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Only with the simultaneous estimation of multiple parameters are the quantum aspects of metrology

fully revealed. This is due to the incompatibility of observables. The fundamental bound for multiparameter

quantum estimation is the Holevo Cramér-Rao bound (HCRB) whose evaluation has so far remained

elusive. For finite-dimensional systems we recast its evaluation as a semidefinite program, with reduced

size for rank-deficient states. We show that it also satisfies strong duality. We use this result to study phase

and loss estimation in optical interferometry and three-dimensional magnetometry with noisy multiqubit

systems. For the former, we show that, in some regimes, it is possible to attain the HCRB with the optimal

(single-copy) measurement for phase estimation. For the latter, we show a nontrivial interplay between the

HCRB and incompatibility and provide numerical evidence that projective single-copy measurements

attain the HCRB in the noiseless 2-qubit case.

DOI: 10.1103/PhysRevLett.123.200503

Introduction.—Measuring physical quantities with ever

increasing precision underlies both technological and

scientific progress. Quantum mechanics plays a central

role in this challenge. On the one hand, the unavoidable

statistical uncertainty due to quantum fluctuations is a

fundamental limitation to high precision metrology. On the

other hand, quantum-enhanced metrological schemes that

take advantage of nonclassical features, such as entangle-

ment, coherence, or squeezing, have been proposed and

implemented experimentally [1–7]. Myriad metrological

applications are intrinsically multiparameter [8], e.g.,

sensing electric, magnetic, or gravitational fields [9], force

sensing [10,11], imaging [12,13], and superresolution

[14–18]. As a consequence, the field of multiparameter

quantum metrology has been growing rapidly, both theo-

retically [19–39] and experimentally [40–44].

The mathematical framework behind quantummetrology

is quantum estimation theory [45], pioneered by Helstrom

[46–48] and Holevo [49–51]. In particular, multiparameter

quantum estimation highlights a defining trait of quantum

theory, absent in single-parameter estimation: incompati-

bility of observables [52,53]. Because of this, multipara-

meter quantum estimation is much more challenging,

but also serves as a test bed for understanding quantum

measurements.

Precision bounds for multiparameter estimation are given

in terms of matrix inequalities for the mean square error

matrix (MSEM) Σ, see Eq. (1). However, matrix bounds are,

in general, not tight for multiparameter quantum estimation.

Instead, the Holevo Cramér-Rao bound (HCRB) [51,54] is

the most fundamental scalar lower bound imposed by

quantum mechanics on the weighted mean square error

(WMSE) Tr½WΣ� (for a positive definite W). The HCRB

represents the best precision attainable with global measure-

ments on an asymptotically large number of identical copies

of a quantum state [55–59]. Implementing such collective

measurements is exceptionally challenging [41,60], but in

some cases the HCRB is attained by single-copy measure-

ments: for pure states [61] and for displacement estimation

with Gaussian states [51].

Despite its importance, the HCRB has been used more as

a mathematical object in asymptotic quantum statistics [62]

than applied to concrete metrological problems. Indeed, the

HCRB is considered hard to evaluate, even numerically,

being defined through a constrained minimization over a

set of operators. Closed-form results for nontrivial cases are

known only for qubits [63], two-parameter estimation with

pure states [64], and two-parameter displacement estima-

tion with two-mode Gaussian states [65,66], while a

numerical investigation has been attempted for pure states

and Hamiltonian parameters [67]. The evaluation of the

HCRB thus remains a major roadblock in the development

of multiparameter quantum metrology.

This Letter removes this roadblock by providing a recipe

for evaluating the HCRB numerically for finite-dimen-

sional systems. Our main result recasts the optimization

required for evaluating the HCRB as a semidefinite pro-

gram (SDP). This was shown only for displacement

estimation with Gaussian states [66]. We present an SDP

whose complexity grows with the rank of the state instead

of a naive dependence on the Hilbert space dimension.

The application of our recipe to evaluate the HCRB for

two well-known metrological problems provides new

insights. In particular, we provide numerical evidence that
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single-copy attainability of the HCRB with projective

measurements is possible in nontrivial cases.

Multiparameter quantum estimation.—We consider

a generic finite-dimensional quantum system with

Hilbert space H ≅ Cd, denote the space of linear operators

(d × d matrices) on H as LðHÞ ≅ Cd×d, and the space of

observables (Hermitian matrices) as LhðHÞ.
The state of the system ρθ ∈ LhðHÞ is parametrized by a

real vector ðθ1;…; θnÞT ¼ θ ∈ Θ ⊂ Rn [68], the collection

fρθg for all the values of θ is called the quantum statistical

model. The goal is to simultaneously estimate all n
parameters by measuring possibly multiple copies of ρθ.

After measurement, classical data are processed with an

estimator θ̃, a function from the space of measurement

outcomes Ω to the space of parameters Θ. The MSEM of

the estimator

ΣθðΠ; θ̃Þ ¼
X

ω∈Ω

pðωjθÞ½θ̃ðωÞ − θ�½θ̃ðωÞ − θ�T; ð1Þ

quantifies the precision of the estimation. The pro-

bability of observing the outcome ω is given by the

Born rule pðωjθÞ ¼ TrðρθΠωÞ; the measurement is

described by a positive operator valued measure

(POVM):Π ¼ fΠω ≽ 0;ω ∈ Ωj
P

ω∈Ω Πω ¼ 1dg, without
loss of generality, we consider Ω to be a finite set [69].

We consider locally unbiased estimators that satisfy

X

ω∈Ω

½θ̃iðωÞ − θi�pðωjθÞ ¼ 0;
X

ω∈Ω

θ̃iðωÞ
∂pðωjθÞ
∂θj

¼ δij:

ð2Þ

For this class of estimators, the matrix Cramér-Rao bound

(CRB) on the MSEM is [70]

ΣθðΠ; θ̃Þ ≽ Fðρθ;ΠÞ−1 ð3Þ

(A ≽ 0 if and only if A is positive semidefinite); the

classical Fisher information matrix (FIM) Fðρθ;ΠÞ is

defined as

Fðρθ;ΠÞ ¼
X

ω∈Ω

pðωjθÞ
�

∂ logpðωjθÞ
∂θ

��

∂ logpðωjθÞ
∂θ

�

T

;

ð4Þ

where ∂fðθÞ=∂θ is the gradient of the function f. For
locally unbiased estimators, the MSEM is the covariance

matrix (CM) and the bound is attainable: there is always an

estimator in this class with a CM equal to the inverse FIM

[62,71]. To meaningfully compare the precision of different

multiparameter estimators, it is customary to consider

a scalar cost function, the WMSE Tr½WΣθðΠ; θ̃Þ�, with
0 ≺ W ∈ Sn (Sn is the set of real symmetric n-dimensional

matrices).

The most widely known lower bound for the MSEM

in quantum estimation relies on the (real symmetric)

quantum Fisher information matrix (QFIM), defined as

JSij ¼ ReðTr½ρθLiLj�Þ, where Li ∈ LhðHÞ are the symmet-

ric logarithmic derivatives (SLDs) satisfying 2∂ρθ=∂θi ¼
Liρθ þ ρθLi [45–47]. For single-parameter estimation,

the SLD bound is always attainable by measuring single

copies of the state; however for multiple parameters it is in

general not attainable. Moreover, as a consequence of the

noncommutativity of operators, for multiparameter estima-

tion the QFIM is not the unique quantum generalization of

the classical FIM [72]. Another important one is the

(complex Hermitian) matrix JRij ¼ Tr½ρθL̃iL̃
†
j �, where the

right logarithmic derivatives (RLDs) L̃i ∈ LðHÞ satisfy

∂ρθ=∂θi ¼ ρθL̃i [73,74]. Both matrices give valid matrix

bounds ΣθðΠ; θ̃Þ ≽ ðJfS;RgÞ−1. The corresponding scalar

bounds for the WMSE are CS
θðρθ;WÞ ¼ Tr½WðJSÞ−1� and

CR
θ ðρθ;WÞ¼Tr½WReðJRÞ−1�þjj

ffiffiffiffiffi

W
p

ImðJRÞ−1
ffiffiffiffiffi

W
p

jj1,
where jjAjj1 ¼ Tr½

ffiffiffiffiffiffiffiffiffi

A†A
p

� is the trace norm [51,71,75].

Whether CS
θ is larger than CR

θ depends on the model.

Holevo introduced a tighter bound, the HCRB CH
θ

[50,51],

Tr½WΣθðΠ; θ̃Þ� ≥ CH
θ ≥ max fCS

θ; C
R
θ g: ð5Þ

Both inequalities can be tight. In particular [76],

CH
θ ðρθ;WÞ ¼ CS

θðρθ;WÞ ⇔ Dθ ¼ 0n; ð6Þ

where ðDθÞij ≡ ImðTr½LjLiρθ�Þ is a skew-symmetric

matrix [71]. Condition (6) is called weak commutativity

and quantum statistical models satisfying it are asymptoti-

cally classical [77].

Computing the bound with an SDP.—The HCRB is

obtained as the result of the following minimization

[51,75]:

CH
θ ðρθ;WÞ ¼ min

V∈Sn;X∈Xθ

ðTr½WV�jV ≽ Z½X�Þ; ð7Þ

with the Hermitian n × n matrix Z½X�ij ¼ Tr½XiXjρθ� and
the collection X of operators Xi ∈ LhðHÞ in the set

Xθ ¼ fX ¼ ðX1;…; XnÞjTr½Xi∂jρθ� ¼ δijg: ð8Þ

For a density matrix with rank r < d, we can restrict the

operators Xi to the quotient space Lr
h
ðHÞ ¼ LhðHÞ=

Lh½kerðρθÞ�, with dimension d̃ ¼ 2dr − r2. For any

X ∈ LhðHÞ, any scalar quantity evaluated in the eigenbasis
of ρθ is independent of the diagonal block of X corre-

sponding to the kernel of ρθ [51,78] (see Sec. I of the

Supplemental Material [79] for details).

We introduce a basis λi of Hermitian operators for

Lr
h
ðHÞ, orthonormal with respect to the Hilbert-Schmidt

inner product Tr½λiλj� ¼ δij. Using such a basis, each

operator Xi ∈ Lr
h
ðHÞ corresponds to a real valued vector
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xi ∈ Rd̃. With some abuse of notation, we use X to denote

also the collection of these real vectors, i.e., the d̃ × n real

matrix with xi as columns. The quantum state also belongs

to Lr
h
ðHÞ and therefore corresponds to a vector sθ in the

chosen basis. This corresponds to the generalized Bloch

vector [89,90] when working in the full space LhðHÞ.
A quantum state induces an inner product on Lr

h
ðHÞ via

Z½X�ij ¼ Tr½XiXjρθ� ¼ x
T
i Sθxj; ð9Þ

where Sθ ≽ 0 is the Hermitian matrix representing the inner

product in the chosen basis. With this choice, we can write

Z½X� ¼ X
TSθX so that the matrix inequality on the rhs of

Eq. (7) reads V ≽ X
TSθX. Crucially, this last matrix

inequality can be converted to a linear matrix inequality

(LMI) by using the Schur complement condition for

positive semidefiniteness [91],

V − B†B ≽ 0 ⇔

�

V B†

B 1

�

≽ 0; ð10Þ

for any matrix B and identity matrix 1 of appropriate

size. Thus, we can rewrite the minimization problem in

Eq. (7) as

minimize
V∈Sn;X∈Rd̃×n

Tr½WV�

subject to

�

V X
TR†

θ

RθX 1r̃

�

≽ 0

X
T
∂sθ

∂θ
¼ 1n; ð11Þ

where the matrix Rθ can be any r̃ × d̃ matrix [with

rd ¼ rankðSθÞ ≤ r̃ ≤ d̃] satisfying Sθ ¼ R†

θRθ, e.g., a

Cholesky-like decomposition. Here ∂sθ=∂θ is a matrix

with the vector components of the operators ∂ρθ=∂θi ¼
∂iρθ as columns; this is the Jacobian matrix of sθ only if the
basis fλig is parameter independent. The program (11) can

be readily recognized as a convex minimization problem

[92], the solutions of an LMI form a convex set and the

objective function is linear. It can be converted to an SDP

(see Sec. II of the Supplemental Material [79] for details),

which can be solved numerically using efficient and readily

available algorithms with a guarantee of global optimality.

In practice, the program (11) can be fed directly to a

numerical modeling framework, such as CVX [93] or

YALMIP [94].

For every convex minimization, called the primal prob-

lem, there exists a maximization, the dual problem, that

yields a lower bound to the solution of the former. This

property is known as weak duality [92]. Strong duality

means that the solution to the primal and the dual problems

coincide. Not every SDP satisfies it, but it is a desirable

property that certifies an unambiguous solution. A suffi-

cient condition for strong duality is Slater’s condition.

Qualitatively this means that there must be optimization

variables satisfying the inequality constraints strictly.

We now show that our convex optimization problem (11)

satisfies Slater’s condition as long as JS≻0, i.e., a

nonsingular quantum statistical model. We denote by

L the matrix with the real vectors representing the

SLDs as columns. Upon noticing that ðLT∂sθ=∂θÞij ¼
Tr½Li∂jρθ� ¼ ðJSÞij, it is easy to show that the matrices

X ¼ LðJSÞ−1 and V ¼ ðJSÞ−1 þ V 0, with an arbitrary V 0≻0,
satisfy both constraints in (11). For this choice of V and X,

the matrix inequalities in (7) and (11) are strict.

An analytical optimization over V in (7) leads to [71]

hθðXÞ ¼ min
V∈Sn

ðTr½WV�jV ≽ Z½X�Þ ð12Þ

¼ Tr½WReZðXÞ� þ jj
ffiffiffiffiffi

W
p

ImZ½X�
ffiffiffiffiffi

W
p

jj1; ð13Þ

so that CH
θ ðρθ;WÞ ¼ minX∈Xθ

hθðXÞ; no general closed-

form solution for this last optimization is known. From our

previous convexity argument, we also infer that hθðXÞ is a
convex function of X, being a partial minimization of an

affine function over a convex set [92]. This may not be

apparent from (13) since the second term is not convex; the

sum of the two terms is convex as long as the matrix Z½X� is
positive semidefinite and the identity (10) can be used.

Optical interferometry with loss.—Optical interferom-

etry, where the goal is to measure a phase difference

between two optical paths, is a prime example of quantum

metrology [2]. In some instances, one may wish to estimate

both the phase and the loss induced by a sample in one arm

of a Mach-Zehnder interferometer [95].

We consider initial states with a fixed photon number N

across two modes jψ ini ¼
P

N
k¼0

ckjk; N − ki. These

include, for example, N00N states and Holland-Burnett

states [96]. The evolved state after the lossy interferometer,

with one arm characterized by a transmissivity η and a phase

shift ϕ, has a direct sum form ρϕ;η ¼ ⨁N
k¼0pljψ lihψ lj,

where each jψ li corresponds to l lost photons [97] (see

Sec. III of the Supplemental Material [79] for details).

For this problem, it is possible to obtain the SLDsLϕ andLη

analytically, as well as the QFIM JS ¼ diagðJSϕϕ; JSηηÞ.
Crucially, this multiparameter estimation problem is never

asymptotically classical, since [95]

ImðTr½LϕLηρϕ;η�Þ ¼ −
JSϕϕ

2η
: ð14Þ

Hence, the weak commutativity condition (6) never holds if

the model is nonsingular; thus, we get CH
θ > CS

θ > CR
θ ¼ 0

(the RLD bound is completely uninformative [95]).

Equation (14) also means that phase and loss cannot be

jointly estimated with the same precision obtainable by

estimating each parameter individually and there exists a

trade-off between precisions. Following Crowley et al. [95]
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we focus on a strategy to estimate ϕ with the best possible

precision and still get an estimate of η, by considering the

projective POVM Πϕ obtained from the spectral decom-

position of the SLD Lϕ.

More concretely, we study Holland-Burnett states, a

family of states particularly resilient to imperfections [98];

we also fix W ¼ 12. Figure 1 shows the classical CRB

CC
ϕ ¼ Tr½Fðρϕ;η;ΠϕÞ−1�, along with the HCRB (computed

by solving the SDP numerically) and the SLD-CRB CS
ϕ;η,

as a function of η for N up to 14. Figure 1(a) shows that the

HCRB is over 30% tighter than the SLD bound, especially

for intermediate transmissivities. Figure 1(b) shows that the

measurement we consider attains the HCRB for certain

values of N and η; i.e., the relative difference is zero up to

numerical noise. Even when the bound is not attained, the

relative difference remains small at around 4% for N ¼ 14.

For generic one-photon states (N ¼ 1), we have found

the analytical conditions for the HCRB to be attained byΠϕ.

For jψ ini ¼ c0j0; 1i þ c1j1; 0i (with jc0j2 þ jc1j2 ¼ 1),

we have CC
ϕ ¼ CHðρϕ;η; 12Þ as long as jc1j2 ≥ 1=2 or

ð1 − jc1j2=jc0j2Þ=2 ≤ η ≤ 1. The relative difference

1 − CH=CC
ϕ is at most 4.9% and always zero for η ≥ 1=2

(see Sec. III. A of the Supplemental Material [79] for

details). A numerical analysis on random states for higher

values ofN suggests that there is indeed a threshold value of

η, increasing with N, above which Πϕ attains the HCRB.

Finally, we remark that working in the space Lr
h
ðHÞ

provides a distinct advantage for the numerics, since the

Hilbert space dimension is ðN2 þ 3N þ 2Þ=2, while ρϕ;η

has rank r ¼ N þ 1,whereby d̃ ¼ ðN þ 1Þ3 < ðN þ 1Þ4.
3D magnetometry.—Noiseless 3D magnetometry,

another illustrative example of multiparameter quantum

metrology, has been studied terms of the QFIM [9]. Here,

we highlight the necessity of using the HCRB for this

problem and present results on 3D magnetometry using M
qubits in the presence of dephasing noise. The parameters

to be estimated φ ¼ ðφ1;φ2;φ3Þ appear via the single-

qubit HamiltonianHðjÞðφÞ ¼ φ · σðjÞ, where σðjÞ is a vector
of Pauli operators acting on the jth qubit. The para-

meters are imprinted on the probe state via the unitary

Uφ ¼ ⊗M
j exp½−iHðjÞðφÞ�. This is followed by local

dephasing along the z axis described by the single-qubit

map 2Eγ½ρ� ¼ ð1þ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p Þρþ ð1 − ffiffiffiffiffiffiffiffiffiffi

1 − γ
p Þσzρσz, with

γ ∈ ½0; 1�; an approximation valid when the sensing time

is short.

We use as probe states the family of 3D–Greenberger-

Horne-Zeilinger (GHZ) states

jψ3D-GHZ
M i ¼ 1

N

X

3

k¼1

jϕþ
k i⊗M þ jϕ−

k i⊗M; ð15Þ

which was shown to present Heisenberg scaling in the

noiseless case [9]; jϕ�
k i are the eigenvectors corresponding

to the �1 eigenvalues of the kth Pauli matrix and N is

the normalization. The final state for which we compute

the bound is ρφ ¼ E⊗M
γ ½Uφjψ3D-GHZ

M ihψ3D-GHZ
M jU†

φ�; for the
numerical results, we choose equal parameter values

φi ¼ 1 ∀ i and W ¼ 13.

In Fig. 2 we show the nontrivial relationship between the

HCRB, the SLD-CRB, and incompatibility for this quantum

statistical model, as a function of the dephasing strength γ.

We quantify the incompatibility of the model with the

magnitude of the matrix Dθ, capturing the violation of

the weak commutativity condition (6); in particular, we use

the Frobenius norm jjDφjj2F ¼
P

ij jðDφÞijj2. Figure 2(a)

shows that the relative difference 1 − CS=CH is monoton-

ically decreasing for 2 and 3 qubits, while it has a non-

monotonic behavior for 5 or more qubits. Figure 2(b) shows

that this behavior is not always reflected at the level of

incompatibility; this is remarkably different from the simple

monotonic relationship found for two-parameter pure state

models [61,64]. Furthermore, while the matrices Dθ have a

comparable magnitude for different number of qubits, the

relative differences do not, e.g., being around 0.2% for 5

qubits and around 30% for 2 qubits.

Our SDP formulation grants us a previously inaccessible

ease in the evaluation of the HCRB. In turn, this enables us

to get these glimpses into the noncommutative information

geometry of three-parameter mixed state problems of

nontrivial dimension. From this example, we see that the

pair of matrices JS and Dθ are not sufficient for a complete

description of a given state’s performance for multipara-

meter estimation.

Finally, we concentrate on the noiseless (γ ¼ 0) case

with 2 qubits, noting that a single qubit does not allow us to

estimate all the components of φ [9]. In Fig. 2 we see that

(a)

(b)

FIG. 1. Relative difference between different CRBs for

simultaneous estimation of phase and loss, as a function of the

transmissivity η, for N-photons Holland-Burnett probe states and

W ¼ 12. (a) Relative difference between the SLD-CRB

and the HCRB. (b) Relative difference between the HCRB

and the classical CRB for the optimal phase measurement

CC
ϕ ¼ Tr½Fðρϕ;η;ΠϕÞ−1�; this quantity is zero (up to numerical

noise) for N ≤ 6.
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for M ¼ 2 the SLD bound is considerably looser than the

HCRB, with a relative difference around 30% for γ ¼ 0.

On the contrary, we conjecture that the HCRB is attainable

with single-copy projective measurements. We base this on

the numerical equality between the HCRB and a numerical

minimization of the classical scalar CRB over all 2-qubit

projective measurements. For 5000 random initial states

with parameter values taken from five sets, the relative

difference between the two quantities was always found to

be smaller than 10−4 (see Sec. IV.A of the Supplemental

Material [79] for details). While for pure states the HCRB

is always attainable with single-copy measurements, the

optimal POVM needs not be projective [61], making it

harder to implement experimentally. This finding shows

that optimal protocols for 3D magnetometry with 2 qubits

may be not too far from experimental reach.

Conclusions.—We have shown how to evaluate the

HCRB by solving an SDP, making it more easily accessible

than previously believed. This enabled us to study two

examples—optical interferometry and 3D magnetometry—

and gather numerical evidence that the HCRB is attainable

by single-copy projective measurements, whereas the SLD

bound is not. These findings suggest that there may be

further unstudied cases where the HCRB is easier to attain

than naively expected. They also illustrate the potential of

our formulation to enable new discoveries in multipara-

meter quantum estimation, which should aid a deeper

quantitative understanding of quantum measurements more

generally.
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[35] M. Gessner, L. Pezzè, and A. Smerzi, Phys. Rev. Lett. 121,

130503 (2018).

[36] N. Kura and M. Ueda, Phys. Rev. A 97, 012101 (2018).

[37] J. Yang, S. Pang, Y. Zhou, and A. N. Jordan, Phys. Rev. A

100, 032104 (2019).

[38] H. Chen and H. Yuan, Phys. Rev. A 99, 032122 (2019).

[39] J. Rubio and J. Dunningham, arXiv:1906.04123.

[40] M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S.

Kolthammer, M. S. Kim, A. Datta, M. Barbieri, and I. A.

Walmsley, Nat. Commun. 5, 3532 (2014).

[41] E. Roccia, I. Gianani, L. Mancino, M. Sbroscia, F. Somma,

M. G. Genoni, and M. Barbieri, Quantum Sci. Technol. 3,

01LT01 (2018).

[42] E. Roccia, V. Cimini, M. Sbroscia, I. Gianani, L. Ruggiero,

L. Mancino, M. G. Genoni, M. A. Ricci, and M. Barbieri,

Optica 5, 1171 (2018).

[43] M. Parniak, S. Borówka, K. Boroszko, W. Wasilewski, K.

Banaszek, and R. Demkowicz-Dobrzański, Phys. Rev. Lett.

121, 250503 (2018).

[44] E. Polino, M. Riva, M. Valeri, R. Silvestri, G. Corrielli, A.

Crespi, N. Spagnolo, R. Osellame, and F. Sciarrino, Optica

6, 288 (2019).

[45] M. G. A. Paris, Int. J. Quantum. Inform. 07, 125 (2009).

[46] C. W. Helstrom, Phys. Lett. 25A, 101 (1967).

[47] C. W. Helstrom, IEEE Trans. Inf. Theory 14, 234 (1968).

[48] C. W. Helstrom, Quantum Detection and Estimation Theory

(Academic Press, New York, 1976).

[49] A. S. Holevo, J. Multivariate Anal. 3, 337 (1973).

[50] A. S. Holevo, in Proceedings of the Third Japan—USSR

Symposium on Probability Theory, edited by G. Maruyama

and J. V. Prokhorov (Springer, Berlin, 1976), Vol. 550.

[51] A. S. Holevo, Probabilistic and Statistical Aspects of

Quantum Theory, 2nd ed. (Edizioni della Normale, Pisa,

2011).

[52] T. Heinosaari, T. Miyadera, and M. Ziman, J. Phys. A 49,

123001 (2016).

[53] H. Zhu, Sci. Rep. 5, 14317 (2015).

[54] Asymptotic Theory of Quantum Statistical Inference:

Selected Papers, edited by M. Hayashi (World Scientific,

Singapore, 2005).

[55] M. Guţă and J. Kahn, Phys. Rev. A 73, 052108 (2006).

[56] M. Hayashi and K. Matsumoto, J. Math. Phys. 49, 102101

(2008).

[57] J. Kahn and M. Guţă, Commun. Math. Phys. 289, 597

(2009).

[58] K. Yamagata, A. Fujiwara, and R. D. Gill, Ann. Stat. 41,

2197 (2013).

[59] Y. Yang, G. Chiribella, and M. Hayashi, Commun. Math.

Phys. 368, 223 (2019).

[60] Z. Hou, J.-F. Tang, J. Shang, H. Zhu, J. Li, Y. Yuan, K.-D.

Wu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, Nat. Commun. 9,

1414 (2018).

[61] K. Matsumoto, J. Phys. A 35, 3111 (2002).

[62] R. D. Gill and M. Guţă, in From Probability to Statistics

and Back: High-Dimensional Models and Processes—

A Festschrift in Honor of Jon A. Wellner, edited by M.

Banerjee, F. Bunea, J. Huang, V. Koltchinskii, and M. H.

Maathuis (Institute of Mathematical Statistics, Beachwood,

Ohio, 2013), pp. 105–127.

[63] J. Suzuki, J. Math. Phys. 57, 042201 (2016).

[64] K. Matsumoto, arXiv:quant-ph/9711008; Reprinted in

Chap. 20 of Ref. [54], an updated shorter version is

published as Ref. [61].

[65] M. Bradshaw, S. M. Assad, and P. K. Lam, Phys. Lett. A

381, 2598 (2017).

[66] M. Bradshaw, P. K. Lam, and S. M. Assad, Phys. Rev. A 97,

012106 (2018).

[67] W. Gorecki, S. Zhou, L. Jiang, and R. Demkowicz-

Dobrzański, arXiv:1901.00896.

[68] We assume a sufficiently regular parametrization, in

particular, the state has a fixed rank for all θ.

[69] G. Chiribella, G. M. D’Ariano, and D. Schlingemann, Phys.

Rev. Lett. 98, 190403 (2007).

[70] H. Cramér, Mathematical Methods of Statistics (Princeton

University Press, Princeton, NJ, 1946).

[71] H. Nagaoka, IEICE Technical Report IT 89-42, 9 (1989);

Reprinted as Chap. 8 in Ref. [54].

[72] D. Petz, Quantum Information Theory and Quantum

Statistics, Theoretical and Mathematical Physics (Springer,

Berlin, 2008).

[73] H. P. Yuen and M. Lax, IEEE Trans. Inf. Theory 19, 740

(1973).

[74] V. P. Belavkin, Theor. Math. Phys. 26, 213 (1976).

[75] M. Hayashi, Quantum Information Theory (Springer,

Berlin, 2017).

[76] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Phys.

Rev. A 94, 052108 (2016).

[77] J. Suzuki, Entropy 21, 703 (2019).

[78] A. Fujiwara and H. Nagaoka, Phys. Lett. A 201, 119

(1995).

[79] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.200503 for details

on the space of observables for arbitrary rank states (Sec. I),

the conversion to a standard SDP (Sec. II), and more details

about the setup and results for the two metrological

applications (Secs. III–IV), which includes Refs. [80–88].

[80] J. Liu, X. Jing, W. Zhong, and X. Wang, Commun. Theor.

Phys. 61, 45 (2014).

[81] J. Liu, H.-N. Xiong, F. Song, and X. Wang, Physica

(Amsterdam) 410A, 167 (2014).

PHYSICAL REVIEW LETTERS 123, 200503 (2019)

200503-6

https://doi.org/10.2478/qmetro-2013-0003
https://doi.org/10.2478/qmetro-2013-0003
https://doi.org/10.1103/PhysRevA.87.012107
https://doi.org/10.1103/PhysRevA.90.043818
https://doi.org/10.1103/PhysRevLett.115.110401
https://doi.org/10.1103/PhysRevLett.115.110401
https://doi.org/10.1103/PhysRevX.5.031018
https://doi.org/10.1103/PhysRevA.96.042114
https://doi.org/10.1088/2058-9565/aa6fea
https://doi.org/10.1088/2058-9565/aa6fea
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1103/PhysRevA.97.042337
https://doi.org/10.1103/PhysRevLett.121.230801
https://doi.org/10.1103/PhysRevA.98.012114
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevA.97.012101
https://doi.org/10.1103/PhysRevA.100.032104
https://doi.org/10.1103/PhysRevA.100.032104
https://doi.org/10.1103/PhysRevA.99.032122
https://arXiv.org/abs/1906.04123
https://doi.org/10.1038/ncomms4532
https://doi.org/10.1088/2058-9565/aa9212
https://doi.org/10.1088/2058-9565/aa9212
https://doi.org/10.1364/OPTICA.5.001171
https://doi.org/10.1103/PhysRevLett.121.250503
https://doi.org/10.1103/PhysRevLett.121.250503
https://doi.org/10.1364/OPTICA.6.000288
https://doi.org/10.1364/OPTICA.6.000288
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1109/TIT.1968.1054108
https://doi.org/10.1016/0047-259X(73)90028-6
https://doi.org/10.1088/1751-8113/49/12/123001
https://doi.org/10.1088/1751-8113/49/12/123001
https://doi.org/10.1038/srep14317
https://doi.org/10.1103/PhysRevA.73.052108
https://doi.org/10.1063/1.2988130
https://doi.org/10.1063/1.2988130
https://doi.org/10.1007/s00220-009-0787-3
https://doi.org/10.1007/s00220-009-0787-3
https://doi.org/10.1214/13-AOS1147
https://doi.org/10.1214/13-AOS1147
https://doi.org/10.1007/s00220-019-03433-4
https://doi.org/10.1007/s00220-019-03433-4
https://doi.org/10.1038/s41467-018-03849-x
https://doi.org/10.1038/s41467-018-03849-x
https://doi.org/10.1088/0305-4470/35/13/307
https://doi.org/10.1063/1.4945086
https://arXiv.org/abs/quant-ph/9711008
https://doi.org/10.1016/j.physleta.2017.06.024
https://doi.org/10.1016/j.physleta.2017.06.024
https://doi.org/10.1103/PhysRevA.97.012106
https://doi.org/10.1103/PhysRevA.97.012106
https://arXiv.org/abs/1901.00896
https://doi.org/10.1103/PhysRevLett.98.190403
https://doi.org/10.1103/PhysRevLett.98.190403
https://doi.org/10.1109/TIT.1973.1055103
https://doi.org/10.1109/TIT.1973.1055103
https://doi.org/10.1007/BF01032091
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.3390/e21070703
https://doi.org/10.1016/0375-9601(95)00269-9
https://doi.org/10.1016/0375-9601(95)00269-9
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.200503
https://doi.org/10.1088/0253-6102/61/1/08
https://doi.org/10.1088/0253-6102/61/1/08
https://doi.org/10.1016/j.physa.2014.05.028
https://doi.org/10.1016/j.physa.2014.05.028


[82] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information, 10th ed. (Cambridge University

Press, Cambridge, England, 2010).

[83] N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and F.

Nori, Phys. Rev. A 98, 063815 (2018).

[84] S. Diamond and S. Boyd, J. Mach. Learn. Res. 17, 1 (2016).

[85] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd,

J. Control Decis. 5, 42 (2018).

[86] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, SCS:

Splitting conic solver, Version 2.1.0 (2017), https://github

.com/cvxgrp/scs.

[87] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, J. Optim.

Theory Appl. 169, 1042 (2016).

[88] A. Fujiwara and H. Nagaoka, J. Math. Phys. 40, 4227

(1999).

[89] R. A. Bertlmann and P. Krammer, J. Phys. A 41, 235303

(2008).

[90] Y. Watanabe, Formulation of Uncertainty Relation between

Error and Disturbance in Quantum Measurement by Using

Quantum Estimation Theory, Springer Theses (Springer

Japan, Tokyo, 2014).

[91] F. Zhang, in The Schur Complement and Its Applications,

Numerical Methods and Algorithms Vol. 4 (Springer-

Verlag, New York, 2005).

[92] S. Boyd and L. Vandenberghe, Convex Optimization

(Cambridge University Press, Cambridge, England, 2004).

[93] M. Grant and S. Boyd, CVX: MATLAB Software for

Disciplined Convex Programming, Version 2.1, (2019),

http://cvxr.com/cvx.

[94] J. Löfberg, in 2004 IEEE International Conference on

Robotics and Automation (IEEE, Taipei, Taiwan, 2004),

pp. 284–289, http://ieeexplore.ieee.org/document/1393890/.

[95] P. J. D. Crowley, A. Datta, M. Barbieri, and I. A. Walmsley,

Phys. Rev. A 89, 023845 (2014).

[96] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355

(1993).

[97] R. Demkowicz-Dobrzański, U. Dorner, B. J. Smith, J. S.

Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley,

Phys. Rev. A 80, 013825 (2009).

[98] A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J.

Smith, and I. A. Walmsley, Phys. Rev. A 83, 063836

(2011).

PHYSICAL REVIEW LETTERS 123, 200503 (2019)

200503-7

https://doi.org/10.1103/PhysRevA.98.063815
https://doi.org/10.1080/23307706.2017.1397554
https://github.com/cvxgrp/scs
https://github.com/cvxgrp/scs
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1063/1.532962
https://doi.org/10.1063/1.532962
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.1088/1751-8113/41/23/235303
http://cvxr.com/cvx
http://cvxr.com/cvx
http://ieeexplore.ieee.org/document/1393890/
http://ieeexplore.ieee.org/document/1393890/
http://ieeexplore.ieee.org/document/1393890/
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevA.80.013825
https://doi.org/10.1103/PhysRevA.83.063836
https://doi.org/10.1103/PhysRevA.83.063836

