound
Gutenberg–Richter CDF of earthquake magnitudes is sub-
sequently normalized with the introduction of an upper limit
of the earthquake magnitudemmax, and it takes the form of the
exponential-gamma distribution, as described by Campbell
(1982):

EQ-TARGET;temp:intralink-;df10;313;378FM�mjvβ; mmin� � Cβ

�
1 −

�
pβ

pβ �m −mmin

�
qβ
�
; �10�

in which pβ � �β=�σ2β� and qβ ≡ �vβ�−2 � �β2=σ2β, such that �β
denotes the mean value of parameter β, and σβ refers to the

standard deviation of �β. The normalizing coefficient Cβ is de-
fined as

EQ-TARGET;temp:intralink-;df11;313;279Cβ �
�
1 −

�
pβ

pβ �mmax −mmin

�
qβ
�−1

: �11�

As qλ � �λpλ and qβ � �βpβ, the two compound distributions
(9) and (10) may, respectively, bewritten in alternative forms as

EQ-TARGET;temp:intralink-;df12;313;205Pn��λ; t; vλ� �
Γ�n� qλ�
n!Γ�qλ�

�
qλ

�λt� qλ

�
qλ
�

�λt
�λt� qλ

�
; �12�

and

EQ-TARGET;temp:intralink-;df13;313;144FM�mjvβ; mmin� � Cβ

�
1 −

�
qβ

qβ � �β�m −mmin�

�
qβ
�
;

�13�

in which
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EQ-TARGET;temp:intralink-;df14;55;733Cβ �
�
1 −

�
qβ

qβ � �β�mmax −mmin�

�
qβ
�−1

; �14�

and the parameters �λ and �β are estimated by applying the maxi-
mum likelihood procedure.

Based on (13) and (14), the associated compound PDF of
earthquake magnitudes are defined as

EQ-TARGET;temp:intralink-;df15;55;646fM�mjvβ; mmin� � Cβ
�β

�
qβ

qβ � �β�m −mmin�

�
qβ�1

: �15�

The proposed implementation of the compound distributions
is similar to procedures described by Benjamin (1968) and
Campbell (1982, 1983), with the two applications only differ-
ing in the parameterization of the variables. The new proposed
methodology to account for the uncertainty for hazard param-
eters or, equivalently, the account for the aleatory uncertainty
of the earthquake-occurrence model, is anything but unique.
Possibly, the most frequently applied alternative approach is
based on the more complex Bayesian formalisms, as applied
by Pisarenko et al. (1996), Pisarenko and Lyubushin (1997),
Ogata (1999), and Rotondi and Varini (2007). Shi and Bolt
(1982) and Guttorop and Hopkins (1986) also addressed
the question of fluctuations in the hazard parameters by apply-
ing an approximate variance stabilizing transformation to the
b-value, which is assumed to be a slowly varying random
variable.

Parameter Estimation

The sought area-characteristic seismic-hazard parame-
ters θ � ��λ; �β; mmax� are estimated by the maximum likeli-
hood method.

Historical Earthquakes

The likelihood functions for historical seismic catalogs
are based only on the strongest observed events; therefore,
the extreme magnitude compound distribution is used. As-
sume that the historical part of the catalog with a time span
of t0 contains n0 largest seismic events, each with a magni-
tude equal to or exceeding a certain magnitude value m0,
such that m0 is larger or equal to the overall minimum mag-
nitude of interest for the whole catalog mmin. The only re-
striction on the choice of this value is that mmin should not
exceed the threshold magnitude of any part (historical or
complete) of the catalog. The time span of the historical part
of the catalog t0 can be expressed as the sum of the time
intervals t0k between the historical events for k � 1;…; n0.

The probability that in an arbitrary time interval t either
no earthquake occurs or all occurring earthquakes have mag-
nitudes not exceeding m0 (Epstein and Lomnitz, 1966; Gan
and Tung, 1983; Gibowicz and Kijko, 1994), could be ex-
pressed as follows

EQ-TARGET;temp:intralink-;df16;313;733Fmax
M �mjvβ; m0; t� �

X∞
n�0

Pn��λ; t; vλ��FM�mjvβ; m0��n;

�16�
or alternatively (Campbell, 1982) as follows:

EQ-TARGET;temp:intralink-;df17;313;667Fmax
M �mjvβ; m0; t� �

�
qλ

qλ � �λ0t�1 − FM�mjvβ; m0��

�
qλ
;

�17�
by applying the theorem of total probability (Cramér, 1961). It
follows from (17) that the PDF of the largest seismic-event
magnitude within the time period t is

EQ-TARGET;temp:intralink-;df18;313;569fmax
M �mjvβ; m0; t� �

�λ0tqλfM�mjvβ; m0�Fmax
M �mjvβ; m0; t�

qλ � �λ0t�1 − FM�mjvβ; m0��
;

�18�
in which �λ0 � �λ�1 − FM�mjvβ; m0�� denotes the mean (usu-
ally annual) activity rate for seismic events with magnitudes
m ≥m0, and �λ≡ �λ�mmin� is the mean activity rate correspond-
ing to the magnitude valuemmin. The functions FM�mjvβ; m0�
and fM�mjvβ; m0�, respectively, denote the CDF and PDF of
the seismic-event magnitude, described by (13) and (15).

Based on (18), the subsequent sample likelihood func-
tion of the unknown parameters for the historical events takes
the form:

EQ-TARGET;temp:intralink-;df19;313;395LH�θjm0; t0;v�≡LH�θ� �
Yn0
k�1

fmax
M �m0kjvβ;m0; t0k�; �19�

in which vectors m0 and t0 are, respectively, defined as the
�n0 × 1� vectors, consisting of the n0 largest earthquake
magnitudes m0k, associated with time intervals t0k, when
k � 1;…; n0. The vector v � �vλ; vβ� consists of the coef-
ficients of variation of the unknown �λ and �β.

Complete Catalogs with Different Levels of
Completeness

Assume that the second, complete part of the catalog can
be divided into s subcatalogs (Fig. 1). Each subcatalog has a
time span ti (i � 1;…; s) and is complete, starting from the

known magnitude m�i�
min. For each subcatalog i, the vector mi

denotes ni observed seismic-event magnitudes mik, such that

mik ≥m�i�
min, in which k � 1;…; ni. Let Li�θjmi� denote the

likelihood function of the unknown θ � ��λ; �β; mmax�, based
on the ith complete subcatalog. If the magnitude of the seis-
mic events is independent of their number, the likelihood
function Li�θjmi; ti� of each of complete subcatalog i is the
product of the two functions: Li��λjni; ti� the likelihood func-
tion of �λ, and Li��βjmi� the likelihood function of �β.

The assumption that the number of seismic events per unit
time is distributed according to the compound Poisson–gamma
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distribution (12) means that for each complete subcatalog,
the likelihood function Li��λjni; ti� has the form:

EQ-TARGET;temp:intralink-;df20;55;709Li��λjni; ti� � ��λ�i�ti � qλ�−qλ
�

�λ�i�ti
�λ�i�ti � qλ

�
ni
; �20�

in which �λ�i� is the mean earthquake activity rate, corre-
sponding to the magnitude level of completeness m�i�

min, and
is defined as

EQ-TARGET;temp:intralink-;df21;55;624

�λ�i� � �λ�1 − FM�m�i�
minjvβ; mmin��; �21�

with FM�·j·� as defined in (13). Following the definition of
the likelihood function, based on a set of independent obser-
vations and (15), the likelihood function Li��βjmi� takes the
form:

EQ-TARGET;temp:intralink-;df22;55;539Li��βjmi� � �Cβ
�β�ni

Yni
k�1

�
1�

�β

qβ
�mik −m�i�

min�
�−�qβ�1�

:

�22�
Equations (20)–(22) define the likelihood function of the un-
known parameters θ � ��λ; �β; mmax� for each complete subca-
talog. The likelihood function, based on all s complete
subcatalogs takes the form:

EQ-TARGET;temp:intralink-;df23;55;433LC�θ� �
Ys
i�1

Li��λjni; ti�Li��βjmi�: �23�

Combining Historical and Complete Catalogs

Finally, L�θ� is the joint likelihood function based on all
the available data and is calculated as the product of the like-
lihood functions, based on the historical and complete parts
of the catalog, as

EQ-TARGET;temp:intralink-;;55;306 L�θ� � LH�θ� × LC�θ�:

The maximum likelihood procedure is used to derive
estimates for the parameters �λ and �β, which, for a given maxi-
mum area-characteristic earthquake magnitude mmax, maxi-
mizes the likelihood function L�θ�. The maximum of the
likelihood function is obtained by solving the system of
two equations ∂ℓ

∂ �λ � 0 and ∂ℓ
∂ �β � 0, in which ℓ � ln�L�θ��. A

variance–covariance matrix D�θ� of the estimated �̂λ and �̂β is
calculated according to the formula by Edwards (1972):

EQ-TARGET;temp:intralink-;df24;55;168D� �̂λ; �̂β� � −

2
4 ∂2ℓ

∂ �λ2
∂2ℓ
∂ �λ∂ �β

∂2ℓ
∂ �β∂ �λ

∂2ℓ
∂ �β2

3
5

−1

; �24�

in which derivatives are calculated at the point �λ � �̂λ and
�β � �̂β.

Estimation of mmax

The next step is to estimate the maximum possible earth-
quake magnitude mmax. Unfortunately, the proposed sample
likelihood function L�θ� is constructed in such a way that the
range of magnitudes depends on the one unknown parameter
mmax, which violates the condition of regularity (LeCam,
1970; Cheng and Traylor, 1995). The resulting likelihood
function therefore reaches its maximum at the maximum ob-
served earthquake magnitude mobs

max and not at the required
maximum possible magnitude mmax. Consequently, the un-
biased value of mmax cannot be estimated by applying the
standard maximum likelihood procedure. A more realistic
estimation ofmmax can be provided by introducing additional
information (Pisarenko, 1991; Pisarenko et al., 1996), such
as the condition that the largest observed earthquake magni-
tude mobs

max, within the span of the entire earthquake catalog,
is equal to the largest expected earthquake magnitude
E�mobs

max; t�. As shown in Kijko (2004) and Kijko and Singh
(2011), the introduction of such a condition leads to

EQ-TARGET;temp:intralink-;df25;313;497mmax � mobs
max �

Z
mmax

mmin

�FM�ζ��ndζ; �25�

in which FM�ζ� denotes the compound CDF of earthquake
magnitude (13). Unfortunately, the integral in (25) does
not have a simple solution, but an approximate assessment
can be obtained through the application of the method intro-
duced by Cramér (1961). For large n (n > 10), the value of
�FM�ζ��n is approximately equal to expf−n�1 − FM�ζ��g.
After the substitution of the Cramér’s approximation into
(25), mmax takes the form (Kijko, 2004):

EQ-TARGET;temp:intralink-;df26;313;355mmax � mobs
max �

δ
1
q exp� nrq

�1−rq��
�β

�
Γ
�
−
1

q
; δrq

�
− Γ

�
−
1

q
; δ
��

;

�26�

in which

EQ-TARGET;temp:intralink-;;313;276

r � pβ

pβ �mmax −mmax
; c1 � exp�−n�1 − Cβ��;

δ � nCβ; pβ � �β=σ2β;

and Γ�·; ·� is the complementary incomplete gamma function
(Abramowitz and Stegun, 1970). Because the unknownmmax

is present in both sides of equation (26), the estimator for
mmax can be calculated only through an iteration process.
The approximate variance of the mmax estimator subsequently
assumes the form:

EQ-TARGET;temp:intralink-;df27;313;141

Var�mmax� � σ2M

�
�δ1

q exp� nrq
�1−rq��
�β

�
Γ
�
−
1

q
; δrq

�
− Γ

�
−
1

q
; δ
���

2

; �27�
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in which σM denotes the standard error in the determination of
the largest observed magnitude mobs

max.
The maximization of the sample likelihood function

L�θ�, together with (26), provides the maximum likelihood
estimates of the area-characteristic seismic-hazard parame-
ters �λ, �β, and mmax. These equations are solved iteratively.

It has to be noted that the above-described procedure for
the assessment of the area-characteristic maximum possible
earthquake magnitude mmax can provide an underestimated
value, especially when the applied earthquake catalog is
short (Kijko, 2004). In essence, improvements to the mmax

estimation procedure can be done in two different ways. In
the first approach, the bias in the mmax estimation is assessed
and removed (Lasocki and Urban, 2011). The second ap-
proach (Cornell, 1994) utilizes a Bayesian formalism, which
allows the combination of all the available information
sources. These additional sources include seismic-event cat-
alogs, information on the regional and local geology and tec-
tonics, prehistoric earthquakes, the activity of tectonic faults,
seismic history of similar regions, and/or a database of mmax

for different seismogenic regions. The Bayesian procedure
of Cornell (1994) unfortunately has a flaw that results in
a biased estimate of m̂max. The degree and sign of the bias
depend on the applied estimation technique. Kijko (2012)
showed that if the maximum posterior estimate was used, the
bias would be negative, and the resulting underestimation of
mmax could be as large as 0.5 units of magnitude.

Accounting for Uncertainty in Earthquake Magnitude
Determination

By definition, it is impossible to determine earthquake
magnitude without error. At best, the magnitudes are deter-
mined with an accuracy of up to 0.1 magnitude units, but this
accuracy is rarely better than 0.2 units, especially for historical
events. In some instances, the uncertainty in the magnitude of
historical events can reach up to 0.5 units of magnitude. In
KS-II, two models of earthquake magnitude uncertainty are
considered, namely the Hard Bounds Model and the Soft
Bounds Model. In the Hard Bounds Model, the earthquake
magnitude is defined by both the lower and the upper mag-
nitude limits, and it is assumed that this interval contains the
real, unknown magnitude. The Soft BoundsModel defines the
uncertainty of earthquake magnitude as the departure of the
observed magnitude from the true, unknown value, and it is
assumed that such departure follows a Gaussian distribution.
The methodology implemented here will refer only to the Soft
Bound Model. Despite the complexity of implementing this
model, it is undoubtedly the preferred model to account for
magnitude uncertainty (Tinti and Mulargia, 1985; Rhoades,
1996; Rhoades and Dowrick, 2000; Marzocchi and Sandri,
2003; Márquez-Ramírez et al., 2015).

Utilizing the Soft Bound Model, if the error of magni-
tude determination followed a Gaussian distribution with a
zero mean and a standard deviation σM, the CDF of the ob-
served magnitude would become (Tinti and Mulargia, 1985):

EQ-TARGET;temp:intralink-;df28;313;733GM�m� �
Z

mmax

mmin

fM�ζ�
�Z

m−ζ

−∞
1

σM
������
2π

p exp
�
−

ε2

2σ2M

�
dε
�
dζ;

�28�
in which the PDF fM�ζ� denotes the compound exponential-
gamma magnitude distribution (15). Obtaining the closed-
form expression of the CDF (28) and the corresponding PDF
is no trivial task. It can be shown (S. Verryn, personal comm.,
2011) that the CDF (28) can be approximated by the formula:

EQ-TARGET;temp:intralink-;df29;313;621GM�m� � Cβ
�βqq�1

β

2σM
fA� Bg; �29�

EQ-TARGET;temp:intralink-;;313;555 A � �r1 � r2α�−qβ
r2qβ

����
m−mmax

σM

m−mmin
σM

;

EQ-TARGET;temp:intralink-;;313;507

B �
�
2

π

�
1=2X∞

h�0

�−1�h
2hh!�2h� 1�

1

bw�1

×
X2h�1

j�0

w!�−r1�j�r1 � r2α�w−qβ−j
�w − j�!j!�w − qβ − j�

����
m−mmax

σM
m−mmin

σM

;

in which a � qβ � �β�m −mmin� and b � −�βσM. Please re-
fer to the Appendix for the derivation of (29).

Special Instances

At times, seismic-event catalogs contain only one type
of dataset; namely either historical or complete (Fig. 1). In
this section, the special instances are further investigated,
such as (a) the seismic-event catalog contains information
only about historical events, and (b) the seismic-event cata-
log consists only of complete subcatalogs at different levels
of completeness.

Only Historical Earthquake Catalogs Are Available

To provide a reliable assessment of the seismic hazard
for a specified region, observations spanning hundreds of
years are required. For many earthquake-threatened areas,
only historical records are available; however, these are in-
complete and contain information only about the largest and
most catastrophic earthquake occurrences. In such an in-
stance, the sample likelihood function L�θ� takes the familiar
form (19). The proposed procedure can be further simplified
by replacing the compound Poisson–gamma distribution
(13) with the classic Poisson distribution (1) and replacing
the compound exponential-gamma distribution of the earth-
quake magnitude (13) with the equivalent classic Gutenberg–
Richter distribution (3), truncated from the top.

It is shown that after the replacement of the compound
distributions by their classic counterparts, the solution of the
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system of equations ∂ℓ
∂ �λ � 0 and ∂ℓ

∂ �β � 0 is obtained as (Kijko
and Dessokey, 1987; KS-I):
EQ-TARGET;temp:intralink-;df30;55;707 8<

:
1
λ � m0−t0A

A2−A1

1
β � t0m0A−t0A2mmax

t0A−t0A2

; �30�

in which A is a column vector, with elements A�m0k� �
exp�−�βm0k�, k � 1;…; n0, and

• m0 �
Pn0

k�1 m0k=n0,

• t0 �
Pn0

k�1 t0k=n0,

• t0A � Pn0
k�1 t0k exp�x�βm0k�=n0,

• t0m0A � Pn0
k�1 t0km0k exp�−�βm0k�=n0,

• A1 � exp�−�βmmin�,
• A2 � exp�−�βmmax�.

For the specified value ofmmax, the solution set (30) pro-
vides the maximum likelihood estimates of the required
earthquake-hazard parameters λ and β. It is interesting to note
that for mmax → �∞ and t0k � const, the system of equa-
tions (30) is reduced to the maximum likelihood estimation
of parameters λ and β of the first Gumbel distribution (Kim-
ball, 1946).

Only Complete Earthquake Catalogs Are Available

In the instance in which the historical part of the catalog
is absent, the compound solutions of (23) and (24) can be
significantly simplified. A simple, overall maximum likeli-
hood estimate of �λ and �β value is obtained by applying the
additive property of likelihood functions (Rao, 1973). When
applied to the current problem, the joint likelihood function
of the �β value, which utilizes all seismic events that occurred
within the span of the complete catalog, with s different lev-
els of completeness, is defined as

EQ-TARGET;temp:intralink-;df31;55;296L��β� �
Ys
i�1

Li��βjmi�; �31�

in which Li��βjmi� represents the ith likelihood function (22)
based on the ith complete earthquake subcatalog when
i � 1; 2;…; s. Further simplification followed by replacing
the compound earthquake magnitude distribution (18) with
the classic Gutenberg–Richter CDF (3), truncated from the
top. The maximization of (31) provides an estimator of �β in
the form (Kijko and Smit, 2012)

EQ-TARGET;temp:intralink-;df32;55;163β̂ �
�
r1
β̂�1�

� r2
β̂�2�

�…� rs
β̂�s�

�−1
; �32�

in which ri � ni=n, n � Ps
i�1 ni is the total number of seis-

mic events in a complete catalog, with magnitudes equal to

or exceeding the relevant level of completenessm�i�
min, and β̂

�i�

is defined as

EQ-TARGET;temp:intralink-;df33;313;733β̂�i� � 1

mi −m�i�
min

; �33�

such that mi �
Pni

k�1 mik=ni denotes the mean of the earth-
quake magnitudes observed within the complete part of the
subcatalog i. It is clear that (33) is the classic Aki–Utsu es-
timator (Aki, 1965; Utsu, 1965) of the β values, as calculated
for each of the individual complete earthquake subcatalogs.

Once the β̂ value is known, the mean value of the earthquake
activity rate λ≡ λ�mmin� is calculated. It can be shown (KS-I;
Kijko and Smit, 2012) that if the number of seismic events
per time unit is a Poisson random variable, the compound
Poisson–gamma distribution (13) is replaced by the classic
Poisson distribution (1), and the maximum likelihood esti-
mator of λ�mmin� takes the form

EQ-TARGET;temp:intralink-;df34;313;549λ̂�mmin� �
nPs

i�1 ti exp�−β̂�m�i�
min −mmin��

: �34�

For a single complete earthquake catalog, in which i � 1,

m�1�
min � m�2�

min � m�s�
min � mmin; t � t1 with t2 � t3 � …

� 0, and n � n1 with n2 � n3 � … � 0, the estimator
(34) reduces to the classic maximum likelihood estimator
of the Poisson distribution parameter and takes the form n=t.

The assessment of hazard parameters from a catalog
with varying levels of completeness is no trivial task, and
different solutions to the problem have been proposed (Mol-
chan et al., 1970; Rosenblueth, 1986; Rosenblueth and
Ordaz, 1987; Kijko and Smit, 2012). However, the most
elegant, straightforward, and the best-known solution is the
procedure derived by Weichert (1980).

Example of Application

For the purpose of illustration, the proposed methodol-
ogy is applied to the area that had experienced the strongest
and most devastating earthquake in contemporary South
African history. The 29 September 1969 Mw 6.3 Ceres–
Tulbagh event occurred about 100 km from the major met-
ropolitan city of Cape Town (Green and Bloch, 1971; Green
and McGarr, 1972; Kijko et al., 2003; Krüger and Scher-
baum, 2014). Several buildings in the area suffered serious
structural damage, which varied from the almost total destruc-
tion of old and poorly constructed buildings to large cracks
appearing in better-constructed infrastructure. Twelve people
were killed and many more injured. This event resulted in an
insured loss of US $7.4 million at the time of occurrence; how-
ever, the uninsured loss was roughly 3.5 times higher (Davies
and Kijko, 2003).

Reported seismicity in the vicinity of Cape Town dates
back as far as 1620. The seismicity is typical of an intraplate
region and is characterized by low-level activity, compared
with world standards. The earthquakes are randomly distrib-
uted in space and time. Perhaps the most common practice in
seismic-hazard analysis is that the maximum possible earth-
quake magnitude is estimated from the magnitude-fault-
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length relationships (Wells and Coppersmith, 1994; Leonard,
2010; Stirling et al., 2013). However, the correlation between
most of the observed earthquakes in South Africa and the
surface expression of major geological features is generally
not clear (Fernandez and Guzman, 1979a,b; Brandt et al.,
2005). The estimated area-characteristic maximum possible
earthquake magnitude is therefore calculated by utilizing the
observed seismic-event catalog.

The seismic-event database for South Africa, especially
the historical catalog, is highly incomplete because large
parts of the country are sparsely populated, and the detection
capabilities of the seismic network are anything but uniform
(Saunders et al., 2008). The seismic-event catalog used in
this study was compiled from several sources. After a critical
analysis of each of the data sources, the main contribution to
pre-instrumentally recorded seismicity was that of Brandt
et al. (2002). The instrumentally recorded events were se-
lected mainly from the available databases provided by the
Council for Geoscience, Pretoria, South Africa, and the
International Seismological Centre in Edinburgh, Scotland.
For illustrative purposes, the catalog used in the present
analysis spans the period 1 January 1751 to 31 January 2012
(see Data and Resources). The events were selected from
within a circle, with radius of 300 km from the anticipated
epicenter, which is the Ceres–Tulbagh earthquake (33.28′S,
19.70′E) (Kijko et al., 2003). The seismic-event catalog was

divided into an incomplete historical part, consisting of only
the largest events (Table 1), and the complete instrumental
part. It was assumed that earthquake magnitudes for the in-
complete part of the catalog were determined with a standard
error equal to 0.3 magnitude units. The complete part of the
catalog was further divided into three subcatalogs, each with
different levels of completeness and assumed magnitude
standard errors of 0.3, 0.2, and 0.1 (Table 2). Based on sev-
eral tests on the seismicity of the selected area, it was as-
sumed that the uncertainty of the earthquake-occurrence
model parameters was equal to 25%. This implied that the
space–time variation of parameters λ and β, relative to their
mean values, was equal to 0.25. Figure 2a depicts the mean
return periods, and Figure 2b depicts the probability that a
given magnitude would be exceeded at least once in any year
for the selected area, as estimated by the proposed procedure
(KSS-III). Each graph also provides the calculated level of
confidence for the calculated values.

To capture the effect of incorporated uncertainties in both
the magnitude determination and the selected earthquake-
occurrence model, two different comparisons were made. In
the first comparison (Fig. 3), the differences were investigated
between the estimates of the mean return periods according to
KS-I (magnitude and model uncertainties were ignored) and
two respective alternative instances. These alternative in-
stances are (1) only the uncertainty of the earthquake magni-

Table 1
The Largest Earthquakes That Occurred within a 300 km Radius of the

Ceres–Tulbagh Earthquake Epicenter

Event Date Magnitude Event Date Magnitude

1 13 July 1766 4.3 15 30 September 1950 5.5
2 4 December 1809 6.3 16 13 June 1951 4.7
3 2 June 1811 5.7 17 28 January 1952 5.4
4 14 April 1819 4.3 18 26 February 1953 4.4
5 11 November 1835 4.3 19 30 September 1957 4.2
6 14 August 1857 5.0 20 29 August 1960 4.8
7 13 September 1899 5.0 21 27 August 1963 5.0
8 28 May 1902 4.3 22 21 February 1964 4.3
9 30 December 1908 4.0 23 28 September 1965 4.3

10 6 July 1911 4.0 24 1 March 1966 4.3
11 9 October 1921 5.0 25 16 June 1967 4.3
12 11 August 1926 4.0 26 29 September 1969 6.3
13 13 October 1940 4.3 27 14 April 1970 5.7
14 23 October 1941 4.3

The catalog starts on 1 January 1751 and ends on 31 December 1970.

Table 2
A Summary of the Complete Parts of the Catalogs

Subcatalog Start Date End Date Level of Completeness (Mw) Number of Events
Standard Error of Earthquake
Magnitude Determination

1 1 January 1971 31 December 1990 4.0 7 0.3
2 1 January 1991 31 December 1995 3.5 2 0.2
3 1 January 1996 31 January 2013 3.0 29 0.1
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tude is taken into account (KS-II), and (2) only the uncertainty
of the earthquake-occurrence model is considered. The pur-
pose of such a comparison was to isolate and capture the ef-
fects of the two uncertainties.

The comparison in Figure 3 of the classic instance (KS-I),
with the instance in which only magnitude uncertainties were
taken into account, confirms the acknowledged fact that ac-
counting for magnitude errors leads to an increase of return
periods or, equivalently, to a decrease of seismic hazard (e.g.,
Tinti and Mulargia, 1985; Rhoades and Dowrick, 2000;
McGuire, 2004). The uncertainty of the earthquake-occurrence
model has an opposite effect, namely it leads to a decrease
in the return periods or, equivalently, an increase in seismic
hazard.

The second comparison (Fig. 4) shows two estimates
of the mean return periods according to KS-I, when both
magnitude and model uncertainties are ignored; and the same

estimates as those obtained by KSS-III, when both the mag-
nitude and the event-occurrence model uncertainties are
taken into account. The increase of return periods, as a result
of magnitude uncertainty, and the decrease of return periods,
as an effect of the uncertainty of the earthquake-occurrence
model, averages out to an overall decrease in return periods.
Consequently, the calculated hazard levels increase, as the

Figure 2. (a) The mean return periods and (b) the probability
that a given magnitude will be exceeded at least once in any year.
Each graph also provides the calculated level of confidence for the
calculated values.

Figure 4. The comparison of mean return periods calculated
without accounting for magnitude and event-occurrence model un-
certainties (the solid line), with return periods calculated taking into
account the magnitude and model uncertainties (the dashed line).
The dashed line is a balance of the two opposite effects of the mod-
eled uncertainties.

Figure 3. The comparison between the individual effects of the
magnitude uncertainties and the event-occurrence model uncertain-
ties on the mean return periods. The solid line shows the classic
instance (Kijko and Sellevoll, 1989 [KS-I]), when both the uncer-
tainties are ignored. The dashed line captures the effect of magni-
tude uncertainties (procedure KS-II), whereas the dotted line shows
the effect of accounting for the model uncertainties.
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effect of introducing model uncertainty is stronger than the
effect of magnitude uncertainty.

Remarks and Conclusions

A methodology is presented to assess the area-character-
istic seismic-hazard parameters; the mean seismic activity
rate of λ and the b-value of Gutenberg–Richter, based on in-
complete catalogs; the uncertainty in the earthquake magni-
tude determination; as well as the uncertainty associated with
the applied earthquake-occurrence models. The present work
is a natural expansion of the work by Kijko and Sellevoll
(1989, 1992) to develop efficient techniques for the optimal
assessment of the area-characteristic seismic-hazard param-
eters by including uncertainty in the earthquake-occurrence
model. The current approach extends the classic earthquake-
occurrence model, the frequency–magnitude Gutenberg–
Richter relation, and the Poisson distribution by the introduction
of their compounded counterparts.

The newly derived procedure was applied to the area in
the vicinity of Cape Town that had experienced an event of
magnitude 6.3 on 29 September 1969, one of the strongest
and most devastating earthquakes in the history of South
Africa. The present study confirms the recognized fact (Tinti
and Mulargia, 1985; Rhoades and Dowrick, 2000; McGuire,
2004) that accounting for magnitude uncertainty leads to an
increase of return periods or, equivalently, to a decrease of
seismic hazard. The uncertainty of the earthquake-occurrence
model has the opposite effect, namely it leads to a decrease in
return periods and a subsequent increase of seismic hazard.

Several additional aspects should be investigated in the
future. These include (1) a more comprehensive investigation
of the universal applicability of the above results to seismic-
hazard modeling in areas with different levels of seismic ac-
tivity, (2) the sensitivity of the hazard parameters to different
degrees of model uncertainty, (3) the effect of different dis-
tribution models of magnitude uncertainty, and (4) the rela-
tionship between magnitude uncertainty and uncertainty in
the earthquake-occurrence models.

Data and Resources

The instrumentally recorded events were mainly se-
lected from the available database provided by the Council
for Geoscience, Pretoria, South Africa, and the International
Seismological Centre in the United Kingdom (http://www.
isc.ac.uk, last accessed May 2015). The catalog used in the
analysis spans a period of ∼268 years, namely from 1 Janu-
ary 1751 to 31 January 2012. The MATLAB computer pro-
gram (www.mathworks.com/products/matlab, last accessed
March 2016), used for the calculation of the newly derived
estimator of the mean annual activity rate λ, the b-value of
the Gutenberg–Richter magnitude–frequency relation, and
the area-characteristic maximum possible earthquake magni-
tude mmax is available for academic purposes from the au-
thors. Following the requirements expressed by Budnitz

et al. (1997), the computer code also contains the procedure
for the calculation of the correlation coefficient between λ
and the b-value.
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Appendix

The derivation of cumulative distribution function (CDF)
of apparent magnitude (equation 29) by S. Verryn (personal
comm., 2011)
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can be reduced to
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such that
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Then G�m� can be rewritten as
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The final result is
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