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Abstract

We outline a range of criteria for evaluating model selection approaches that have been

used in the literature. Focusing on three key criteria, we evaluate automatically selecting

the relevant variables in an econometric model from a large candidate set. General-to-

specific selection is outlined for a regression model in orthogonal variables, where only

one decision is required to select, irrespective of the number of regressors. Comparisons

with an automated model selection algorithm, Autometrics (Doornik, 2009), show similar

properties, but not restricted to orthogonal cases. Monte Carlo experiments examine the

roles of post-selection bias corrections and diagnostic testing, and evaluate selection in

dynamic models by costs of search versus costs of inference.
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1 Introduction

Model selection has historically been a contentious issue, see e.g., Leamer (1978, 1983a),

Chatfield (1995) and Hansen (2005). The literature has traditionally focused on situations

where the only uncertainty concerns the set of relevant variables. Selection procedures such as

information criteria, stepwise regression, shrinkage methods such as Lasso, or cross validation,

all aim to select a set of relevant variables from a candidate set. In this paper, we consider

a more general setting, whereby there is specification uncertainty over the choice of which

variables, their lags, functional forms etc., are relevant and which irrelevant. This more general

framework acknowledges that there is uncertainty about every aspect of model specification,

and selection has the objective of reducing such uncertainties, at the cost of a ‘local increase’ in

uncertainty at the margin of significance regarding what is relevant. However, model selection

in this more complex framework is difficult: to successfully determine what matters and how it

enters, all important determinants need to be included jointly. Omitting key variables adversely

affects the goodness of fit, biases the included factors’ effects, and in a world of intercorrelated

variables with non-stationarities induced by breaks, leads to non-constant estimated models.

To resolve that requires commencing from a sufficiently general model in which all potentially

relevant variables, lags, functional forms, outliers, etc. are included initially. The objective of

our paper is to consider why model selection might be successful in such a setting, and then

focus on its application to dynamic specification.

The structure of the paper is as follows. Section 2 briefly describes how the paper fits in

with the literature on model selection, motivating the analysis of automatic general-to-specific

(Gets) selection. Section 3 considers nine common criteria for evaluating the success, or other-

wise, of model selection. Three of those criteria are both operational and relevant to practical

empirical modeling. These three criteria are applied to Gets selection, first for a simple 1-cut

rule (section 4), then in a comparison of the 1-cut rule with the more complicated model selec-

tion procedure of automated Gets (section 5), and finally applying that approach to a dynamic

data generation process (DGP) in section 6. Section 7 concludes.

A more detailed overview of Sections 4-6 will help to motivate their structure. Section

4 considers the analytically tractable setting of a constant DGP with orthogonal variables, an

unknown subset of which are relevant to explaining the dependent variable, with the remainder

being irrelevant. We show that only one selection decision is required, called ‘1-cut’, irrespec-

tive of the number of regressors N < T , for T observations. This rebuts claims that model

selection intrinsically involves repeated testing (see e.g. Leamer, 1983a). A simulation exper-

iment for N = 1000 at T = 2000 confirms the theoretical analysis of ‘1-cut’. Although there

are 21000 ≃ 10301 possible models, only one model needs estimated, and only a single decision

is required to select the final model: ‘repeated testing’ does not occur.

We introduce the terminology ‘gauge’ and ‘potency’. Gauge denotes the retention fre-

quency of irrelevant variables when selecting, without necessitating that they be ‘significant’.

Thus, gauge measures the ‘distance’ between correctly excluding all the irrelevant variables

and retaining some irrelevant variables, with connotations of the gauge as the distance between

rails on a railway track. Gauge is used because the ‘size’ of a test statistic has a definition which

is only precise for a similar test with a known distribution, and the word is ambiguous in many

settings (such as sample size). Similarly, retaining relevant variables no longer corresponds to

the conventional notion of power, so we use potency to denote the average retention frequency

of relevant variables, which need not be by rejecting the null. Potency implies strength, so is

appropriate to delineate retaining variables that have ‘signal strength’, i.e. that are relevant.

Gauge and potency are more useful concepts than the metric used by Lovell (1983), which

measures the probability that the DGP is selected as the model. That metric does not account



for variables with very low (but non-zero) population t-statistics, where such variables would

not be retained when testing the DGP itself. For 1-cut, the gauge is close to its corresponding

nominal significance level, α, for small α (e.g., α ≤ 1/N ), which can be controlled, and

potencies are close to the theoretical powers for one-off tests, despite seeking to select a small

number of relevant variables from a very large set of candidates.

Although there is no repeated testing, selection does affect the distributional properties

of the final model’s estimates as compared with estimating the local data generating process

(LDGP–the DGP in the space of the variables under analysis: see Hendry, 2009). Thus, the

next step is to correct for biases induced in conditional distributions by only retaining signifi-

cant coefficients. Building on Hendry and Krolzig (2005), we show that bias corrections also

reduce mean-square errors (MSEs) of irrelevant variables estimates in both conditional and

unconditional distributions, with a small increase in the MSEs of relevant variables.

Next, a more general procedure is required than 1-cut that does not depend on orthogonality

of the regressors. Section 5 compares the 1-cut approach with using a general search algorithm

implementing automatic Gets, namely Autometrics within PcGive (see Doornik, 2007b, 2009,

Hendry and Doornik, 2009). The 1-cut strategy is ‘optimal’ when the regressors are orthogonal

in-sample, so a comparison provides a check of the closeness of the more general algorithm’s

results. We also assess the impact of mis-specification testing on gauges, and note the role of

tests for encompassing the initial general unrestricted model (GUM).

Since dynamic dependence induces correlations between adjacent lags, the resulting non-

orthogonality requires a general algorithm. Section 6 extends the experimental design to sta-

tionary dynamic DGPs, examining models that are under-specified relative to the DGP, match

the DGP, and are over-specified. Negative dependence (e.g., the levels representation of first

differences) can be problematic for selection approaches that do not use Gets, such as step-

wise expanding searches and the Lasso (see Tibshirani, 1996). A lag-length pre-search at loose

significance levels from the longest lag has little impact on the selection results, but greatly

improves the search time for large N . Dynamics per se do not seem to affect the selection

procedure, although measurements of performance must account for the difficulty in precisely

dating lag reactions. We now review previous approaches.

2 Model selection literature

There is a vast literature on model selection, including procedures based on penalized model

fit: (e.g.) the Cp criterion of Mallows (1973), the prediction criterion of Amemiya (1980),

and various information criteria, such as Akaike (1973), Schwarz (1978), Hannan and Quinn

(1979), and Chow (1981). However, these procedures do not ensure congruency, and so a mis-

specified model could be selected (see Bontemps and Mizon, 2003). Shrinkage techniques have

been proposed as a solution to the ‘pre-test problem’: see Stein (1956), James and Stein (1961),

Yancey and Judge (1976) and Judge and Bock (1978), and associated algorithms such as Lasso

(Tibshirani, 1996). One criticism of shrinkage is that it is not progressive, in the sense of

knowledge accumulating about the process being modelled, because the decision rule need not

eliminate variables. Bayesian model averaging (see Hoeting, Madigan, Raftery and Volinsky,

1999, for an overview) is often used to account for model uncertainty, as is the extreme bounds

literature of Leamer (1978, 1983b, 1985). This approach has been heavily criticised by, inter

alia, McAleer, Pagan and Volker (1985), Breusch (1990) and Hendry and Mizon (1990). Step-

wise regression is popular, but is path dependent, is susceptible to negative dependence, and

does not have a high success rate of finding the DGP. Berk (1978) demonstrates that applying

both forward and backward selection is no guarantee to finding the correct model. Alternative

selection procedures exist, such as ‘optimal regression’ in which all subsets of regressors are



included (see Coen, Gomme and Kendall, 1969, and the response by Box and Newbold, 1971),

but that approach is anyway intractable with a large set of potential regressors.

Given these criticisms, our paper focuses on general-to-specific model selection. The pro-

cedure commences with a large set of potential regressors and simplifies the model to cap-

ture the salient characteristics of the data: see inter alia, Anderson (1962), and Pagan (1987),

Phillips (1988) and Campos, Ericsson and Hendry (2005) for reviews. We challenge the tradi-

tional view that model selection is costly by demonstrating the low costs of search relative to

the costs of conducting inference on a pre-specified model. In contrast, the costs of search for

earlier procedures can be very high. For example, selection using information criteria requires

selecting from 2N possible models, which will often be infeasible for large N , whereas Gets

selects from the N candidate variables. Furthermore, stepwise selection could ‘miss’ relevant

variables with negative dependencies depending on the order of inclusion, whereas Gets insures

against path dependence by undertaking a tree search. We next consider how to evaluate model

selection procedures, before focusing attention on the performance of Gets selection, noting

that the Gets approach includes aspects of many other model selection methods (see §5).

3 Evaluating model selection

In this section, we consider how alternative methods of model selection might be evaluated,

including the three criteria that we subsequently use. The properties of empirical models are

determined by how they are formulated, selected, estimated, and evaluated, as well as by data

quality, the initial subject-matter theory and institutional and historical knowledge. Since many

features of models are not derivable from subject-matter theory, empirical evidence is essential

to determine what are the relevant variables, their lag reactions, parameter shifts, non-linear

functions and so on. Embedding a theory in a general specification that is congruent with all

the available evidence offers a chance to both utilize the best available theory insights and

learn from the empirical evidence. That embedding can increase the initial model size to a

scale where a human has intellectual difficulty handling the required reductions, and indeed the

general model may not be estimable, so automatic methods for model selection are essential.

Nevertheless, the best model selection approaches cannot be expected to select the LDGP

on every occasion, even when the GUM nests the LDGP. Conversely, no approach will work

well when the LDGP is not a nested special case of the postulated model, especially in pro-

cesses subject to breaks that induce multiple sources of non-stationarity. Phillips (2003) pro-

vides an insightful analysis of the limits of econometrics in that setting.

Models that are constructed with a specific purpose in mind need to be evaluated accord-

ingly. Thus, there are many grounds on which to select empirical models—theoretical, empiri-

cal, aesthetic, and philosophical—and within each category, many criteria, leading to numerous

ways to judge the ‘success’ of selection algorithms, including:

(A) maximizing the goodness of fit;

(B) recovering the LDGP with high frequency;

(C) improving inference about parameters of interest relative to the GUM;

(D) improving forecasting over the GUM (and other selection methods);

(E) working well for ‘realistic’ LDGPs;

(F) matching a theory-derived specification;

(G) recovering the LDGP starting from the GUM almost as often as from the LDGP itself;



(H) matching the operating characteristics of the algorithm with their desired properties;

(I) finding a well-specified, undominated model of the LDGP.

Criterion (A) is a traditional criterion, often based on penalized fit, but Lovell (1983) showed

that it did not lead to useful selections. The second, (B), is overly demanding, as it may be

nearly impossible to find the LDGP even when commencing from it, e.g., the population non-

centralities of some relevant variables’ coefficients may be non-zero but very small. The third

criterion, (C), seeks (e.g.) small, accurate, uncertainty regions around estimated parameters of

interest, and has been criticized by Leeb and Pötscher (2003, 2005) among others. There are

many contending approaches when (D) is the objective, including using other selection meth-

ods, averages over a class of models, factor methods, robust devices, or neural nets. However,

in processes subject to breaks, in-sample performance need not be a reliable guide to later fore-

casting success (see Clements and Hendry, 1999). There are also many possible contenders for

(E), including, but not restricted to, Phillips (1994, 1995, 1996), Tibshirani (1996), Hoover and

Perez (1999, 2004), Hendry and Krolzig (1999, 2001), White (2000), Krolzig (2003), Demiralp

and Hoover (2003), and Perez-Amaral, Gallo and White (2003), as well as stepwise regression,

albeit most with different properties in different states of nature. Criterion (F) is again widely

used, and must work well when the LDGP coincides with the theory model, but otherwise need

not.

For (G), a distinction must be made between costs of inference and costs of search. The

former apply to commencing from the LDGP, so confront even an investigator who did so, but

who was uncertain that the specification was completely correct (omniscience is not realistic

in empirical economics), and are inevitable when test rejection frequencies are non-zero under

the null, and not unity for all alternatives. Costs of search are additional, due to commencing

from a GUM that nests but is larger than the LDGP, so are really due to selecting. Operating

characteristics for (H) could include that the nominal null rejection frequency matches the

gauge; that retained parameters of interest are unbiasedly estimated; that MSEs are small, etc.

Finally, there is the ‘internal criterion’ (I) that the algorithm could not do better for the given

sample, in that no other model dominates that selected. Criteria (A)–(F) are all widely used

but, as noted above, there are situations in which selecting by such criteria will not work well.

Conversely, (G)–(I) apply to any situation and any model selection procedure, so we use (G),

(H) and (I) as the basis for evaluation, noting that they could in principle be achieved together.

4 Why Gets model selection can succeed

In this section, we consider the simplest case of a constant-parameter linear regression model

with perfectly orthogonal variables in-sample, of which a subset comprise the LDGP. This sim-

ple case is of interest because it demonstrates that model selection does not require searching

through 2N possible models. Instead, one decision is required, hence the ‘1-cut’ rule. Then

Gets selection can be seen as a natural generalization to the situation where the regressors are

not perfectly orthogonal. We show that the 1-cut rule satifies citeria (G), (H) and (I), providing

the groundwork for the more general correlated case in Section 5.

4.1 The orthogonal regressor model

When all the regressors are mutually orthogonal, it is easy to explain why Gets model selec-

tion needs only a single decision. Consider the regression model in which the regressors are



perfectly orthogonal in sample:

yt =

N∑

k=1

βkxk,t + ǫt (1)

where T−1
∑T

t=1 xk,txj,t = λkδk,j ∀k, j, where δk,j = 1 if k = j and zero otherwise, with

ǫt ∼ IN[0, σ2ǫ ], independently of the {xk,t}, and T >> N . In (1), n ≤ N of the regressors

have non-zero βk, but it is not known which, nor how many.

After unrestricted estimation of (1), order the N sample t2-statistics testing H0: βk = 0 as:

t2(1) ≥ t2(2) ≥ · · · ≥ t2(N) (2)

The cut-off, ñ, between retained and excluded variables using a 2-sided significance level cα
for a t-test is:

t2(ñ) ≥ c2α > t2(ñ+1). (3)

Variables with large t2 values are retained and all other variables are eliminated. Only a single

decision is needed to implement (3), even for N = 1000, and ‘repeated testing’ does not occur.

Using this 1-cut decision rule, it is straightforward to maintain the false null retention rate at

(say) less than one variable by setting α ≤ 1/N , ∀N (for small N , much tighter choices are

feasible): α should also tend to zero as T increases to ensure a consistent selection (see Hannan

and Quinn, 1979, Pötscher, 1991, and Campos, Hendry and Krolzig, 2003).

4.2 Simulation evaluation of model selection

Let the first n regressors be relevant, with N − n irrelevant regressors in the GUM, and let

β̃k,i denote the OLS coefficient estimate after selection for the coefficient on xk,i in replication

i, with M replications. When 1(·) is the indicator variable, potency and gauge respectively

calculate the retention frequencies of relevant and irrelevant variables as:

retention rate: p̃k = 1
M

∑M
i=1 1(β̃k,i 6= 0), k = 1, . . . , N,

potency = 1
n

∑n
k=1 p̃k,

gauge = 1
N−n

∑N
k=n+1 p̃k.

(4)

In addition, we also compute mean square errors (MSEs), both before and after model

selection. Define Mg as the model obtained after selection from the GUM and Md as the

model retained after selection from the LDGP. The unconditional and conditional (on retaining)

MSEs respectively are calculated as:

UMSEk =
1

M

M∑

i=1

(
β∗k,i − βk

)2
, ∀k (5)

CMSEk =

∑M
i=1

[(
β∗k,i − βk

)2 · 1(β∗
k,i 6= 0)

]

∑M
i=1 1(β

∗
k,i 6= 0)

, (β2k when

M∑

i=1

1(β∗
k,i 6= 0) = 0) (6)

where β∗k,i denotes the coefficient defined in Table 1.

GMSEk refers to the MSE for variable k in the GUM (which is only estimable with fewer

variables than observations) and LMSEk refers to the MSE for variable k in the LDGP. After

selecting from the GUM, the unconditional MSE for variable k in the resulting model is given

by USMSEk and the corresponding conditional MSE is given by CSMSEk. If selection is



Coefficient MSE Note

GUM β̂k,i GMSEk for N < T

Mg β̃k,i USMSEk, CSMSEk β̃k,i = 0 if xk not selected

LDGP βk,i LMSEk βk,i = 0 for k = n+ 1, ..., N

Md βk,i UIMSEk, CIMSEk βk,i = 0 if xk not selected or k > n

Table 1: MSEs before and after model selection

undertaken commencing from the LDGP, UIMSEk refers to the unconditional MSE for the

kth variable in the selected model (with I referring to ‘inference costs’) and correspondingly

CIMSEk is the conditional MSE. The square roots of the MSEs are denoted RMSEs. When the

GUM nests the LDGP, the difference between Mg and Md is a measure of over-specification.

When the GUM does not nest the LDGP (under-specification), the difference between Mg and

Md is a measure of mis-specification. §6.3 relates the costs of search and inference to Table 1.

4.3 Selection effects and bias corrections

The estimates from the selected model do not have the same properties as if the LDGP equation

had simply been estimated: the ‘pre-test’ problem. Conditional estimates of relevant coeffi-

cients are biased away from zero as they are only retained when t2 ≥ c2α, and some relevant

variables will by chance have t2 < c2α in any given sample, so not be selected. Also, on av-

erage α(N − n) irrelevant variables will have t2 ≥ c2α (spurious significance). However, bias

correction after selection is easily implemented following Hendry and Krolzig (2005).

Let the population standard error for the OLS estimator β̂ be σ2
β̂
= E[σ̂2

β̂
]. Approximate:

t
β̂
=

β̂

σ̂
β̂

≃ β̂

σ
β̂

∼ N

[
β

σ
β̂

, 1

]
= N [ψ, 1]

where ψ = β/σ
β̂

is the non-centrality parameter of the t-test. Let φ (x) and Φ (x) denote the

normal density and its integral, then the expectation of the truncated t-value for a post-selection

estimator β̃ such that |t
β̃
| > cα is (see e.g., Johnson and Kotz, 1970, ch. 13):

ψ∗ = E
[
t
β̃
|
∣∣∣tβ̃
∣∣∣ > cα;ψ

]
= ψ +

φ (cα − ψ)− φ (−cα − ψ)

1− Φ (cα − ψ) + Φ (−cα − ψ)
= ψ + r (ψ, cα) (7)

Then, (e.g.) for ψ > 0:

E
[
β̃ | β̃ ≥ σ

β̃
cα

]
= β + σ

β̃
r (ψ, cα) = β

(
1 + ψ−1r (ψ, cα)

)
(8)

so an unbiased estimator after selection is:

˜̃
β = β̃

(
ψ

ψ + r (ψ, cα)

)
= β̃

(
ψ

ψ∗

)
. (9)

Implementation requires an estimate ψ̃ of ψ based on estimating ψ∗ from the observed t
β̃

and solving iteratively for ψ from (7) written as:

ψ = ψ∗ − r (ψ, cα) (10)

First replace r(ψ, cα) in (10) by r(t
β̃
, cα), and ψ∗ by t

β̃
:

t̃
β̃
= t

β̃
− r

(
t
β̃
, cα

)
, then ˜̃t

β̃
= t

β̃
− r

(
t̃
β̃
, cα

)
(11)



leading to the bias-corrected parameter estimate:

˜̃
β = β̃

(̃
t̃
β̃
/t
β̃

)
. (12)

Hendry and Krolzig (2005) show that most of the selection bias is corrected for relevant

retained variables by (12), at the cost of a small increase in their conditional MSEs. Thus,

correction exacerbates the downward bias in the unconditional estimates of the relevant coef-

ficients, and also increases their MSEs somewhat. Against such costs, bias correction con-

siderably reduces the MSEs of the coefficients of any retained irrelevant variables, giving a

substantive benefit in both their unconditional and conditional distributions. Thus, despite se-

lecting from a large set of potential variables, nearly unbiased estimates of coefficients can

be obtained with little loss of efficiency from testing irrelevant variables, but suffering some

loss from not retaining relevant variables at large values of cα. The power loss from tighter

significance levels is usually not substantial relative to, say, a t-distribution with few degrees

of freedom. However, Castle, Doornik and Hendry (2010) show that impulse-indicator satura-

tion (see Hendry, Johansen and Santos, 2008, and Johansen and Nielsen, 2009) is a successful

antidote for fat-tailed error processes.

4.4 Monte Carlo simulation of 1-cut for N = 1000

We illustrate the above theory by simulating 1-cut selection from 1000 variables. The DGP is:

yt = β1x1,t + · · · + β10x10,t + ǫt (13)

xt ∼ IN1000 [0, I] (14)

ǫt ∼ IN [0, 1] (15)

where x′
t = (x1,t, · · · , x1000,t). The regressors are only orthogonal in expectation, but are kept

fixed between experiments, with T = 2000. The DGP coefficients and t-test non-centralities,

ψk, are reported in Table 2, together with the theoretical powers of t-tests on the individual

coefficients.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
βk 0.063 0.079 0.095 0.111 0.126 0.142 0.158 0.174 0.190 0.206

ψ
k

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

P0.01 0.281 0.468 0.662 0.821 0.922 0.973 0.992 0.998 1.000 1.000

P0.001 0.097 0.212 0.382 0.579 0.758 0.885 0.955 0.986 0.997 0.999

Table 2: Coefficients βk, non-centralities ψk, and theoretical retention probabilities.

The GUM, which is the starting point for model selection, consists of all 1000 regressors

and an intercept (which is also irrelevant here):

yt = β0 + β1x1,t + · · · + β1000x1000,t + ut, t = 1, . . . , 2000 (16)

Only the first n = 10 variables are relevant, so 991 variables are irrelevant in (16). Selection

is undertaken by estimating (16), ordering the t2s as in (2), retaining (discarding) all variables

with t2-statistics above (below) the critical value as in (3), so selection is made in one decision.

We report the outcomes for α = 1% and 0.1% using M = 1000 replications.

Gauges and potencies are recorded in Table 3. Gauges are not significantly different from

their nominal sizes, α, so selection is correctly ‘sized’, and potencies do not deviate from the

average powers of 0.81 and 0.69. Thus, there is a close match between theory and evidence,



α Gauge Potency

1% 1.01% 81%

0.1% 0.10% 69%

Table 3: Potency and gauge for 1-cut selection with 1000 variables.

even when selecting 10 relevant regressors from 1000 candidate variables in one decision. Fig-

ure 1 confirms that retention rates for individual relevant variables are close to the theoretical

powers of individual t-tests, despite selecting from 10301 possible models. The CSMSEs are

always below the USMSEs for the relevant variables (bottom graphs in Fig. 1), with the excep-

tion of β1 at 0.1%. Baseline USMSEs for estimated coefficients in (16) are 0.001 as shown.
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Figure 1: Model selection by the 1-cut rule for N = 1000 at α = 1% (left) and α = 0.1% (right): re-

tention rates p̃k of relevant variables x1, . . . , x10 (top graphs), USMSEk and CSMSEk (bottom graphs).

Figure 2 records the trade-off frontier of gauge against potency as the non-centrality in-

creases. This can be compared to the theoretical frontier based on a single t-test for an individ-

ual coefficient, recording size against power. The difference between the two frontiers is very

small, due to sampling variation, demonstrating that the 1-cut algorithm matches the theory.

See Hoover and Perez (1999, figure 1) for a similar analysis of the potency/gauge frontier.
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Figure 2: Trade-off frontier: left-hand panel records the theoretical frontier of size against power;

right-hand panel records the empirical frontier of gauge against potency.



4.5 Impact of bias correction on MSEs

In 1-cut selection, all retained variables must be significant at cα. However, with automated

Gets, this is not necessarily the case: irrelevant variables may be retained because their deletion

would make a diagnostic test significant, or because of encompassing since a variable can be

individually insignificant, but not jointly with all variables deleted so far. The bias correction

formula in (12) is only applied to significant retained variables, setting insignificant variables’

coefficients to zero.

α 1% 0.1% 1% 0.1%

average CSMSE over average CSMSE over

990 irrelevant variables 10 relevant variables

uncorrected β̃ 0.84% 1.23% 0.10% 0.14%
˜̃
β after bias correction 0.38% 0.60% 0.12% 0.13%

Table 4: Average CSMSE of selected relevant and irrelevant variables (excludingβ
0
), with and without

bias correction,M = 1000.

Table 4 shows that the bias corrections for the retained irrelevant variables substantially

reduce their CSMSEs by downweighting chance significance; since 99.9% of irrelevant vari-

ables are eliminated at α = 0.001, their USMSEs are tiny. Thus, in complete contrast to the

earlier literature reviewed in section 2, even with 991 irrelevant variables, their total impact on

selected models after bias correction is essentially negligible when suitable significance lev-

els are used. Figure 3 graphs the MSEs of the bias-corrected relevant coefficient estimates in

their conditional distributions. Here, the impact of bias correction can also be beneficial, but is

generally small.
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Figure 3: Impact of bias correction on CSMSEk for relevant variables at α = 1% (left) and α = 0.1%
(right).

5 Comparisons of 1-cut selection and automated Gets

Having demonstrated that the 1-cut rule satisfies properties (G), (H) and (I), we now compare it

with automated Gets. In non-orthogonal problems, path search is required to establish ‘genuine

relevance’, which gives the impression of ‘repeated testing’, but should not be confused with

selecting the ‘best fitting model’ from the 21000 ≃ 10301 possible models. The multi-path

procedures in Hoover and Perez (1999) and Hendry and Krolzig (2001) do not become stuck

in a single-path sequence, where a relevant variable is inadvertently eliminated, retaining other

variables as proxies (e.g., as in stepwise regression). Autometrics improves further by a tree-

search to detect and eliminate statistically-insignificant variables, and handling N > T . At any



stage, a variable is removed only if the new model is a valid reduction of the GUM (i.e., the

new model must encompass the GUM at the chosen significance level: see Doornik, 2008). A

path terminates when no variable meets the reduction criterion. At the end, there will be one or

more non-rejected (terminal) models: all are congruent, undominated, mutually-encompassing

representations. If necessary, a choice is made using a tie-breaker, e.g., the Schwarz (1978)

information criterion, although all terminal models are reported and can be used in, say, forecast

combinations. Thus, goodness-of-fit is not directly used to select models, and no attempt is

made to ‘prove’ that a given set of variables matters although the choice of cα affects R2

and ñ through retention by t2(ñ) ≥ c2α. Generalizations are feasible to instrumental variables

estimators (see Hendry and Krolzig, 2005), and likelihood estimation (Doornik, 2009).

Gets selection encompasses many aspects of the alternative approaches discussed in §2.

For example, information criteria are used to select a final model if there are multiple terminal

models. Alternatively, the terminal models could be averaged, or the GUM could be retained, or

included in a set of models being averaged. The GUM should be specified using all available

subject-matter theory, and such theory can be imposed by ‘forcing’ variables to be retained.

When there are more variables than observations, expanding and contracting searches are used,

as in Doornik (2009), so specific-to-general search also plays a role. Encompassing tests ensure

a parsimonious congruent model of the GUM is selected, see Doornik (2008).

We now consider a much smaller N so results can be graphed and compared across a range

of experiments as the number of relevant variables, n ≤ N , and their significance changes,

using the general design from Castle, Qin and Reed (2009). We retain the orthogonal design

to ensure that 1-cut is a valid procedure. The analysis shows that there is little or no cost to

undertaking a multi-path search compared to 1-cut, validating the Gets procedure.

5.1 A small orthogonal-regressor model

The experimental design is given by N = 10, n = 1, . . . , 10, and T = 75:

yt = β0 + β1x1,t + · · · + β10x10,t + ǫt, (17)

xt ∼ IN10 [0, I10] , (18)

ǫt ∼ IN
[
0, σ2j

]
, t = 1, . . . , T, j = 2, . . . , 6, (19)

where x′
t = (x1,t, · · · , x10,t). The xt are fixed across replications. Equations (17)–(19) specify

10 different DGPs, indexed by n, each having n relevant variables with β1 = · · · = βn = 1
and 10 − n irrelevant variables (βn+1 = · · · = β10 = 0). Throughout, we set β0 = 5 and

M = 1000 replications are undertaken.

The error variance is given by σ2j where j indexes 5 different error variances calculated

by σ2j = T/j2, for j = 2, . . . , 6, such that all relevant variables in each experiment have

the same non-centrality given by ψk,j = 2, . . . , 6 for k = 1, . . . , n. Hence, the 10 different

DGPs have relevant variables with 5 different non-centralities, resulting in 50 experiments. The

experimental design aims to span a broad range of situations, from many relevant regressors

to few relevant regressors, and from highly significant to marginally significant regressors,

to ensure the simulation results are relatively general within the linear, orthogonal-regressor

context. Table 5 reports the theoretical powers of t-tests for the non-centralities of relevant

variables considered.

The GUM is the same for all 10 DGPs:

yt = β0 + β1x1,t + · · ·+ β10x10,t + ut.



j = 2 j = 3 j = 4 j = 5 j = 6

α = 0.05 50.3 84.3 97.8 99.9 100

α = 0.01 26.0 63.9 91.3 99.1 100

Table 5: Theoretical power for a single t-test (%) for experiments (17)–(19).

5.1.1 Simulation results for N = 10

We now investigate how the general search algorithm performs relative to 1-cut selection in

terms of (G)–(I) in Section 3. Their comparative gauges for ψk = 2 and ψk = 6 are shown in

Figure 4, where Autometrics selects both with and without diagnostic testing. In default mode

(with diagnostic testing), Autometrics is ‘over-gauged’, particularly for low non-centralities,

where the gauge increases as n → N . For high non-centralities, the default-mode gauge is

increased by about 1-2 percentage points (see §5.2). Doornik (2008) shows that encompassing

checks against the GUM help stabilize performance.
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Figure 4: Gauges for 1-cut rule (solid lines), Autometrics with diagnostic testing (dashed lines) and

Autometrics without diagnostic testing (dotted lines) for α = 0.01, 0.05. The left panel corresponds

to j = 2 so ψk = 2 for k = 1, . . . , n, and the right panel corresponds to j = 6, so ψk = 6 for

k = 1, . . . , n. The horizontal axis represents the n = 1, . . . , 10 DGPs, each with n relevant variables

(and 10− n irrelevant).
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Figure 5: Potencies for 1-cut rule (solid lines) and Autometrics without diagnostic testing (dotted lines)

for α = 0.05 (left panel) and 0.01 (right panel). The horizontal axis represents the n = 1, . . . , 10 DGPs,

each with n relevant variables (and 10 − n irrelevant). Solid thin lines record the power for a single

t-test at ψk = 2, 3, 4.

Figure 5 compares the potencies of both algorithms, without diagnostic testing, and when

the intercept is always included. Potencies can be compared to the power of a single t-test, also

recorded in Figure 5 (powers for high non-centralities are excluded as they are close to unity).

Both methods have potencies close to the optimal single t-test with no selection. The 1-cut

rule has a consistently lower potency, but potencies are not gauge-corrected, and it also has a



slightly lower gauge. Given this trade-off, there is little difference between 1-cut and searching

many paths.
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Figure 6: Ratios of MSEs for Autometrics to 1-cut rule as n changes, averaging across all relevant

(solid lines) and irrelevant (dashed lines) variables. Left-hand panels correspond to j = 2 (ψ
k
= 2) and

right-hand panels correspond to j = 6 (ψk = 6) for k = 1, . . . , n.

Figure 6 records the ratios of MSEs of Autometrics selection to the 1-cut rule for both

unconditional and conditional distributions, with no diagnostic tests and no bias correction, for

M = 1000. If the ratio is below unity, the former has a smaller average MSE than 1-cut. The

lines labelled Relevant report the ratios of average MSEs over all relevant variables for a given

n. Analogously, the lines labelled Irrelevant are based on the average MSEs of the irrelevant

variables for each DGP (none when n = 10). Unconditionally, all ratios are close to unity

for the relevant variables, but the 1-cut rule performs better for irrelevant variables when non-

centralities are low but not when they are high. The benefits to search are largest when there are

few relevant variables that are highly significant, but conditionally, Autometrics outperforms

the 1-cut rule in almost all cases–most lines are below unity. Thus, there is little loss from

using the path-search algorithm even when 1-cut is applicable. In non-orthogonal problems,

1-cut would be inadvisable as the initial ranking given by (2) depends on correlations between

variables as well as their relevance.

5.2 Impact of diagnostic tests

Figure 4 also compared the gauges for Autometrics with diagnostic tracking switched on versus

off, both with bias correction. The gauge is slightly over the nominal significance level when

diagnostic tests are checked to ensure a congruent reduction. With diagnostic testing switched

off, the gauge is close to the nominal significance level. The difference seems due to irrelevant

variables proxying chance departures from the null on one of the five mis-specification tests

or the encompassing check, and then being retained despite insignificance–a key reason for

measuring gauge not ‘size’.

Figure 7 records the ratio of the USMSEs with diagnostic tests switched off to on in the top

panel, and the same for the CSMSEs in the bottom panel, averaging within relevant and irrel-

evant variables. Switching the diagnostics off generally improves the USMSEs, but worsens



the results conditionally, with the impact coming through the irrelevant variables. Switching

the diagnostics off leads to fewer irrelevant regressors being retained overall, improving the

USMSEs, but those irrelevant variables that are retained are now more significant than with

the diagnostics on. The impact is largest at tight significance levels.
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Figure 7: Ratios of MSEs with diagnostic tests off to on for unconditional and conditional distributions

as n changes, averaging across all relevant (solid lines) and irrelevant (dashed lines) variables. Left-

hand panels correspond to j = 2 (ψk = 2) and right-hand panels correspond to j = 6 (ψk = 6) for

k = 1, . . . , n.

6 Model selection in ADL models

In this section, we analyze a setting in which the regressors are correlated and the models

are dynamic; the setting that confronts most time-series researchers, so 1-cut is an invalid

procedure. We use a relatively general experimental design to cover many possible settings,

56 experiments in total, for a linear DGP, and assess performance based on criteria (G)–(I).

Non-linear model selection is discussed in Castle and Hendry (2010a, 2010b).

6.1 The dynamic model

The experimental design has nine DGP specifications given by, for r = 3, . . . , 8:

DGP0 : yt = ǫt

DGP1 : yt = 0.75yt−1 + ǫt

DGP2 : yt = 1.5yt−1 − 0.8yt−2 + ǫt

DGPr : yt = 1.5yt−1 − 0.8yt−2 +
r−2∑

j=1

(
βjxj,t − βjxj,t−1

)
+ ǫt (20)

where ǫt ∼ IN [0, 1] and xt = (x1,t, . . . , x6,t)
′ is generated by:

xt = ρxt−1 + vt where vt ∼ IN6 [0,Ω] (21)



with ρ = 0.5, ωkk = 1, and ωkj = 0.5,∀k 6= j. There are n = 0, 1, 2, 4, 6, 8, 10, 12, 14
relevant regressors. The DGP involves negative relations between pairs of exogenous regres-

sors as the first differences matter. We set βk = ψk√
T

, ∀k = 1, . . . , L, in a given experiment,

where L ≤ 6 is the number of contemporaneous exogenous regressors, and the non-centrality,

ψk = 8/
√
2k, ranges from 5.5 for DGP3 to just over 2 for DGP8.

There are 7 GUMs, given by s = 0, 1, 2, 5, 10, 15, 20:

yt = µ+

s∑

k=1

αkyt−k +
6∑

j=1

s∑

k=0

γj,kxj,t−k + et. (22)

N is the total number of regressors, withN = 7, 14, 21, 42, 77, 112, 147, and T = 100, so there

are four GUMs with N < T/2, one GUM near T , and two GUMs with N > T . Included in

these are under-specified examples when s = 0 (all DGPs) and s = 1 (DGP2–DGP8), and over-

specified cases. We consider all combinations of DGPs and GUMs, creating 56 experiments

in total. Selection uses α = 1%, 0.5%, both with and without lag pre-selection (sequential

reductions from the longest lag), with diagnostics switched off (as some GUMs are dynamically

mis-specified), for M = 1000 replications.

6.2 Potency and gauge

Potency calculated using (4) combines the retention of the lagged dependent variables and the

exogenous variables, so we separately compute potencies for exogenous variables only by av-

eraging retention rates over the 2L relevant exogenous variables. These can be compared with

the theoretical powers for a t-test on individual coefficients, as recorded in Table 6. Poten-

cies are not reported for under-specified cases, as they have no precise meaning when relevant

variables are omitted from the GUM.

DGP 3 4 5 6 7 8

ψk 5.66 4.00 3.27 2.83 2.53 2.31

P0.01 0.999 0.915 0.739 0.580 0.462 0.376

P0.005 0.997 0.871 0.654 0.483 0.367 0.287

Table 6: Powers for a single t-test.

Figure 8 records the potencies for each DGP and GUM specification defined by the lag

length, s, commencing at s = 2 when there is no under-specification, for selection using

lag pre-search. There is a decline in potency as the non-centrality falls (i.e., the DGP size

increases), but potency is fairly constant across increasing GUM size (s). There is little impact

of extending the GUM when the DGP is autoregressive as the non-centralities of the lagged

dependent variables (LDVs) are high, so even including 20 lags of y has little effect on potency.

The differences between significance levels are fairly small as the lagged dependent vari-

ables have potencies close to unity. However, comparing the potencies for just exogenous

regressors against the powers for a single t-test, the potencies are close to, and in some cases

higher than, the corresponding t-test power, despite successive positive and negative coeffi-

cients of lagged regressors.

Figure 9 records gauges for each DGP and GUM specification. Gauges should be invariant

to the number of regressors and non-centralities so the planes should be flat at the given signif-

icance level. For DGP0, the gauge is close to the nominal significance level and is somewhat

tighter for moderate lag lengths. For the DGPs with just lagged dependent variables (DGP1

and DGP2), the gauges are also close to the nominal significance level, and additional lags do
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Figure 9: Gauge with lag pre-search recorded against DGP and GUM specification

not increase them. The gauges increase as more exogenous regressors become relevant, but fall

as the GUM lag length increases. Thus, the gauges are worse for moderate lag lengths (s = 2
and 5) than the large GUMs with s = 15 or 20. When s = 15 or 20, there are more variables

than observations so expanding and contracting searches are needed to reduce the GUM to an

estimable intermediate model, see Doornik (2007a). Despite commencing with N > T , the

gauge is controlled close to the nominal significance level. Overall, divergences from a flat

plane are not substantial, so (H) seems to be satisfied even with dynamics.

6.3 Costs of search and inference

We next consider costs of inference and costs of search to assess the selection procedure, ad-

dressing criterion (G). Search and inference costs are more useful concepts than (A) or (B),

because they account for the costs of conducting inference on the LDGP itself. If the signal-to-

noise ratio of the LDGP is low, even commencing from it will result in some relevant variables

being excluded. Such inference costs are an unavoidable consequence of the LDGP speci-

fication. We measure them by the RMSEs of LDGP parameter estimates after conducting

inference on that LDGP, summing the unconditional RMSEs over all variables, namely (see

Table 1 for definitions):
n∑

k=1

UIRMSEk. (23)

When the GUM is the LDGP, as only significant variables are retained, (23) could be larger

or smaller than the RMSE from directly estimating the LDGP, calculated by summing the

unconditional RMSEs over all variables in the estimated LDGP, depending on the choice of



critical value, cα, and the non-centralities, ψk, of the LDGP parameters:

n∑

k=1

LRMSEk. (24)

Now consider starting from a more general model with both relevant and irrelevant vari-

ables. The additional costs of search are calculated as the increase in unconditional RMSEs for

relevant variables in the selected model when starting from the GUM as against the LDGP, plus

the unconditional RMSEs computed for all N − n irrelevant variables, both bias corrected:

n∑

k=1

(USRMSEk − UIRMSEk) +
N∑

k=n+1

USRMSEk (25)

If the LDGP specification is known and just estimated, thenN = n and (25) is zero. Otherwise,

depending on the non-centralities, ψk, there is usually a trade-off between the two components:

as cα increases, the second term falls, but the first term may increase. Also, the second rises as

N − n increases because it sums over more irrelevant terms. Both seem desirable properties

of a measure of search costs. Section 6.5 considers under-specified models, where (25) can be

smaller than (23), and may even be negative.

For dynamic models, these measures of search costs evaluate against the precise LDGP lag

structure. With substantial autocorrelation, it is difficult to pinpoint the exact timing of relevant

lags, so for example yt−3 rather than yt−2 may be retained. Defining yt−3 as an ‘irrelevant’

variable when yt−2 is not retained results in a crude measure of costs. If the selected lags pick

up similar dynamics, then search costs would not be as high as indicated by (25). To quantify

this, we compute the search and inference costs over the exogenous regressors only, i.e., n
becomes 2L and N becomes sL where s is the GUM lag length. We separately assess the

search costs for the LDVs using:

USRMSELDV =

√√√√ 1

M

M∑

i=1

(
s∑

k=1

β̃y,k,i −
s∑

k=1

βy,k,i

)2

(26)

where β̃y,k,i denotes the OLS estimate of the kth lag of the dependent variable. If the retained

coefficient estimates sum to the DGP coefficients, then the search costs for the lagged depen-

dent variables would be low despite not selecting the exact lag structure. We compare (26)

to the costs of inference, which also sum the retained lagged dependent variables’ coefficients

when commencing from the LDGP.

Figure 10 records RMSEs for the LDGP given by (24), the costs of inference given by (23)

and the costs of search given by (25) over exogenous regressors for each DGP as the GUM

lag length s increases. The costs of search increase as s increases, as there are more irrelevant

variables contributing to search costs. These increase steadily (almost linearly for large DGPs)

despite a shift from N ≪ T to N > T between s = 10 and s = 15. A tighter significance

level results in lower search costs, as fewer irrelevant variables are retained, but delivers higher

costs of inference as more relevant variables will be omitted. When there are many irrelevant

variables and few relevant variables that are highly significant (DGP3), the costs of search

dominate, but for the larger DGPs (DGP6–DGP8) the costs of search are smaller than the costs

of inference for estimable GUMs. Indeed, the costs of search can be smaller than the LDGP

costs with no selection (all lower panels up to s = 5). For DGP8 at α = 0.005, the costs of

search are lower than the costs of inference even for the case where N > T (s = 15), so an



LDGP 
Inference costs α=0.01 
Inference costs α=0.005 
Search costs α=0.01 
Search costs α=0.005 

2

4

DGP3

2 5 10 15 20

LDGP 
Inference costs α=0.01 
Inference costs α=0.005 
Search costs α=0.01 
Search costs α=0.005 

2

4

DGP4

2 5 10 15 20s→

2

4

DGP5

2 5 10 15 20

2

4

DGP6

2 5 10 15 20

s→

s→

2

4

DGP7

2 5 10 15 20s→

2

4

DGP8

2 5 10 15 20

s→

s→

Figure 10: Costs of search and inference for exogenous regressors: LRMSE for the LDGP (solid line),

inference on the LDGP (dashed lines) and bias-corrected selection from the GUM with lag pre-selection

(dotted lines).

additional 98 irrelevant variables are searched over. The costs of inference over the LDGP with

no selection are substantial for the larger DGPs, due to the lower non-centralities.

When computing costs for dynamics by averaging over all LDV coefficients, USRMSELDV
is close to the equivalent average LRMSE for the LDGP. This is not a pure measure of search

costs, but does reflect that the dynamics are adequately captured, although the timing of the

dynamics may not be. In practice, timing is likely to be out only by one or at most two lags,

depending on data frequency and seasonality. Hence, for dynamic models, selection on average

will result in the same long-run solution, but the short-run dynamics may only proxy the LDGP.

Thus, the timing of policy impacts, say, may be incorrect, but not their overall effect.

6.4 Impact of bias correction and lag pre-search on MSEs

As in the static simulation experiments, we compare the ratios of USMSE and CSMSE with

bias correction to without bias correction, averaged over relevant and irrelevant variables. Fig-

ure 11 records the average USMSE and CSMSE ratios, averaging across all DGPs, recorded

against the GUM specification. All ratios are less than unity, so bias correction is beneficial

in all specifications. Most of the benefit comes from down-weighting retained irrelevant vari-

ables, but there is also some advantage to bias correcting the relevant variables. The theory

behind these corrections assumes that the only bias source is away from the origin due to

selecting larger t2 values, whereas inadvertently-omitted variables could induce other biases,

yet there remains a substantive benefit in practice from bias correction for relevant variables’

coefficients, including when N > T .

Lag pre-selection is designed to have no overall impact on the final selected model, and

is undertaken at very loose significance levels so as not to eliminate variables that could be

relevant when undertaking the tree search, but is infeasible when N > T . Computing ratios

of USMSEs and CSMSEs with and without lag pre-search results in values close to unity,
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Figure 11: Ratios of MSEs with bias correction to no bias correction, averaged across all relevant

(solid lines) and irrelevant (dashed lines) for all DGPs, plotted against s.

although search time is vastly improved with lag pre-selection. There is a small benefit to lag

pre-search when the GUM specification includes five lags for the irrelevant variables (detailed

results available on request).

6.5 Under-specification

The GUM is under-specified for all DGPs when s = 0, and for DGP2–DGP8 when s = 1. An

LDGP is defined as the joint density of the set of included variables: leaving out any variables

that matter defines a different, and obviously less useful, reduction of the DGP. Correlations

between variables then lead to included components ‘picking up’ correlated parts of excluded

variables. Evaluating selection by how often that under-specified representation is found sheds

little light on how useful that would be in practice. Since even the most general formulation

is under-specified for the DGP in this section, the equation created by the relevant variables

that are included is denoted LDGP∗ below, but the benchmark for evaluation remains the DGP

parameters, not the induced parameters of the LDGP.
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Figure 12: Costs of search and inference for under-specified cases. URMSEs for the LDGP* (solid

line), inference on the LDGP* (dashed lines) and bias-corrected selection from the GUM with lag pre-

selection (dotted lines).

When models are under-specified for the DGP, the RMSEs for the omitted variables are

their squared DGP parameters, but as these are an additive common element in all models, and

in practice it is presumably not known that they are omitted, such terms are excluded in all cost

calculations below. Inter-correlations between included and omitted regressors induce biases

and inconsistencies in estimated coefficients of the remaining included variables, adding to

both search and inference costs. In practice, mis-specification tests may reveal that the LDGP

(or GUM) is a poor reduction of the DGP, but that induces a simple-to-general search where it

is easy to incorrectly diagnose the source of any rejection (e.g., residual autocorrelation could

be due to many mis-specifications), although including the relevant omitted variables would in



fact lead to a congruent representation.

Figure 12 records the DGP and LDGP∗ costs from (24), as well as the costs of inference,

(23), and the costs of search, (25), for the LDGP∗ and GUM in these under-specified cases,

again computed only over the exogenous variables and all evaluated against the DGP param-

eters. As more exogenous variables become relevant, and non-centralities fall, the costs of

inference dominate. For s = 1 (right-hand panel) the form of mis-specification (the omitted

variable is yt−2) is the same for all LDGP∗s across the horizontal axis, but the mis-specification

has a greater impact as more variables are relevant. In contrast, search costs decline as more

variables become relevant (and can even be negative, as in DGP8): the choice of α = 0.01
or 0.005 makes almost no difference. The same phenomenon is observed when s = 0, with

inference costs increasing and search costs decreasing. Thus, there can be higher RMSE costs

from just estimating the DGP than from searching in the GUM for the best specification. The

GUMs for DGP1 and DGP2 are just a constant for s = 0, so are omitted from Figure 12.

6.6 Higher-order dynamics

We extended the simulation exercise to include higher-order dynamics to reflect seasonal dy-

namics (see Hylleberg, 1986, 1992). In DGP2–DGP8, yt−2 is replaced by yt−12 to reflect

annual lags at the monthly frequency, and the GUM is given by (22) for s = 15, 20. A second

simulation study replaced yt−2 by yt−20 for s = 20, to reflect ‘ice-age’ type data measured at

1000-year intervals, treating a cycle as 20,000 years. The gauge, potency and search costs were

close to those found for the experiments above, so ‘gaps’ in the dynamics have little impact:

performance on such ‘seasonally dynamic’ data is as good as on non-seasonal data.

7 Conclusion

In this paper, we consider how to evaluate model selection procedures. Three criteria are

highlighted as useful benchmarks to assess any method of model selection, namely, the local

data generation process (LDGP) can be recovered when commencing from the initial general

unrestricted model (GUM) almost as often as as when commencing from the LDGP itself;

the operating characteristics of the selection procedure match their desired properties; and the

method finds a well-specified, undominated model of the LDGP. Using these three objective as-

sessment criteria, we examine automatic Gets selection embodied in Autometrics, see Doornik

(2009). The analysis builds from the simple case of a linear regression model with N orthogo-

nal variables, where only one decision is required to select when N < T (a 1-cut procedure), to

the more realistic setting of dynamic models with long lag structures and intercorrelated vari-

ables. As the automatic selection algorithm is complicated, we undertake a range of simulation

experiments to assess its properties, including cases where N > T , and where the GUM is

under-specified for the LDGP.

When the nominal rejection frequency of individual selection tests, α, is set at α ≤ 1/N ,

then on average one irrelevant variable will be spuriously retained as significant out ofN candi-

dates. Thus, there is little difficulty in eliminating almost all irrelevant variables when starting

from the GUM (a small cost of search). Despite large numbers of irrelevant candidate regres-

sors, including N > T , Autometrics has a retention frequency of irrelevant variables (gauge)

close to α, somewhat increased by undertaking mis-specification testing for congruence and

encompassing tests against the GUM. Bias correction for selection greatly reduces the mean

square errors (MSEs) of spuriously retained irrelevant variables in both unconditional and con-

ditional distributions, at a small cost in increased MSEs for relevant variables. The costs of

search can be smaller than those of just estimating the DGP, even when the GUM is under-

specified, and seem to increase only linearly in N despite N > T . Thus, the procedure usually



terminates with a selected model close to what would be found commencing from the LDGP,

with near unbiased estimates of the retained LDGP parameters, and almost no irrelevant vari-

ables, with those retained having small MSEs, thereby satisfying our three criteria.

Limits to automatic model selection apply when the LDGP equation would not be reliably

selected by the given inference rules applied to itself as the initial specification: selection can-

not rectify that. When relevant variables have parameters that are O(1/
√
T ), and regressors

are highly intercorrelated, selection will not work well, see Leeb and Pötscher (2003, 2005).

Thus, uniform convergence seems infeasible, as parameters cannot then be consistently esti-

mated. However, selection works for parameters larger than O(1/
√
T ) (as they are consistently

estimable), or smaller than O(1/T ) (as they vanish), and 1/
√
T and 1/T both converge to zero

as T → ∞, so ‘most’ parameter values are unproblematic. The so-called ‘size’ of a selection

procedure, 1 − (1 − α)N−n, can be large, but is uninformative about the success of selection

that correctly eliminates (1−α)(N−n) irrelevant variables on average, and is consistent when

α→ 0 as T → ∞.

When the LDGP is not nested in the GUM, direct estimation will deliver inconsistent es-

timates. While a selected approximation will also be an incorrect choice, it will be undomi-

nated, and in a progressive research strategy, especially when there are intermittent structural

breaks in both relevant and irrelevant variables, will soon be replaced. Conversely, if the LDGP

would always be retained when commencing from it, then a close approximation will generally

be selected when starting from a GUM which nests that LDGP. Costs of inference dominate

costs of search for most values of the non-centrality parameter and numbers of candidate vari-

ables. Search costs rise with the extent of initial over-specification, whereas inference costs rise

with under-specification, even in constant-parameter processes. Consequently, prior theoretical

analyses that can ascertain the main relevant variables and likely lag-reaction latencies remain

invaluable, and can be embedded in the search process, allowing more stringent selection of

other potential effects, as in Hendry and Mizon (2010). Automatic model selection is just the

next step up from automatic computation, extending the capabilities of empirical modellers.

Overall, we conclude that model selection based on Autometrics using relatively tight sig-

nificance levels and bias correction is a successful approach to selecting dynamic equations

even when commencing from very long lags to avoid omitting relevant variables or dynamics.

References

Akaike, A. (1973). Information theory and an extension of the maximum likelihood principle. In

Petrov, B. N., and Csaki, F. L. (eds.), Second International Symposium of Information Theory,

pp. 267–281. Budapest: Akademiai Kiado.

Amemiya, T. (1980). Selection of regressors. International Economic Review, 21, 331–354.

Anderson, T. W. (1962). The choice of the degree of a polynomial regression as a multiple-decision

problem. Annals of Mathematical Statistics, 33, 255–265.

Berk, K. N. (1978). Comparing subset regression procedures. Technometrics, 20, 1–6.

Bontemps, C., and Mizon, G. E. (2003). Congruence and encompassing. In Stigum, B. P. (ed.), Econo-

metrics and the Philosophy of Economics, pp. 354–378. Princeton: Princeton University Press.

Box, G. E. P., and Newbold, P. (1971). Some comments on a paper of Coen, Gomme, and Kendall.

Journal of the Royal Statistical Society, A, 134, 229–240.

Breusch, T. S. (1990). Simplified extreme bounds. In Granger (1990), pp. 72–81.

Campos, J., Ericsson, N. R., and Hendry, D. F. (eds.)(2005). Readings on General-to-Specific Modeling.

Cheltenham: Edward Elgar.

Campos, J., Hendry, D. F., and Krolzig, H.-M. (2003). Consistent model selection by an automatic Gets

approach. Oxford Bulletin of Economics and Statistics, 65, 803–819.



Castle, J. L., Doornik, J. A., and Hendry, D. F. (2010). Model selection when there are multiple breaks.

Working Paper No. 472, Economics Department, University of Oxford.

Castle, J. L., and Hendry, D. F. (2010a). Automatic selection of non-linear models. In Wang, L.,

Garnier, H., and Jackman, T. (eds.), System Identification, Environmental Modelling and Control,

forthcoming. New York: Springer.

Castle, J. L., and Hendry, D. F. (2010b). A low-dimension, portmanteau test for non-linearity. Journal

of Econometrics, 158, 231–245.

Castle, J. L., Qin, X., and Reed, W. R. (2009). How to pick the best regression equation: A Monte

Carlo comparison of many model selection algorithms. Working paper, Economics Department,

University of Canterbury, Christchurch, New Zealand.

Castle, J. L., and Shephard, N. (eds.)(2009). The Methodology and Practice of Econometrics. Oxford:

Oxford University Press.

Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal

Statistical Society, A, 158, 419–466. With discussion.

Chow, G. C. (1981). Selection of econometric models by the information criteria. In Charatsis,

E. G. (ed.), Proceedings of the Econometric Society European Meeting 1979, Ch. 8. Amsterdam:

North-Holland.

Clements, M. P., and Hendry, D. F. (1999). Forecasting Non-stationary Economic Time Series. Cam-

bridge, Mass.: MIT Press.

Coen, P. G., Gomme, E. D., and Kendall, M. G. (1969). Lagged relationships in economic forecasting.

Journal of the Royal Statistical Society A, 132, 133–163.

Demiralp, S., and Hoover, K. D. (2003). Searching for the causal structure of a vector autoregression.

Oxford Bulletin of Economics and Statistics, 65, 745–767.

Doornik, J. A. (2007a). Econometric model selection with more variables than observations. Working

paper, Economics Department, University of Oxford.

Doornik, J. A. (2007b). Object-Oriented Matrix Programming using Ox 6th edn. London: Timberlake

Consultants Press.

Doornik, J. A. (2008). Encompassing and automatic model selection. Oxford Bulletin of Economics

and Statistics, 70, 915–925.

Doornik, J. A. (2009). Autometrics. In Castle, and Shephard (2009), pp. 88–121.

Granger, C. W. J. (ed.)(1990). Modelling Economic Series. Oxford: Clarendon Press.

Hannan, E. J., and Quinn, B. G. (1979). The determination of the order of an autoregression. Journal

of the Royal Statistical Society, B, 41, 190–195.

Hansen, B. E. (2005). Challenges for econometric model selection. Econometric Theory, 21, 60–68.

Hendry, D. F. (2009). The methodology of empirical econometric modeling: Applied econometrics

through the looking-glass. In Mills, T. C., and Patterson, K. D. (eds.), Palgrave Handbook of

Econometrics, pp. 3–67. Basingstoke: Palgrave MacMillan.

Hendry, D. F., and Doornik, J. A. (2009). Empirical Econometric Modelling using PcGive: Volume I.

London: Timberlake Consultants Press.

Hendry, D. F., Johansen, S., and Santos, C. (2008). Automatic selection of indicators in a fully saturated

regression. Computational Statistics, 33, 317–335. Erratum, 337–339.

Hendry, D. F., and Krolzig, H.-M. (1999). Improving on ‘Data mining reconsidered’ by K.D. Hoover

and S.J. Perez. Econometrics Journal, 2, 202–219.

Hendry, D. F., and Krolzig, H.-M. (2001). Automatic Econometric Model Selection. London: Timber-

lake Consultants Press.

Hendry, D. F., and Krolzig, H.-M. (2005). The properties of automatic Gets modelling. Economic

Journal, 115, C32–C61.

Hendry, D. F., and Mizon, G. E. (1990). Procrustean econometrics: or stretching and squeezing data. In

Granger (1990), pp. 121–136.

Hendry, D. F., and Mizon, G. E. (2010). Econometric modelling of time series with outlying observa-

tions. Journal of Time Series Econometrics, this issue.



Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model averaging: A

tutorial. Statistical Science, 14, 382–417.

Hoover, K. D., and Perez, S. J. (1999). Data mining reconsidered: Encompassing and the general-to-

specific approach to specification search. Econometrics Journal, 2, 167–191.

Hoover, K. D., and Perez, S. J. (2004). Truth and robustness in cross-country growth regressions. Oxford

Bulletin of Economics and Statistics, 66, 765–798.

Hylleberg, S. (1986). Seasonality in Regression. Orlando, Florida: Academic Press.

Hylleberg, S. (ed.)(1992). Modelling Seasonality. Oxford: Oxford University Press.

James, W., and Stein, C. (1961). Estimation with quadratic loss. In Neyman, J. (ed.), Proceedings of the

Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 361–379. Berkeley:

University of California Press.

Johansen, S., and Nielsen, B. (2009). An analysis of the indicator saturation estimator as a robust

regression estimator. In Castle, and Shephard (2009), pp. 1–36.

Johnson, N. L., and Kotz, S. (1970). Continuous Univariate Distributions. New York: John Wiley.

Volume 1.

Judge, G. G., and Bock, M. E. (1978). The Statistical Implications of Pre-Test and Stein-Rule Estimators

in Econometrics. Amsterdam: North Holland.

Krolzig, H.-M. (2003). General-to-specific model selection procedures for structural vector autoregres-

sions. Oxford Bulletin of Economics and Statistics, 65, 769–802.

Leamer, E. E. (1978). Specification Searches. Ad Hoc Inference with Non-Experimental Data. New

York: John Wiley & Sons.

Leamer, E. E. (1983a). Let’s take the con out of econometrics. American Economic Review, 73, 31–43.

Leamer, E. E. (1983b). Model choice and specification analysis. In Griliches, Z., and Intriligator, M. D.

(eds.), Handbook of Econometrics, Vol. 1, Ch. 5. Amsterdam: North-Holland.

Leamer, E. E. (1985). Sensitivity analyses would help. American Economic Review, 75, 308–313.

Leeb, H., and Pötscher, B. M. (2003). The finite-sample distribution of post-model-selection estimators,

and uniform versus non-uniform approximations. Econometric Theory, 19, 100–142.

Leeb, H., and Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric

Theory, 21, 21–59.

Lovell, M. C. (1983). Data mining. Review of Economics and Statistics, 65, 1–12.

Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661–675.

McAleer, M., Pagan, A. R., and Volker, P. A. (1985). What will take the con out of econometrics?.

American Economic Review, 95, 293–301.

Pagan, A. R. (1987). Three econometric methodologies: a critical appraisal. Journal of Economic

Surveys, 1, 3–24.

Perez-Amaral, T., Gallo, G. M., and White, H. (2003). A flexible tool for model building: the relevant

transformation of the inputs network approach (RETINA). Oxford Bulletin of Economics and

Statistics, 65, 821–838.

Phillips, P. C. B. (1988). Reflections on econometric methodology. Economic Record, 64, 344–359.

Phillips, P. C. B. (1994). Bayes models and forecasts of Australian macroeconomic time series. In

Hargreaves, C. (ed.), Non-stationary Time-series Analysis and Cointegration. Oxford: Oxford

University Press.

Phillips, P. C. B. (1995). Automated forecasts of Asia-Pacific economic activity. Asia-Pacific Economic

Review, 1, 92–102.

Phillips, P. C. B. (1996). Econometric model determination. Econometrica, 64, 763–812.

Phillips, P. C. B. (2003). Laws and limits of econometrics. Economic Journal, 113, C26–C52.

Pötscher, B. M. (1991). Effects of model selection on inference. Econometric Theory, 7, 163–185.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribu-

tion. Berkeley: University of California Press.



Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society, B, 58, 267–288.

White, H. (2000). A reality check for data snooping. Econometrica, 68, 1097–1126.

Yancey, T. A., and Judge, G. G. (1976). A Monte Carlo comparison of traditional and Stein-rule esti-

mators under squared error loss. Journal of Econometrics, 4, 285–294.


