
                          Deakin, T., Price, J., Martineau, M., & McIntosh-Smith, S. (2018).
Evaluating attainable memory bandwidth of parallel programming
models via BabelStream. International Journal of Computational
Science and Engineering, 17(3), 247-262.
https://doi.org/10.1504/IJCSE.2017.10011352

Peer reviewed version

Link to published version (if available):
10.1504/IJCSE.2017.10011352

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via InderScience at http://www.inderscience.com/offer.php?id=95847 . Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1504/IJCSE.2017.10011352
https://doi.org/10.1504/IJCSE.2017.10011352
https://research-information.bris.ac.uk/en/publications/f0958b97-a49c-44c1-b8f4-a9a2aea89ca6
https://research-information.bris.ac.uk/en/publications/f0958b97-a49c-44c1-b8f4-a9a2aea89ca6


Evaluating attainable memory bandwidth of
parallel programming models via BabelStream

Tom Deakin
James Price
Matt Martineau
Simon McIntosh-Smith
Department of Computer Science,
University of Bristol,
Bristol, UK
E-mail: tom.deakin@bristol.ac.uk

Abstract: Many scientific codes consist of memory bandwidth bound kernels — the
dominating factor of the runtime is the speed at which data can be loaded from
memory into the Arithmetic Logic Units, before results are written back to memory.
One major advantage of many-core devices such as General Purpose Graphics Processing
Units (GPGPUs) and the Intel Xeon Phi is their focus on providing increased memory
bandwidth over traditional CPU architectures. However, as with CPUs, this peak memory
bandwidth is usually unachievable in practice and so benchmarks are required to measure
a practical upper bound on expected performance.

We augment the standard set of STREAM kernels with a dot product kernel to
investigate the performance of simple reduction operations on large arrays. Such kernels
are usually present in scientific codes and are still memory bandwidth bound.

The choice of one programming model over another should ideally not limit the
performance that can be achieved on a device. BabelStream (formally GPU-STREAM)
has been updated to incorporate a wide variety of the latest parallel programming models,
all implementing the same parallel scheme. As such this tool can be used as a kind of
Rosetta Stone which provides both a cross-platform and cross-programming model array
of results of achievable memory bandwidth.

Keywords: Performance portability; Many-core; Parallel programming models; Memory
bandwidth benchmark.

Biographical notes: Tom Deakin is studying for a PhD at the University of Bristol
sponsored by AWE. He is focusing on applications of High Performance Computing,
in particular using accelerated many-core devices. In 2012 Tom graduated valedictorian
from the University of Bristol with first class honours with a MSci in Mathematics and
Computer Science, winning the prize for Best graduating student in Computer Science
and Mathematics.

James Price is working towards a PhD in Computer Science in the High Performance
Computing group at the University of Bristol. His work involves investigating ways
to improve the programmability of modern, many-core computer processors, with a
particular emphasis on achieving performance portability across wide ranges of CPU
and accelerator architectures. James is an active contributor to the OpenCL parallel
programming standard.

Matt Martineau is currently undertaking a PhD in Computer Science at the University
of Bristol, supported by the Atomic Weapons Establishment. At present he is focusing
on cutting edge technologies and practices for High Performance Computing, with an
aim to understand how optimisations proven in micro-benchmarks can be scaled up to
real-world scientific codes.

Simon McIntosh-Smith is a Professor of High Performance Computing at the University of
Bristol in the UK. His background includes 15 years in industry designing microprocessors
at companies including Inmos, STMicroelectronics, Pixelfusion and ClearSpeed. He joined
the University of Bristol in 2009 where his research focuses on performance portability and
fault tolerant software techniques to reach Exascale. McIntosh-Smith actively contributes
to the OpenMP and OpenCL parallel programming standards.

Copyright c© 2017 Inderscience Enterprises Ltd.



Int. J. Computation Science and Engineering, Vol. x, No. x, 2017 2, Vol. x, No. x, 2017 2

1 Introduction

The number of programming models for parallel
programming has grown rapidly in recent years. Given
that they in general aim to both achieve high
performance and run across a range of hardware (i.e. are
portable), the programmer may hope they are abstract
enough that they enable some degree of performance
portability. In principle therefore, one might expect
that, when writing or porting a new code, the choice
of parallel programming language should largely be a
matter of preference. In reality there are often significant
differences between the results delivered by different
parallel programming models, and thus benchmarks
play an important role in objectively comparing across
not just different hardware, but also the programming
models. This study aims to explore this space and
highlight these differences.

Many scientific codes are memory bandwidth
bound, and thus are commonly compared against the
STREAM benchmark, itself a simple achievable memory
bandwidth measure [14]. The simplicity of the STREAM
kernels allow us to investigate if memory bandwidth
limits are achievable irrespective of the programming
model chosen. The focus therefore is to evaluate realistic
performance expectations of the portable programming
models, for if STREAM does not perform well it is
unlikely that a large scientific code written in this way
will perform well. STREAM itself was written with
similar goals in mind, namely to represent the achievable
performance of a scientific code by modelling typical
computation kernels and not as a highly optimised
micro-benchmark to measure optimal performance [16].
As with STREAM, we also focus only on single-
node performance and do not investigate multi-node
memory bandwidth characteristics which may form the
subject of a future paper. In this work we implemented
the STREAM kernels in a wide variety of parallel
programming models and across a diverse range of
CPU and GPU devices, comparing the percentage of
theoretical peak that was achieved.

Specifically, we make the following contributions:

1. We port the STREAM memory bandwidth
benchmark to seven parallel programming models,
all of which support many-core processors: Kokkos,
RAJA, OpenMP 4.x, OpenACC, SYCL, OpenCL
and CUDA.

2. We present performance portability results for
these seven parallel programming models on a
variety of GPUs from two vendors and on several
generations of Intel CPU along with IBM’s Power
8 and Intel’s Xeon Phi (Knights Landing).

3. We update the BabelStream (formally GPU-
STREAM) benchmark to provide a ‘Rosetta
Stone’, a simple example code which can assist
in understanding how to program in the different

programming models. This will also enable testing
of future programming models in a simple way.

4. We also include a dot product kernel, in all seven
programming models, to additionally examine the
available memory bandwidth for reductions.

The paper is structured as follows: in Sec. 2 we
introduce the STREAM benchmark and explain the
basic structure. In Sec. 3 we describe the key features
of the programming models we use in this paper, before
presenting performance results in Sec. 4. Finally we
conclude in Sec. 5.

2 Measuring Memory Bandwidth

The STREAM Benchmark [14] measures the time taken
for each of four simple operators (kernels) applied to
three large arrays (a, b and c), where α is a scalar
constant. As part of the STREAM2 Benchmark [15], a
reduction operation is introduced in the form of a dot
product of two of the large arrays. The five kernels in our
benchmark, made up from the original four STREAM
kernels plus the dot product from STREAM2 are:

1. Copy: c[i] = a[i]

2. Multiply: b[i] = αc[i]

3. Add: c[i] = a[i] + b[i]

4. Triad: a[i] = b[i] + αc[i]

5. Dot: sum = sum + a[i] ∗ b[i]

These kernels have been demonstrated to be memory
bandwidth bound. The number of bytes read from and
written to memory can be modelled by visual inspection
of the source code. We let β be the size in bytes of an
element — for double precision floating point β = 8. For
an array containing N elements, the copy and multiply
kernels read Nβ bytes and write Nβ bytes, totalling
2Nβ bytes. The add and triad kernels both read 2Nβ

bytes and write Nβ bytes, totalling 3Nβ bytes. The dot
kernel reads 2Nβ bytes but does not contain a write to
main memory; the result of the reduction is single scalar
variable. Running the kernels in the order enumerated
above ensures that any caches are invalidated between
kernel calls; N is chosen to be large enough so that the
arrays are larger than last level cache (on cache-based
architectures) to require the data to be moved from main
memory — see [14] for the rules of running STREAM
which we adopt here. The achieved sustained memory
bandwidth can be found as the ratio of bytes moved and
the execution time of the kernel. A typical modern CPU
can achieve a STREAM result equivalent to 80% or more
of its peak memory bandwidth.

BabelStream is a complementary benchmark to
the standard CPU version of STREAM. BabelStream
enables the measurement of achievable memory

Copyright c© 2017 Inderscience Enterprises Ltd.



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 3

bandwidth across a wide range of multi- and many-
core devices [4]. The first version of BabelStream
implemented the four STREAM kernels in OpenCL and
CUDA, allowing the benchmark to be used across a
diverse set of hardware from a wide range of vendors. As
a tool it allows an application developer to know how
well a memory bandwidth bound kernel is performing.
BabelStream is Open Source and available on GitHub
at http://uob-hpc.github.io/BabelStream/. The
webpage maintains a repository of all our results and
we encourage submission of additional measurements.
In this paper we expand BabelStream to consider a
second dimension to this reference point, namely the
programming model.

Additionally we include a new kernel which represents
a different balance of read and write operations: the
dot product. The dot product bandwidth model used
is identical to that used in STREAM2, which counts
the movement of data to and from main memory alone,
ignoring any cache effects. This is equivalent on the
GPU to ignoring the implementation details of using
shared/local memory as a form of cache. As such, the
expected performance of a reduction over a large data
set can be realised.

2.1 Related Work

The STREAM2 benchmark [15] is a serial benchmark
designed to investigate both the performance of the
cache hierarchy and any disparity in the performance of
read and write operations. Due to the serial nature of
this code along with the complex iteration monitoring,
it has not been possible to provide results using this
benchmark directly. We have therefore re-implemented
the dot product kernel into the original STREAM
benchmark [14] and use this as our baseline for this
kernel.

The deviceMemory benchmark from the Scalable
HeterOgeneous Computing (SHOC) Benchmark Suite
is an implementation of the triad STREAM kernel [3].
However, this also includes the PCIe transfer time in
the bandwidth measurement. Including this factor hides
the bandwidth to device memory itself. In a large scale
application consisting of many kernels the transfer of
data to the GPU would be performed upfront and data
would not be transferred at each kernel execution. As
such comparing performance “relative to STREAM” is
not possible with the SHOC benchmark.

The clpeak benchmark, whilst measuring device
memory bandwidth implements a reduction so is not
a direct comparison to STREAM [2]. It is also not
comparable to the dot kernel here as the clpeak reduction
uses the OpenCL vector types which result in a non-
contiguous memory access pattern on the devices tested
in this study.

The Standard Parallel Evaluation Corporation
(SPEC) ACCEL benchmark suite whilst containing
many memory bandwidth bound kernels does not include
a STREAM kernel [26].

Performance portability studies have previously only
focussed on a single programming model. Sawadsitang
et al. focus on the performance of OpenACC compared
to CUDA and OpenCL on GPUs and Intel Xeon Phi
(Knights Corner) for numerical kernels, however their
discussion of performance portability does not take into
account the relative performance profiles of the difference
devices [25]. Sabne et al. use automatic performance
tuning to evaluate the performance portability of
OpenACC, and as such does not allow for the baseline
performance of the model to be demonstrated [24].

To the authors’ knowledge, the only study that has
compared the same benchmark in all the programming
models of interest across a wide range of devices is
one they themselves performed, where the TeaLeaf heat
diffusion mini-app from the Mantevo benchmark suite
was used in a similar manner to measure performance
portability [13, 7].

3 Programming Models

A parallel programming model along with a runtime or
an implementation of that model provides programmers
a way to write code to run on multiple physical execution
units. A common way of providing this functionality is
via an Application Programming Interface (API) which
may be through function calls, compiler directives or an
extension to a programming language.

We briefly introduce each of the programming models
used in this paper. Due to the simplicity of the
STREAM kernels, we also include the triad kernel
in each model to enable the reader to make a look-
and-feel comparison. A similar approach was taken
with the TeaLeaf mini-app in [13]. This approach also
helps to demonstrate the similarities and differences
between these parallel programming models, exposing
how intrusive or otherwise the models may be for existing
code. We take the standard STREAM triad kernel
written in a baseline of C++ running on a CPU in serial,
as shown in Fig. 1.

We have also included the dot kernel for each model.
Some of the models provide a way of describing the
reduction from within the API or through the use of a
directive, whereas other models require the programmer
to write the reduction by hand. The baseline serial dot
kernel is shown in Fig. 2. As can be seen the method
returns the final result of the reduction and so we require
that the reduction is complete with the final value on
the host for this method to complete.

The update to the BabelStream benchmark [4]
presented in this paper has been designed in a plug-
and-play fashion; each programming model plugs into
a common framework by providing an implementation
of an abstract C++ class. This means that the “driver
code” providing the timing routines, etc. is identical
between different models. Note that an independent
binary is built per parallel programming model, avoiding
any possibility of interference between them. Further



4 T. Deakin et al.

programming models are simple to add using this
approach.

In considering the memory bandwidth of kernels
alone, the transfer of memory between the host and
device is not included as in our previous work; the one
exception is obtaining the final result of the dot product.
Therefore timings are of the kernel execution time and
measure the movement of memory on the device alone.
The framework developed ensures that all data transfer
between host and device is completed before the timing
of the kernels are recorded. This therefore requires that
each kernel call is blocking so that the host may measure
the total execution time of the kernels in turn. This is
consistent with the approach in the original STREAM
benchmark.

Additionally our framework has memory movement
routines to ensure that data is valid on the device a
priori to the kernel execution. In order to cater for
architectures that exhibit NUMA characteristics, the
initialisation of the data arrays is performed with a
model-specific parallel routine to allow systems with a
first-touch allocation policy to allocate memory regions
near the cores or compute units that will use them. This
was observed to be particularly important for achieving
high bandwidth on CPU devices.

3.1 OpenCL

OpenCL is an open standard, royalty-free API specified
by Khronos [18]. The model is structured such that
a host program co-ordinates one or more attached
accelerator devices; this is a fairly explicit approach
as the API gives control over selecting devices from a
variety of vendors within a single host program. Because
OpenCL is designed to offload to generic devices, vendor
support is widespread from manufactures of CPUs,
GPUs, FPGAs and DSPs.

Each OpenCL device has its own memory address
space, which must be explicitly controlled by the
programmer; memory is not shared between the host
and device. OpenCL 2.0 introduced a Shared Virtual
Memory concept which allows the host and device to
share an address space, although explicit synchronisation
for discrete devices is still required via the host to ensure
memory consistency.

Kernels are typically stored as plain text and are
compiled at run time. The kernels are then run on
the device by issuing them to a command queue. Data
movement between host and device is also coordinated
via a command queue.

The host API is provided via C function calls, and
a standard C++ interface is also provided. Kernels are
written in a subset of C99; OpenCL 2.2 provisionally
allows kernels to be written in C++. The BabelStream
triad kernel in OpenCL C99 is shown in Fig. 3.

OpenCL 1.x does not include any built-in reduction
constructs and so we must implement one by hand; we
use a two-stage commutative reduction found commonly
in vendor software development kits and online (e.g. [1]

where this shows the best performance). Local memory is
utilised to share partial reduction values between work-
items within the work-group. We run four work-groups
per compute unit, with the size of each block set to the
device maximum work-group size. OpenCL provides API
calls to query the device for these specific values at run
time. The partial sum from each work-group is written
to global memory, and these are copied back to the host
for the final summation in serial. The BabelStream dot
kernel in OpenCL C99 along with the routine to launch
the kernel and compute the final summation is shown in
Fig. 4.

3.2 CUDA

CUDA is a proprietary API from NVIDIA for targeting
their GPU devices [19]. CUDA kernels are written in a
subset of C++ and are included as function calls in the
host source files. They are compiled offline.

The API is simplified so that no explicit code is
required to acquire a GPU device; additional routines
are provided to allow greater control if required by the
programmer.

In the more recent versions of CUDA the memory
address space is shared between the host and the GPU
so that pointers are valid on both. Synchronisation of
memory access is still left to the programmer. CUDA
also introduces Managed memory which allows a more
automatic sharing of memory between host and device.
With CUDA 8 and the latest Pascal GPUs, the GPU is
allowed to cache data accessed from the host memory;
previously it was zero copy.

The BabelStream triad kernel is shown in Fig. 5.
Note that CUDA requires specification of the number of
threads per thread-block, and as such any choice may
be non-optimal across devices for a single source kernel.
A previous study showed that 1024 threads per thread-
block achieves reasonable performance and so we use this
value in our study [23]. Note therefore the size of the
arrays must be divisible by 1024 in our implementation.

CUDA does not provide any built-in reduction
implementations. We implement a two-stage
commutative reduction by hand that matches the one
we used for OpenCL. Shared memory is used to share
partial reduction values between threads within the
thread block, with the final values written to device
memory. The partial values are copied back to the host
and the final summation is completed in serial. We
launch the kernel with 256 thread blocks, each block
containing 1024 threads. The BabelStream dot kernel is
shown in Fig. 6.

3.3 OpenACC

The OpenACC Committee, consisting of members
including NVIDIA/PGI, Cray and AMD, partitioned
from the OpenMP standard to provide a directive-
based solution for offloading to accelerators [20]. The
accelerator is programmed by adding compiler directives



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 5

(pragmas or sentinels) to standard CPU source code. A
few API calls are also provided to query the runtime and
offer some basic device control and selection.

There are two different options for specifying the
parallelism in offloaded code. The OpenACC parallel

construct starts parallel execution on the device,
redundantly if no other clauses are present. The loop

construct is applied to the loop to describe that the
loop iterations are to be distributed amongst threads
on the device (a single vector lane of a single worker
of a single gang). The kernels pragma indicates that
the region will be offloaded to the device as a series of
‘kernels’ and any loops encountered may be executed
as a kernel in parallel. The kernels construct allows
the compiler to make decisions about the parallelism,
whereas the parallel construct gives the programmer
control to define the parallelism. The parts of the code
which are run on the accelerator are compiled offline,
and can be tuned for particular accelerators via compiler
flags.

Current implementations of OpenACC can target
devices including AMD and NVIDIA GPUs, IBM Power
CPUs and x86 multi-core CPUs. Current OpenACC
compilers that are available include GCC 6.1, Cray and
PGI (NVIDIA).

The BabelStream triad kernel is shown in Fig. 7.
Note that a wait clause is required for the offload to be
blocking as is required by our framework to ensure timing
is correct (see Sec. 3). The present clause specifies
that the memory is already available on the device and
ensures a host/device copy is not initiated.

Through the use of the kernel directive the
OpenACC implementation can determine at compile
time if a reduction operation is required, and as such
we can use the same compiler directive as for the other
kernels. The programmer does not need to specify that
a reduction operation occurs. OpenACC does provide
a reduction clause for use with the parallel loop

directive. The BabelStream dot kernel is shown in Fig. 8.

3.4 OpenMP

The OpenMP specification from the OpenMP
Architecture Review Board has traditionally allowed
thread based parallelism in the fork-join model on
CPUs [21]. The parallelism is described using a directive
approach (with pragmas or sentinels) defining regions
of code to operate (redundantly) in parallel on multiple
threads. Work-sharing constructs allow loops in a
parallel region to be split across the threads. The shared
memory model allows data to be accessed by all threads.
An OpenMP 3 version of the triad kernel, suitable for
running only on CPUs is shown in Fig. 9.

The OpenMP 4.0 specification introduced the ability
to offload regions of code to a target device. The
approach has later been improved in the OpenMP 4.5
specification. Structured blocks of code marked with
a target directive are executed on the accelerator,
whilst by default the host waits for completion of the

offloaded region before continuing. The usual work-
sharing constructs allow loops in the target region and
further directives allow finer grained control of work
distribution.

Memory management in general (shallow copies)
is automatically handled by the implementation; the
host memory is copied to the device on entry to the
offloaded region by natural extensions to the familiar
implicit scoping rules in the OpenMP model. Finer
grained control of memory movement between the host
and device is controlled via target data regions and
memory movement clauses; in particular arrays must be
mapped explicitly.

The unstructured target data regions in OpenMP
4.5 allow simple integration with our framework. The
scoping rules of OpenMP 4.0 would require that
the memory movement to the device to have been
written in our driver code, breaking the separation
of implementation from driver code in our testing
framework; OpenMP 4.5 fixes this issue present in the
original 4.0 specification.

The OpenMP 4 version of the BabelStream triad
kernel is shown in Fig. 11.

The same directives shown previously can be used
with the addition of a reduction clause for the dot
kernel, as shown for BabelStream in Figs. 10 and 12. The
clause requires the programmer to specify the reduction
operator (a sum + in this case) and the reduction
variable.

Whilst the directives are different for CPU and
GPU implementations, the loop bodies are identical. For
BabelStream we use a preprocessor switch to determine
which variant of the pragmas to use at compile time.

3.5 Kokkos

Kokkos is an open source C++ abstraction layer
developed by Sandia National Laboratories that allows
users to target multiple architectures using OpenMP,
Pthreads, and CUDA [6]. The programming model
requires developers to wrap up application data
structures in abstract data types called Views in order
to distinguish between host and device memory spaces.
Developers have two options when writing Kokkos
kernels: (1) the functor approach, where a templated
C++ class is written that has an overloaded function
operator containing the kernel logic; and (2) the lambda
approach, where a simple parallel dispatch function
such as parallel for is combined with an anonymous
function containing the kernel logic. It is also possible to
nest the parallel dispatch functions and achieve nested
parallelism, which can be used to express multiple levels
of parallelism within a kernel.

The Kokkos version of the BabelStream triad kernel
is shown in Fig. 13.

Kokkos provides the parallel reduce dispatch
function to describe a reduction, and is shown for
BabelStream in Fig. 14. The loop body must be changed
to use a temporary for the reduction variable which is



6 T. Deakin et al.

declared as an argument to the lambda function; in the
baseline code in Fig. 2 the sum variable is used but we
must the new tmp lambda argument in the loop body
instead. The dispatch function is also passed the original
reduction variable so that it can be set.

3.6 RAJA

RAJA is a recently released C++ abstraction layer
developed by Lawrence Livermore National Laboratories
that can target OpenMP and CUDA [8]. RAJA adopts
a novel approach of precomputing the iteration space
for each kernel, abstracting them into some number of
Segments, which are aggregated into a container called
an IndexSet. By decoupling the kernel logic and iteration
space it is possible to optimise data access patterns,
easily adjust domain decompositions and perform tiling.
The developer is required to write a lambda function
containing each kernel’s logic that will be called by some
parallel dispatch function, such as forall. The dispatch
functions are driven by execution policies, which describe
how the iteration space will be executed on a particular
target architecture, for instance executing the elements
of each Segment in parallel on a GPU.

The policy is typically set using a typedef in a global
header file and so only need setting at this high level.
The index set is again usually set in a globally accessible
instance and so only needs setting once for each unique
loop bound.

The RAJA version of the BabelStream triad kernel is
shown in Fig. 15.

RAJA provides reduction classes which wrap the
reduction variables. For our summation operation,
the result is instead declared as a RAJA::ReduceSum

instead of a simple native data type. The loop body
(expressed as a lambda) therefore requires no change.
The BabelStream dot kernel is shown in Fig. 16.

3.7 SYCL

SYCL is a royalty-free, cross-platform C++ abstraction
layer from Khronos that builds on the OpenCL
programming model (see Sec. 3.1) [12]. It is designed
to be programmed as single-source C++, where code
offloaded to the device is expressed as a lambda function
or functor; template functions are supported.

SYCL aims to be as close to standard C++14 as
possible, in so far as a standard C++14 compiler can
compile the SYCL source code and run on a CPU via
a header-only implementation. A SYCL device compiler
has to be used to offload the kernels onto an accelerator,
typically via OpenCL. The approach taken in SYCL 1.2
compilers available today is to generate SPIR, a portable
intermediate representation for OpenCL kernels. The
provisional SYCL 2.2 specification will require OpenCL
2.2 compatibility.

The SYCL version of the BabelStream triad kernel is
shown in Fig. 17.

The two-stage commutative reduction used for
OpenCL and CUDA is again implemented for our SYCL
version of the dot kernel as SYCL does not have any
built in reduction APIs. The BabelStream dot kernel is
shown in Fig. 18.

4 Results

Table 1 lists the many-core devices that we used in our
experiment. The GPU micro-architecture code names
are shown in parenthesis. The CPUs are all dual-socket,
except for the Intel Xeon Phi. Given the breadth of
devices and programming models we had to use a
number of platforms and compilers to collect results.
Intel does not formally publish the peak MCDRAM
bandwidth for the Xeon Phi (Knights Landing), so
the presented figure is based on published claims that
MCDRAM’s peak memory bandwidth is five times that
of it’s DDR.

The HPC GPUs from NVIDIA were attached to a
Cray XC40 supercomputer ‘Swan’ (K20X), a Cray CS
cluster ‘Falcon’ (K40 and K80), and a Cray XC50/XC40
supercomputer ‘Piz Daint’ (P100). The NVIDIA GTX
980 Ti and Titan X are attached to an experimental
cluster at the University of Bristol (the “Zoo”). The
AMD GPUs were also attached to the experimental
“Zoo” cluster in Bristol. The Sandy Bridge CPUs are
part of BlueCrystal Phase 3, part of the Advanced
Computing Research Centre at the University of Bristol.
The Ivy Bridge CPUs are part of the Cray XC30
supercomputer ‘Edison’ at the National Energy Research
Scientific Computing Center (NERSC). The Haswell
and Broadwell CPUs are part of the Cray XC40
supercomputer ‘Swan’. The Intel Xeon Phi (Knights
Landing) is part of the “Zoo” experimental cluster
in Bristol. The IBM Power 8 CPUs are part of an
Advanced Systems Technology Test Bed at Sandia
National Laboratories, and the system includes the off-
chip Centaur L4 caches.

Tables 2 and 3 show the compiler and driver
versions used for each combination of device and
programming model. The clang-ykt fork of Clang
for OpenMP used on the “Zoo” is available at
https://github.com/clang-ykt; note that the Clang
OpenMP 4.x implementation is still under development
and is not a stable release. The ComputeCpp compiler
from Codeplay generates SPIR, but as SPIR support is
not available in the proprietary OpenCL drivers from
NVIDIA we used pocl [9] with an experimental NVIDIA
backend developed at the University of Bristol for these
SYCL results. For OpenACC on Broadwell and KNL,
we targeted the Haswell architecture as Broadwell/KNL
are not yet available options in the PGI compiler.

In the next few sections we describe our experiences
in porting the BabelStream kernels to the seven different
parallel programming models in our study, and describe
the performance we were able to achieve when running



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 7

these implementations on this diverse range of multi- and
many-core devices.

4.1 Code changes and experiences

The C++ solutions of SYCL, RAJA and Kokkos all
provide a similar syntax for describing the parallel work.
A for-loop is replaced by an equivalent statement with
the loop body expressed as a lambda function. The
directive based approaches of OpenMP and OpenACC
both annotate for-loops with compiler directives which
describe the parallelism of the loop. OpenCL and CUDA
require the loop body to be written in a separate function
which is then instantiated on the device with an API call
which defines the number of iterations; the iteration no
longer is expressed as a loop. Table 4 gives an idea of how
much code was required to implement this benchmark
in each of the programming models. The number of
lines of code in the specific implementation in each
of the programming models of our virtual class (code
plus header file) was counted and is shown in the first
column. For each version we also include the change in
the number of lines of code compared to our baseline
serial version in C++ implemented in our framework.

Whilst the authors found that writing this simple
benchmark in each of the programming models was
a simple task, getting them to build on a variety of
platforms for a variety of devices was a significant
challenge in many cases. Additionally, some changes to
the code were required in order for specific platform and
compiler combinations to be performant, or in some cases
to work at all.

OpenACC using the PGI compiler targeting host
CPUs, the AMD GPUs and the NVIDIA consumer
GPUs, all required specifying the pointers as restrict
in order for the loop to be parallelised, although this
is not standard C++. However, this causes the Cray
OpenACC compiler to serialise the offloaded region; the
loop does execute on the device but in serial and so
has poor performance. When collecting the results we
removed restrict for the Cray results and inserted
restrict for the PGI results as we believe this to be an
issue in the compiler itself rather than the model. Using
parallel loop independent does parallelise the loop
without specifying restrict. However, PGI advocate
the use of the kernels directive over the parallel

directive [17]. This would be relatively simple change,
in a simple benchmark case, but there may be larger
codes where the reason the automatic parallelism fails
may not be evident. Additionally this would result in
the programmer changing the way they express the
same parallelism when using a particular programming
model by altering the code for a different architecture
or compiler, the code itself is no longer performance
portable — you require one implementation per compiler
even if they target the same device.

Table 4 shows that OpenMP involved more lines of
additional code than OpenACC. This is due to including
the pragmas for the CPU and GPU architectures in the

same source, with the preprocessor definition to switch
between them as previously discussed in Sec. 3.4.

However, all compilers supporting OpenMP 4 and
OpenACC would not correctly offload the kernel without
re-declaring the arrays as local scope variables; note that
this is down to the implementation of the models rather
than the memory models themselves. These variables are
declared inside the class, but the compilers were unable
to recognise them in the directives (Cray), or else crash
at runtime (PGI targeting GPUs). The authors have
found this is also the case with using structure members
in C. It is the opinion of the authors that these local
variables should not be required for correct behaviour as
a valid pointer value is passed to the directive; however
we note an additional level of dereferencing would be
required by the model implementation to access class
members.

In addition to these code changes, the data
points required specific compiler invocations for each
combination of compiler, programming model, device
and host system.

4.2 Performance

We display the fraction of peak memory bandwidth we
were able to achieve for a variety of devices against
each programming model for the triad kernel in Fig. 19
and for the dot kernel in Fig. 20. The figures show
the sustained peak memory bandwidth obtained, the
percentage of theoretical peak obtained (using the peak
numbers from Table. 1), and the percentage of the
best achieved memory bandwidth across all models
for that device. The percentage of theoretical peak
allows us to see how close compared to vendor quoted
memory bandwidth is achievable in each case, whilst
the percentage of best achieved highlights any difference
between the performance of the programming models for
each device. We used 100 iterations with an array size of
225 double precision elements (268 MB).

We will analyse these results in appropriate groups
of devices from each vendor, and compare the
performance achieved for the triad and dot kernels in the
programming models, wherein the figures should be read
in vertical columns, bottom to top. In Sec. 4.2.6 we will
compare the performance of each of the programming
models across the range of devices tested, wherein the
figures should be read in horizontal rows, left to right.
Some of the combinations of hardware and programming
model were not supported, and details of these cases are
presented in Sec. 4.3. We used the OpenMP backend of
RAJA and Kokkos to target the CPUs and the CUDA
backend to target the NVIDIA GPUs.

4.2.1 NVIDIA GPUs

The NVIDIA GPUs used in this study consist of
the HPC K20X, K40, K80 and P100, along with the
consumer GTX 980 Ti and Titan X. The P100 with
its HBM2 memory demonstrates the highest achievable



8 T. Deakin et al.

memory bandwidth of all the devices tested, as seen by
obtaining the highest value in Fig. 19a; this is also true
of the dot kernel in Fig. 20a.

The achievable performance for codes targeting
NVIDIA GPUs written in any of the models are
consistent, across the different generations of GPU.
Figure 19b shows that all the models can achieve
60–80% of theoretical peak across all devices. More
impressively the models all achieve over 90% of relative
peak performance (with the exception of RAJA on a K80
which achieves 88% relative). As such both the high-
level C++-style models and directive based approaches
all demonstrate equivalent performance to each other
and to the lower level models of CUDA and OpenCL,
the stalwart of programming these devices; this is a very
encouraging result.

The dot kernel on the P100 demonstrates a higher
available bandwidth than the triad kernel, achieving 75%
of peak for triad and 80% of peak for dot. This increase
is less pronounced for the earlier generations of NVIDIA
GPU, in particular the Kepler architecture. The Titan
X is also a Pascal architecture, with GDDR5X memory
instead of HBM2, and shows a small improvement in
bandwidth from triad to dot, however the increase is
smaller compared to the P100 result.

Figure 20c shows that the dot kernel in OpenACC
does not obtain good memory bandwidth with the
Cray compiler on the K40 and K80 GPUs, indicating
a performance issue in the code generated for the
reduction kernels. The PGI compiler was not available
on these systems, however showed good performance
on the other NVIDIA GPUs where this was available.
The Cray OpenMP implementation shows very good
performance relative to CUDA, with the immature
clang-ykt providing good bandwidth for triad, but with
lower bandwidths for some devices for the dot kernel.
It is expected that these are performance bugs and will
eventually be fixed in the respective compilers.

4.2.2 AMD GPUs

All the graphs in Figs. 19 and 20 show that we were
unable to collect a full set of data points; of all the
vendors, general support for most of the programming
models is lacking at the time of writing. A fuller
explanation of the reasons for the missing points is listed
in Sec. 4.3. This should be viewed as a weakness of the
implementations of the models, rather than any issues
with the programming models applicability to AMD
hardware.

It should be noted that the data points that we
were able to collect for AMD’s GPUs achieved the
highest fractions of peak for all GPUs, 84–86% for the
triad kernel. The OpenACC dot kernel performance
relatively poorly, as shown in Fig. 20c, but is on a par
with the percentage of theoretical peak performance on
OpenACC obtained on NVIDIA GPUs.

4.2.3 Intel CPUs

We use the original ‘McCalpin’ STREAM benchmark
written in C and OpenMP as a baseline comparison
for the CPU results. Thread binding is used via setting
the OpenMP environment variable OMP PROC BIND to
true, and the number of threads is specified via
OMP NUM THREADS to equal the number of cores. We
found that running one thread per core gave the best
memory bandwidth and so hyperthreads we not used
here. The OpenMP specification states that threads
are not allowed to move between places (which are
implementation defined by default). Therefore the
OpenMP implementation is free to choose the best way
to pin the threads to cores. We did not experiment with
turning on streaming stores, however the Intel compiler
was free to generate these instructions.

The available memory bandwidth has improved
through the generations of Intel CPUs, from an
achievable 66 GB/s to 128 GB/s for triad. However,
this bandwidth is generally unavailable using all of
programming models. Fig. 19b shows that there is some
loss of performance when using C++ and OpenMP 3 for
running on CPUs compared to the original STREAM
benchmark written in C, marked as ‘McCalpin’ on
the figures. For example, on Broadwell CPUs the
C++ version achieves 64% of peak memory bandwidth,
compared to 83% when using the C version. Both these
codes use the standard OpenMP 3 programming model,
however the original STREAM benchmark has the
problem size known at compile time and so the compiler
is able to make additional optimisations including on the
peel and remainder loops based on the trip count. In
more realistic (non-benchmark) kernels, this information
would likely not be available at compile time. The dot
kernel shows a similar drop in performance compared
to the McCalpin version; indeed Figs. 19c and 20c show
that the McCalpin versions are the only results achieving
100%. The McCalpin benchmark shows that the dot
kernel gets an improved bandwidth over the triad kernel.

Both RAJA and Kokkos use the OpenMP
programming model to implement parallel execution on
CPUs. The performance results on all four CPUs tested
show that RAJA and Kokkos performance matches
that of hand-written OpenMP for BabelStream for
both the triad and dot kernels. This result shows that
both RAJA and Kokkos provide little overhead over
writing OpenMP code directly, at least for BabelStream.
As such they may provide a viable alternative to
OpenMP for writing code in a parallel C++-style
programming model compared to the directive based
approach in OpenMP. However as noted above, C++
compiler implementations of OpenMP may suffer from
a performance loss compared to a C with OpenMP
implementation.

We used PGI’s implementation of OpenACC for
multi-core CPUs, requesting thread pinning using
MP BIND=yes and specifying the number of threads with
ACC NUM CORES. OpenACC does not demonstrate good



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 9

peak performance on the CPUs in general, as can be seen
in Figs. 19b and 20b, which we attribute to poor NUMA
behaviour. Although we use a parallel loop to initialise
the data in each array, we conclude that the directive
used to create the device allocations is undesirably
allocating data on a single socket. If we instead use
the acc malloc routine to allocate the device arrays we
observe much higher performance on CPUs, however this
approach currently does not function correctly on GPUs,
and we assert that our original directive approach should
exhibit the correct first-touch behaviour.

OpenCL is able to run on the CPU as well, and
we tested using the Intel OpenCL runtime. For the
triad kernel OpenCL gets close to the C++ OpenMP
performance in Sandy Bridge and Haswell, but is lower
on Ivy Bridge and Broadwell, as seen in Fig. 19c.
The dot kernel struggles to match the C++ OpenMP
performance, however achieves similar to OpenACC
performance in Fig. 20c. We can achieve higher reduction
performance on CPUs in OpenCL by using a more
cache-friendly access pattern, but this approach results
in performance degradation on the GPU devices. This
performance portability issue arises due to the explicit
nature of OpenCL, which forces the programmer to
describe the memory access pattern.

Figure 19c shows that SYCL has little overhead
for the triad kernel over OpenCL. However Fig. 20c
shows that the dot kernel is around 20-30% slower than
OpenCL, which could indicate some overheads in the
code generated for local memory use and work-item
synchronisation.

4.2.4 Intel Xeon Phi (Knights Landing)

The Intel Xeon Phi (KNL) has MCDRAM memory
which offers an increased memory bandwidth over the
DDR found in the the other CPUs. It is clear in Fig. 19a
that this device provides a significant improvement over
all the CPUs for the triad kernels. It also demonstrated
more bandwidth than the GDDR GPUs, however the
P100 with HBM2 does offer a further improvement.
We ran one thread per core, using numactl to ensure
allocation in MCDRAM. Again, we found that running
one thread per core gave the best memory bandwidth
and so hyperthreads we not used here. We used the same
environment variables for thread binding and core counts
with OpenMP and OpenACC as used for the Intel CPUs
in Sec. 4.2.3.

As with the Intel CPUs, the highest bandwidth was
demonstrated with the original McCalpin benchmark,
and the C++ OpenMP versions show a drop in
performance; see Fig. 19c. Kokkos again matches the
OpenMP implementation, however the performance of
RAJA is lower than expected as in a previous study the
performance of RAJA matched that of Kokkos on this
architecture [5]. This may be due to the recent updates to
the implementation of the RAJA library. The dot kernel
in particular obtains low performance.

OpenACC again shows a further loss in
performance. We were able to collect a result
for OpenCL on KNL by setting an environment
variable: VOLCANO CPU ARCH=core-avx2; however the
performance is lacking. This approach restricts the
OpenCL compiler to generate AVX2 instructions, which
only deliver half the vector width of the KNL’s AVX512
ALUs. Additionally, the KNL has two vector floating
point ALUs, but only one is capable of running legacy
(AVX2 and lower) vector instructions [10], which further
limits the device utilisation.

Unlike with Intel CPUs, the dot kernel does not
achieve a higher memory bandwidth than the triad
kernel; triad 448 GB/s compared to dot 340 GB/s.
The triad kernel has two read operations and one write
operation for each kernel invocation, whereas the dot
kernel does not have the write operation. A previous
study found that because MCDRAM has separate read
and write channels, streaming writes can be performed
at the same time as the reads [11]. As such they appear
as extra memory bandwidth without increasing runtime
and so the measure of achieved memory bandwidth
is increased. With reads alone the maximum memory
bandwidth is not possible to obtain as the write channel
remains unused.

4.2.5 Power 8

The Power 8 results were collected with one thread per
core. The bandwidth presented in Fig. 19b of 78% of
theoretical peak is using the same problem size as all
the other results; a higher bandwidth is possible with
a large problem as has been previously observed that
performance can decrease with smaller problems [22].

The Power 8 CPU obtains a higher peak bandwidth
(nearly 299 GB/s) than the Intel CPUs tested,
over double that of the Broadwell (Fig. 19a). The
C++ OpenMP implementation of BabelStream almost
matches the performance of the original McCalpin
STREAM benchmark; the drop in performance seen
with this on the Intel CPUs is not present here. Again,
RAJA and Kokkos show little overhead over the directive
based OpenMP programming model. Figure 19c shows
that the available programming models all provide good
performance on this platform.

The performance of the dot kernel shows more
variability. As with the Intel Xeon Phi (Knights
Landing) the dot kernel achieves lower performance than
the triad kernel; in this case about 20 GB/s lower.
Although each Power 8 socket has a memory bandwidth
of 192 GB/s, this is split into 128 GB/s of read
bandwidth and 64 GB/s write bandwidth [22]. As the
dot kernel does not contain any writes, we are therefore
not maximising the use of the memory channels and so
would expect a drop in achievable memory bandwidth.

As with the triad kernel, the C++OpenMP version of
dot gives almost identical performance to the McCalpin
STREAM benchmark. However performance is lost with
the Kokkos implementation of this kernel, reducing the



10 T. Deakin et al.

bandwidth to 67% of the best achieved (Fig. 20c).
The RAJA performance for this kernel is very low,
only 6 GB/s and so there is clearly an issue with the
implementation of reductions in the RAJA framework
for large thread counts.

4.2.6 Performance portability of the programming
models

This section comments on the percentage of achievable
memory bandwidth obtained by each programming
model across the different devices. The results are
for the triad kernel unless specified otherwise. An
important observation is that none of the programming
models presented here run across all of the devices we
investigated. Where performance is lacking it is generally
down to the implementation of the model itself, rather
than an inherent property of the model which are all
(theoretically) portable.

OpenCL and SYCL provide the greatest coverage
of devices, running on NVIDIA and AMD GPUs, Intel
CPUs and Xeon Phi (KNL), only being unsupported
on Power 8. These programming models provided good
performance across all the GPUs, greater than 95% of
the best achievable, however only greater than 50% of
the best on the Intel CPUs and KNL. For the reduction
kernel the performance on CPUs is currently lacking,
however the performance on GPUs from both vendors is
good.

OpenMP was able to run on the NVIDIA GPUs,
Intel CPUs and KNL and Power 8, with only the AMD
GPUs currently unsupported. The performance was also
good, with over 91% of best achievable performance
on NVIDIA GPUs and over 74% on Intel CPUs (over
68% on KNL). This slightly lower performance on the
CPUs is likely down to the issues with optimisation
in the compiler as discussed in Sec. 4.2.3. We had to
program two different directives for the CPU and GPU
architectures in order to achieve this portability, as the
model differentiates between an offload and non-offload
model using different directives. For BabelStream this
was simple as we could use a compiler definition to
choose the directives at compile time, however we had to
duplicate the directives on each kernel. The performance
of the reduction is generally good across all devices, with
a small performance issue on the GTX 980 Ti; although
this result uses an immature compiler.

Whilst OpenACC demonstrated over 94% of best
achievable performance on the supported GPUs, the
performance on CPUs was somewhat lacking averaging
41% of best achievable. The performance with the Cray
compiler on the NVIDIA Kepler GPUs is also lacking for
the reduction kernel.

The CUDA programming model achieves good
portability across the different generations of NVIDIA
GPU for both kernels, obtaining over 97% of best across
the architectures. However the model is only supported
on these GPUs and so is not portable beyond this single
vendor.

The RAJA portability layer demonstrates 90% of best
achievable bandwidth on NVIDIA GPUs and 73% on
CPUs. Unfortunately performance on KNL is lacking
at the time of writing. Code changes were required to
change the policy when changing between CPUs and
GPUs, however this is a global change and therefore
simple to mange even in a very large code base. However,
RAJA requires the programmer to manage memory
themselves, and so it required use of the CUDA API
to allocate and copy memory between the host and the
GPU; as such all memory allocations in the code need to
be done differently between architectures. The reduction
kernel suffers on the KNL and on the Power 8; both
of these are highly threaded devices utilising the RAJA
OpenMP back end.

Kokkos provides similar portability to RAJA, but
shows marginally improved results on NVIDIA GPUs
with over 96% of best achievable bandwidth, and over
73% on the Intel CPUs. Kokkos required a single line
of code to be changed to switch between the CPU and
GPU, that specifies the device to allocate the View (the
memory) on. This feature solves the issue with RAJA
about having to change the data allocations between
devices. The reduction kernel also performs well on the
KNL with 96% of best achievable but only 67% on the
Power 8.

OpenCL and SYCL provide the greatest functional
portability of the devices tested. The other models, apart
from CUDA, show equal coverage of the other devices.
OpenACC does additionally support the AMD Hawaii
GPUs but does not support their latest generation.
OpenACC performance is also not as consistent as
RAJA, Kokkos and OpenMP across the devices tested.
RAJA and Kokkos demonstrate little overhead over the
directive based approach of OpenMP.

4.3 Missing data points

All of the parallel programming models explored in this
paper are designed to be portable; at the very least this
should enable running on a variety of devices across a
variety of vendors. However, as can be seen in Figs. 19
and 20 there are a surprising number of results that
are not possible to obtain. We mark those that are
impossible to collect due to missing implementations
from the vendors as ‘N/A’. Note that the original
STREAM benchmark from McCalpin was written in C
with OpenMP 3 and so cannot run on GPUs.

There are currently no implementations of OpenCL
for Power 8, and so a result for this and SYCL was
not possible to obtain. Additionally the PGI Accelerator
compiler does not support Power 8 as a target and so it
was not possible to compile multi-core OpenACC code.

Neither Kokkos and RAJA fully support the AMD
GPUs used in this paper. The main development effort
of GPU support in RAJA and Kokkos has been written
using CUDA, and as such they cannot currently support
AMD GPUs. This is currently a weakness of the RAJA
and Kokkos implementations, which could be addressed



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 11

when proper OpenMP 4.5 support becomes more widely
available as both RAJA and Kokkos use OpenMP for
their CPU implementation.

For AMD GPUs, GCC 6.1 introduces OpenMP 4.5
support, but only for integrated graphics in the APU
devices, not for the discrete GPUs used in this paper;
therefore we cannot present OpenMP results for the
AMD GPUs. The PGI Accelerator compiler supports
OpenACC on AMD GPUs up to Hawaii so we used this
for the S9150, but the Fury X’s newer Fiji architecture
is not supported.

There is no CUDA compiler directly targeting AMD
GPUs.

The PGI compiler no longer has support for CUDA-
x86, whereby CUDA code could target host CPUs, and
therefore no results are presented.

5 Conclusion

The simple triad and dot product kernels have been
presented in a variety of parallel programming models
including those in a C++-style and those which are
directive based. The performance of both of these kernels
has been tested across a variety of CPUs and many-core
devices including GPUs and Xeon Phi.

None of the programming models is currently
available to run a single code across all devices that we
tested. Whatever definition of ‘performance portability’
one might wish, a performance portable code must also
at least be functionally portable across different devices.

The results in Fig. 19 and 20 show that most of
the models are able to provide good performance for
these kernels across the range of different architectures.
The other kernels (Copy, Mul and Add) have a similar
performance profile to Triad. The OpenACC compilers
demonstrate good GPU performance on products from
both NVIDIA and AMD, however the CPU performance
is currently lacking primarily because of the first-touch
issues discussed in Sec. 4.2.3. This limits OpenACC’s
relevance to CPUs due to implementations of the model
at the time of writing.

The directive based approaches of OpenMP and
OpenACC look to provide a good trade off between
performance and code complexity. The number of lines
to add to an existing piece of code is minimal; in
particular for a C or Fortran style code. If code is already
written using C++ idioms, then SYCL, RAJA and
Kokkos provided a similar level of minimal disruption for
performance.

Many-core devices such as GPUs and Xeon Phi offer
an increased memory bandwidth over CPUs, although
the latest CPU offerings are competitive with GDDR
memory GPUs. The advantages of the high bandwidth
memory in the forms of MCDRAM, HBM1 and HBM2
are clear, and for bandwidth bound kernels the benefits
are very pronounced. It is a positive result that the
programming models here are able to successfully take
advantage of this technology.

The code is Open Source and available on
GitHub at http://uob-hpc.github.io/BabelStream/.
By presenting the same simple kernels in multiple
programming models, the benchmark is also able to
act as a guide for programmers when writing programs
in these models for the first time, or performing ports
between them.

Acknowledgements

We would like to thank Cray Inc. for providing access to
the Cray XC40 supercomputer, Swan, and the Cray CS
cluster, Falcon. We also wish to thank Alice Koniges at
NERSC for access to Edison and Maria Grazia Giuffreda
at CSCS Swiss National Supercomputing Center for
access to Piz Daint. The authors extend their thanks
to Si Hammond and Sandia National Labs; the results
used are run on the Sandia ASC Architecture Test
Beds program. Our thanks to Codeplay for early access
to the ComputeCpp SYCL compiler and to Douglas
Miles at PGI (NVIDIA) for access to the PGI compiler.
We would also like to thank the University of Bristol
Intel Parallel Computing Center (IPCC). This work was
carried out using the computational facilities of the
Advanced Computing Research Centre, University of
Bristol - http://www.bris.ac.uk/acrc/. Thanks also
go to the University of Oxford for access to the Power 8
system.

References

[1] AMD. OpenCL Optimization Case Study - Simple
Reductions. http://tinyurl.com/m6rtpw3.

[2] Krishnaraj Bhat. clpeak, 2015.

[3] Anthony Danalis, Gabriel Marin, Collin McCurdy,
Jeremy S Meredith, Philip C Roth, Kyle Spafford,
Vinod Tipparaju, and Jeffrey S Vetter. The Scalable
Heterogeneous Computing (SHOC) Benchmark
Suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics
Processing Units, GPGPU-3, pages 63–74, New
York, NY, USA, 2010. ACM.

[4] Tom Deakin and Simon McIntosh-Smith. GPU-
STREAM: Benchmarking the Achievable Memory
Bandwidth of Graphics Processing Units (poster).
In Supercomputing, Austin, Texas, 2015.

[5] Tom Deakin, James Price, Matt Martineau, and
Simon McIntosh-Smith. GPU-STREAM v2.0:
Benchmarking the Achievable Memory Bandwidth
of Many-Core Processors Across Diverse Parallel
Programming Models, pages 489–507. Springer
International Publishing, Cham, 2016.

[6] H. C. Edwards and D. Sunderland. Kokkos Array
Performance-portable Manycore Programming



12 T. Deakin et al.

Model. In Proceedings of the 2012 International
Workshop on Programming Models and
Applications for Multicores and Manycores
(PMAM’12), pages 1–10. ACM, 2012.

[7] M.A. Heroux, D.W. Doerfler, et al. Improving
Performance via Mini-applications. Technical
Report SAND2009-5574, Sandia National
Laboratories, 2009.

[8] R D Hornung and J A Keasler. The RAJA
Portability Layer : Overview and Status. Lawrence
Livermote National Laboratory Technical Report,
2014.

[9] Pekka Jääskeläinen, Carlos Sánchez de La Lama,
Erik Schnetter, Kalle Raiskila, Jarmo Takala,
and Heikki Berg. pocl: A Performance-Portable
OpenCL Implementation. International Journal of
Parallel Programming, 43(5):752–785, 2015.

[10] Jim Jeffers, James Reinders, and Avinash Sodani.
Intel Xeon Phi Processor High Performance
Programming. Morgan Kaugmann, Cambridge,
MA, Knights Landing edition, 2016.

[11] Jim Jeffers, James Reinders, and Avinash Sodani.
Quantum chromodynamics. In Intel Xeon Phi
Processor High Performance Programming, pages
581–598. Elsevier, 2016.

[12] Khronos OpenCL Working Group SYCL subgroup.
SYCL Provisional Specification, 2016.

[13] Matt Martineau, Simon McIntosh-Smith,
Mike Boulton, and Wayne Gaudin. An
Evaluation of Emerging Many-Core Parallel
Programming Models. In Proceedings of the 7th
International Workshop on Programming Models
and Applications for Multicores and Manycores,
PMAM’16, pages 1–10, New York, NY, USA, 2016.
ACM.

[14] John D McCalpin. Memory Bandwidth and
Machine Balance in Current High Performance
Computers. IEEE Computer Society Technical
Committee on Computer Architecture (TCCA)
Newsletter, pages 19–25, Dec 1995.

[15] John D McCalpin. STREAM2.
https://www.cs.virginia.edu/stream/stream2/,
1999.

[16] John D McCalpin. Memory Bandwidth and System
Balance in HPC Systems. SC’16 Invited Talk, 2016.

[17] Doug Miles. When will OpenACC and OpenMP
merge. Supercomputing, 2016.

[18] Aaftab Munshi. The OpenCL Specification, Version
1.1, 2011.

[19] NVIDIA. CUDA Toolkit 7.5.

[20] OpenACC-Standard.org. The OpenACC
Application Programming Interface - Version 2.5,
2015.

[21] OpenMP Architecture Review Board. OpenMP
Application Program Interface, Version 4.5, 2015.

[22] István Z Reguly, Abdoul-Kader Keita, and
Michael B Giles. Benchmarking the IBM Power8
processor. In Proceedings of the 25th Annual
International Conference on Computer Science and
Software Engineering, pages 61–69, Riverton, NJ,
USA, 2015. IBM Corp.

[23] Karl Rupp. GPU Memory Bandwidth vs. Thread
Blocks (CUDA) / Workgroups (OpenCL), 2016.

[24] Amit Sabne, Putt Sakhnagool, Seyong Lee,
and Jeffrey S Vetter. Evaluating Performance
Portability of OpenACC. 27th International
Workshop on Languages and Compiler for Parallel
Computing (LCPC), pages 1–15, 2014.

[25] Suttinee Sawadsitang, James Lin, Simon
See, Francois Bodin, and Satoshi Matsuoka.
Understanding Performance Portability of
OpenACC for Supercomputers. In 2015 IEEE
International Parallel and Distributed Processing
Symposium Workshop, pages 699–707. IEEE, may
2015.

[26] Standard Performance Evaluation Corporation.
SPEC Accel. https://www.spec.org/accel/, 2016.



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 13

template <class T>

void triad()

{

const T scalar = 0.4;

for (int i = 0; i < array_size; i++)

a[i] = b[i] + scalar * c[i];

}

Figure 1: STREAM triad baseline kernel in C++

template <class T>

T dot()

{

T sum = 0.0;

for (int i = 0; i < array_size; i++)

sum += a[i] * b[i];

}

Figure 2: STREAM dot baseline kernel in C++

std::string kernels{R"CLC(

constant TYPE scalar = 0.4;

kernel void triad(

global TYPE * restrict a,

global const TYPE * restrict b,

global const TYPE * restrict c)

{

const size_t i = get_global_id(0);

a[i] = b[i] + scalar * c[i];

}

)CLC"};

template <class T>

void OCLStream<T>::triad()

{

(*triad_kernel)(

cl::EnqueueArgs(queue, cl::NDRange(array_size)),

d_a, d_b, d_c

);

queue.finish();

}

Figure 3: OpenCL triad kernel



14 T. Deakin et al.

std::string kernels{R"CLC(

kernel void stream_dot(

global const TYPE * restrict a,

global const TYPE * restrict b,

global TYPE * restrict sum,

local TYPE * restrict wg_sum,

int array_size)

{

size_t i = get_global_id(0);

const size_t local_i = get_local_id(0);

wg_sum[local_i] = 0.0;

for (; i < array_size; i += get_global_size(0))

wg_sum[local_i] += a[i] * b[i];

for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2)

{

barrier(CLK_LOCAL_MEM_FENCE);

if (local_i < offset)

{

wg_sum[local_i] += wg_sum[local_i+offset];

}

}

if (local_i == 0)

sum[get_group_id(0)] = wg_sum[local_i];

}

)CLC"};

template <class T>

T OCLStream<T>::dot()

{

(*dot_kernel)(

cl::EnqueueArgs(queue,

cl::NDRange(dot_num_groups*dot_wgsize),

cl::NDRange(dot_wgsize)),

d_a, d_b, d_sum, cl::Local(sizeof(T) * dot_wgsize), array_size

);

cl::copy(queue, d_sum, sums.begin(), sums.end());

T sum = 0.0;

for (T val : sums)

sum += val;

return sum;

}

Figure 4: OpenCL dot kernel



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 15

template <typename T>

__global__ void triad_kernel(T * a, const T * b, const T * c)

{

const T scalar = 0.4;

const int i = blockDim.x * blockIdx.x + threadIdx.x;

a[i] = b[i] + scalar * c[i];

}

template <class T>

void CUDAStream<T>::triad()

{

triad_kernel<<<array_size/1024, 1024>>>(d_a, d_b, d_c);

cudaDeviceSynchronize();

}

Figure 5: CUDA triad kernel

Table 1 List of devices

Name Architecture Class Vendor Theoretical Peak Memory BW (GB/s)

K20X Kepler GPU NVIDIA 250
K40 Kepler GPU NVIDIA 288

K80 (1 GPU) Kepler GPU NVIDIA 240
GTX 980 Ti Maxwell GPU NVIDIA 224
Titan X Pascal GPU NVIDIA 480
P100 Pascal GPU NVIDIA 732
S9150 Hawaii GPU AMD 320
Fury X Fiji GPU AMD 512
E5-2670 Sandy Bridge CPU Intel 2×51.2=102.4

E5-2697 v2 Ivy Bridge CPU Intel 2×59.7=119.4
E5-2698 v3 Haswell CPU Intel 2×68=136
E5-2699 v4 Broadwell CPU Intel 2×76.8=153.6

Xeon Phi 7210 Knights Landing MIC Intel ∼5×102 = 510
Power 8 @ 3.69 GHz, 8 core - CPU IBM 2×192=384

Table 2 Compiler configurations for GPUs

Model K20X K40 K80 GTX 980 Ti Titan X P100 S9150 Fury X

Driver 352.68 361.93.02 361.93.02 370.28 370.28 375.20 1912.5 1912.5

RAJA GNU 5.3 GNU 4.9 GNU 4.9 GNU 4.9 GNU 4.9 GNU 5.3 n/a n/a
Kokkos GNU 5.3 GNU 4.9 GNU 4.9 GNU 4.9 GNU 4.9 GNU 5.3 n/a n/a
OpenMP CCE 8.5.5 CCE 8.5.5 CCE 8.5.5 clang-ykt clang-ykt CCE 8.5.5 n/a n/a
OpenACC PGI 16.10 CCE 8.5.5 CCE 8.5.5 PGI 16.7 PGI 16.7 PGI 16.9 PGI 16.7 n/a
CUDA 7.5 7.5 7.5 7.5 8.0 8.0 n/a n/a
OpenCL - - - - - - - -
SYCL ComputeCpp CE0.1.2

Table 3 Compiler configurations for CPUs

Model Sandy Bridge Ivy Bridge Haswell Broadwell KNL Power 8

McCalpin Intel 16.0 Intel 16.0 Intel 16.0 Intel 16.0 Intel 17.0 XL 13.1.4
RAJA Intel 16.0 Intel 16.0 Intel 16.0 Intel 16.0 Intel 17.0 XL 13.1.4
Kokkos Intel 16.0 Intel 16.0 Intel 16.0 Intel 16.0 Intel 17.0 XL 13.1.4
OpenMP Intel 16.0 Intel 16.0 Intel 16.0 Intel 16.0 Intel 17.0 XL 13.1.4
OpenACC PGI 16.10 PGI 16.10 PGI 16.10 PGI 16.10 PGI 16.10 XL 13.1.4
OpenCL Intel 16.1 Intel 15.1 Intel 15.1 Intel 15.1 Intel 16.1.1 n/a
SYCL ComputeCpp CE0.1.2 n/a



16 T. Deakin et al.

template <class T>

__global__ void dot_kernel(const T * a, const T * b, T * sum,

unsigned int array_size)

{

extern __shared__ __align__(sizeof(T)) unsigned char smem[];

T *tb_sum = reinterpret_cast<T*>(smem);

int i = blockDim.x * blockIdx.x + threadIdx.x;

const size_t local_i = threadIdx.x;

tb_sum[local_i] = 0.0;

for (; i < array_size; i += blockDim.x*gridDim.x)

tb_sum[local_i] += a[i] * b[i];

for (int offset = blockDim.x / 2; offset > 0; offset /= 2)

{

__syncthreads();

if (local_i < offset)

{

tb_sum[local_i] += tb_sum[local_i+offset];

}

}

if (local_i == 0)

sum[blockIdx.x] = tb_sum[local_i];

}

template <class T>

T CUDAStream<T>::dot()

{

dot_kernel<<<256, 1024, sizeof(T)*1024>>>(d_a, d_b, d_sum, array_size);

check_error();

cudaMemcpy(sums, d_sum, 256*sizeof(T), cudaMemcpyDeviceToHost);

check_error();

T sum = 0.0;

for (int i = 0; i < 256; i++)

sum += sums[i];

return sum;

}

Figure 6: CUDA dot kernel

Table 4 Lines of code to implement class

Implementation Lines of Code in Class Difference

Serial (baseline) 119 0
CUDA 240 +121
OpenCL 319 +200
OpenACC 159 +40

OpenMP 4.5 209 +90
Kokkos 162 +43
RAJA 163 +44
SYCL 294 +175



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 17

template <class T>

void ACCStream<T>::triad()

{

const T scalar = 0.4;

unsigned int array_size = this->array_size;

T * restrict a = this->a;

T * restrict b = this->b;

T * restrict c = this->c;

#pragma acc kernels present(a[0:array_size], \

b[0:array_size], \

c[0:array_size]) wait

for (int i = 0; i < array_size; i++)

{

a[i] = b[i] + scalar * c[i];

}

}

Figure 7: OpenACC triad kernel

template <class T>

T ACCStream<T>::dot()

{

T sum = 0.0;

unsigned int array_size = this->array_size;

T * restrict a = this->a;

T * restrict b = this->b;

#pragma acc kernels present(a[0:array_size], \

b[0:array_size]) wait

for (int i = 0; i < array_size; i++)

{

sum += a[i] * b[i];

}

return sum;

}

Figure 8: OpenACC dot kernel

template <class T>

void OMPStream<T>::triad()

{

const T scalar = 0.4;

#pragma omp parallel for

for (int i = 0; i < array_size; i++)

{

a[i] = b[i] + scalar * c[i];

}

}

Figure 9: OpenMP triad kernel



18 T. Deakin et al.

template <class T>

T dot()

{

T sum = 0.0;

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i < array_size; i++)

sum += a[i] * b[i];

}

Figure 10: OpenMP dot kernel

template <class T>

void OMPStream<T>::triad()

{

const T scalar = 0.4;

unsigned int array_size = this->array_size;

T *a = this->a;

T *b = this->b;

T *c = this->c;

#pragma omp target teams distribute parallel for simd \

map(to: a[0:array_size], b[0:array_size], c[0:array_size])

for (int i = 0; i < array_size; i++)

{

a[i] = b[i] + scalar * c[i];

}

}

Figure 11: OpenMP 4 triad kernel

template <class T>

T dot()

{

T sum = 0.0;

unsigned int array_size = this->array_size;

T *a = this->a;

T *b = this->b;

#pragma omp target teams distribute parallel for simd \

map(to: a[0:array_size], b[0:array_size], tofrom: sum) \

reduction(+:sum)

for (int i = 0; i < array_size; i++)

sum += a[i] * b[i];

}

Figure 12: OpenMP 4 dot kernel



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 19

template <class T>

void KOKKOSStream<T>::triad()

{

View<double*, Kokkos::Cuda> a(*d_a);

View<double*, Kokkos::Cuda> b(*d_b);

View<double*, Kokkos::Cuda> c(*d_c);

const T scalar = 0.4;

parallel_for(array_size, KOKKOS_LAMBDA (const int index)

{

a[index] = b[index] + scalar*c[index];

});

Kokkos::fence();

}

Figure 13: Kokkos triad kernel

template <class T>

T KOKKOSStream<T>::dot()

{

View<double *, DEVICE> a(*d_a);

View<double *, DEVICE> b(*d_b);

T sum = 0.0;

parallel_reduce(array_size,

KOKKOS_LAMBDA (const int index, double &tmp)

{

tmp += a[index] * b[index];

}, sum);

return sum;

}

Figure 14: Kokkos dot kernel

template <class T>

void RAJAStream<T>::triad()

{

T* a = d_a;

T* b = d_b;

T* c = d_c;

const T scalar = 0.4;

forall<policy>(index_set [=] RAJA_DEVICE (int index)

{

a[index] = b[index] + scalar*c[index];

});

}

Figure 15: RAJA triad kernel



20 T. Deakin et al.

template <class T>

T RAJAStream<T>::dot()

{

T* a = d_a;

T* b = d_b;

RAJA::ReduceSum<reduce_policy, T> sum(0.0);

forall<policy>(index_set, [=] RAJA_DEVICE (int index)

{

sum += a[index] * b[index];

});

return T(sum);

}

Figure 16: RAJA dot kernel

template <class T>

void SYCLStream<T>::triad()

{

const T scalar = 0.4;

queue->submit([&](handler &cgh)

{

auto ka = d_a->template get_access<access::mode::write>(cgh);

auto kb = d_b->template get_access<access::mode::read>(cgh);

auto kc = d_c->template get_access<access::mode::read>(cgh);

cgh.parallel_for<triad_kernel>(p->get_kernel<triad_kernel>(),

range<1>{array_size}, [=](item<1> item)

{

auto id = item.get()[0];

ka[id] = kb[id] + scalar * kc[id];

});

});

queue->wait();

}

Figure 17: SYCL triad kernel



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 21

template <class T>

T SYCLStream<T>::dot()

{

queue->submit([&](handler &cgh)

{

auto ka = d_a->template get_access<access::mode::read>(cgh);

auto kb = d_b->template get_access<access::mode::read>(cgh);

auto ksum = d_sum->template get_access<access::mode::write>(cgh);

auto wg_sum =

accessor<T, 1,

access::mode::read_write,

access::target::local>

(range<1>(dot_wgsize), cgh);

size_t N = array_size;

cgh.parallel_for<dot_kernel>(p->get_kernel<dot_kernel>(),

nd_range<1>(dot_num_groups*dot_wgsize, dot_wgsize), [=](nd_item<1> item)

{

size_t i = item.get_global(0);

size_t li = item.get_local(0);

size_t global_size = item.get_global_range()[0];

wg_sum[li] = 0.0;

for (; i < N; i += global_size)

wg_sum[li] += ka[i] * kb[i];

size_t local_size = item.get_local_range()[0];

for (int offset = local_size / 2; offset > 0; offset /= 2)

{

item.barrier(cl::sycl::access::fence_space::local_space);

if (li < offset)

wg_sum[li] += wg_sum[li + offset];

}

if (li == 0)

ksum[item.get_group(0)] = wg_sum[0];

});

});

T sum = 0.0;

auto h_sum = d_sum->template get_access<access::mode::read,

access::target::host_buffer>();

for (int i = 0; i < dot_num_groups; i++)

{

sum += h_sum[i];

}

return sum;

}

Figure 18: SYCL dot kernel



22 T. Deakin et al.

K
2
0
X

K
4
0

K
8
0

G
TX

 9
8
0
 T

i
Ti

ta
n
 X

P1
0
0

S
9
1
5
0

Fu
ry

 X
S
an

d
y 

B
ri

d
g
e

Iv
y 

B
ri

d
g
e

H
as

w
el

l
B

ro
ad

w
el

l
K
N

L

Po
w

er
 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

183

180

175

175

182

164

176

N/A

191

191

181

180

193

173

183

N/A

182

176

171

170

178

159

168

N/A

269

269

265

246

268

257

266

N/A

360

360

359

330

345

343

352

N/A

551

551

553

517

552

536

545

N/A

268

N/A

269

N/A

N/A

N/A

272

N/A

442

N/A

N/A

N/A

N/A

N/A

436

N/A

56

N/A

28

53

54

54

56

66

56

N/A

40

75

74

74

57

102

83

N/A

55

91

88

91

83

119

67

N/A

47

99

97

99

67

128

237

N/A

262

302

298

124

220

448

N/A

N/A

N/A

299

296

297

N/A

299

Sustained peak

0

60

120

180

240

300

360

420

480

540

G
B

/s

(a) Sustained peak

K
2
0
X

K
4
0

K
8
0

G
TX

 9
8
0
 T

i
Ti

ta
n
 X

P1
0
0

S
9
1
5
0

Fu
ry

 X
S
an

d
y 

B
ri

d
g
e

Iv
y 

B
ri

d
g
e

H
as

w
el

l
B

ro
ad

w
el

l
K
N

L

Po
w

er
 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

73%

72%

70%

70%

73%

66%

70%

N/A

66%

66%

63%

63%

67%

60%

64%

N/A

76%

73%

71%

71%

74%

66%

70%

N/A

80%

80%

79%

73%

80%

76%

79%

N/A

75%

75%

75%

69%

72%

71%

73%

N/A

75%

75%

76%

71%

75%

73%

74%

N/A

84%

N/A

84%

N/A

N/A

N/A

85%

N/A

86%

N/A

N/A

N/A

N/A

N/A

85%

N/A

55%

N/A

27%

52%

53%

53%

55%

64%

47%

N/A

34%

63%

62%

62%

48%

85%

61%

N/A

40%

67%

65%

67%

61%

88%

44%

N/A

31%

64%

63%

65%

44%

83%

46%

N/A

51%

59%

58%

24%

43%

88%

N/A

N/A

N/A

78%

77%

77%

N/A

78%

Fraction of theoretical peak

0

10

20

30

40

50

60

70

80

%
 o

f 
th

e
o
re

ti
ca

l 
p
e
a
k

(b) Fraction of theoretical peak

K
2
0
X

K
4
0

K
8
0

G
TX

 9
8
0
 T

i
Ti

ta
n
 X

P1
0
0

S
9
1
5
0

Fu
ry

 X
S
an

d
y 

B
ri

d
g
e

Iv
y 

B
ri

d
g
e

H
as

w
el

l
B

ro
ad

w
el

l
K
N

L

Po
w

er
 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

100

98

96

96

99

90

96

N/A

99

99

94

94

100

90

95

N/A

100

97

94

94

98

88

93

N/A

100

100

99

91

99

95

99

N/A

100

100

100

92

96

95

98

N/A

100

100

100

94

100

97

99

N/A

99

N/A

99

N/A

N/A

N/A

100

N/A

100

N/A

N/A

N/A

N/A

N/A

99

N/A

85

N/A

42

81

82

82

86

100

55

N/A

40

74

73

73

56

100

69

N/A

46

76

74

76

70

100

52

N/A

37

77

75

77

52

100

53

N/A

58

68

66

28

49

100

N/A

N/A

N/A

100

99

99

N/A

100

Fraction of best achieved

0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
b
e
st

 a
ch

ie
v
e
d

(c) Fraction of best achieved

Figure 19: Performance of triad relative to theoretical peak memory bandwidth of BabelStream on 10 devices



Evaluating attainable memory bandwidth of parallel programming models via BabelStream 23

K
2
0
X

K
4
0

K
8
0

G
TX

 9
8
0
 T

i
Ti

ta
n
 X

P1
0
0

S
9
1
5
0

Fu
ry

 X
S
an

d
y 

B
ri

d
g
e

Iv
y 

B
ri

d
g
e

H
as

w
el

l
B

ro
ad

w
el

l
K
N

L

Po
w

er
 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

176

173

156

163

163

161

173

N/A

182

182

68

171

176

180

174

N/A

175

172

66

163

169

169

164

N/A

285

286

247

233

284

276

276

N/A

362

373

340

236

343

316

348

N/A

586

574

427

426

589

546

567

N/A

269

N/A

195

N/A

N/A

N/A

270

N/A

467

N/A

N/A

N/A

N/A

N/A

449

N/A

36

N/A

32

74

74

75

23

76

30

N/A

50

106

105

103

25

114

69

N/A

55

119

115

116

47

127

59

N/A

50

126

123

126

47

140

119

N/A

297

335

328

107

70

340

N/A

N/A

N/A

248

168

6

N/A

249

Sustained peak

0

60

120

180

240

300

360

420

480

540

G
B

/s

(a) Sustained peak

K
2
0
X

K
4
0

K
8
0

G
TX

 9
8
0
 T

i
Ti

ta
n
 X

P1
0
0

S
9
1
5
0

Fu
ry

 X
S
an

d
y 

B
ri

d
g
e

Iv
y 

B
ri

d
g
e

H
as

w
el

l
B

ro
ad

w
el

l
K
N

L

Po
w

er
 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

70%

69%

63%

65%

65%

65%

69%

N/A

63%

63%

24%

60%

61%

62%

60%

N/A

73%

72%

28%

68%

70%

70%

68%

N/A

85%

85%

74%

69%

85%

82%

82%

N/A

75%

78%

71%

49%

71%

66%

72%

N/A

80%

78%

58%

58%

80%

75%

78%

N/A

84%

N/A

61%

N/A

N/A

N/A

84%

N/A

91%

N/A

N/A

N/A

N/A

N/A

88%

N/A

35%

N/A

31%

72%

72%

73%

22%

74%

25%

N/A

42%

89%

88%

86%

21%

96%

50%

N/A

40%

88%

85%

85%

35%

94%

38%

N/A

32%

82%

80%

82%

31%

91%

23%

N/A

58%

66%

64%

21%

14%

67%

N/A

N/A

N/A

64%

44%

2%

N/A

65%

Fraction of theoretical peak

0

10

20

30

40

50

60

70

80

90

%
 o

f 
th

e
o
re

ti
ca

l 
p
e
a
k

(b) Fraction of theoretical peak

K
2
0
X

K
4
0

K
8
0

G
TX

 9
8
0
 T

i
Ti

ta
n
 X

P1
0
0

S
9
1
5
0

Fu
ry

 X
S
an

d
y 

B
ri

d
g
e

Iv
y 

B
ri

d
g
e

H
as

w
el

l
B

ro
ad

w
el

l
K
N

L

Po
w

er
 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

100

98

89

93

93

92

98

N/A

100

100

38

94

96

98

95

N/A

100

98

38

93

96

97

94

N/A

100

100

87

81

99

97

97

N/A

97

100

91

63

92

85

93

N/A

99

97

73

72

100

93

96

N/A

100

N/A

72

N/A

N/A

N/A

100

N/A

100

N/A

N/A

N/A

N/A

N/A

96

N/A

48

N/A

42

97

97

98

30

100

26

N/A

44

93

92

90

22

100

54

N/A

43

94

90

91

37

100

42

N/A

36

90

88

90

34

100

35

N/A

87

99

96

31

21

100

N/A

N/A

N/A

100

67

3

N/A

100

Fraction of best achieved

0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
b
e
st

 a
ch

ie
v
e
d

(c) Fraction of best achieved

Figure 20: Performance of dot relative to theoretical peak memory bandwidth of BabelStream on 10 devices


