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Evaluation of detection probabilities 
at the water-filtering and initial 
PCR steps in environmental DNA 
metabarcoding using a multispecies 
site occupancy model
Hideyuki Doi  1, Keiichi Fukaya 2,3, Shin-ichiro Oka 4, Keiichi Sato4, Michio Kondoh5,6 & 

Masaki Miya  7

Environmental DNA (eDNA) metabarcoding is a recently developed method to assess biodiversity based 
on a high-throughput parallel DNA sequencing applied to DNA present in the ecosystem. Although 
eDNA metabarcoding enables a rapid assessment of biodiversity, it is prone to species detection errors 
that may occur at sequential steps in field sampling, laboratory experiments, and bioinformatics. 
In this study, we illustrate how the error rates in the eDNA metabarcoding-based species detection 
can be accounted for by applying the multispecies occupancy modelling framework. We report a case 
study with the eDNA sample from an aquarium tank in which the detection probabilities of species 
in the two major steps of eDNA metabarcoding, filtration and PCR, across a range of PCR annealing 
temperatures, were examined. We also show that the results can be used to examine the efficiency of 
species detection under a given experimental design and setting, in terms of the efficiency of species 
detection, highlighting the usefulness of the multispecies site occupancy modelling framework to study 
the optimum conditions for molecular experiments.

Environmental DNA (eDNA) methods have been increasingly considered as useful tools in the investiga-
tion of the distribution of aquatic and terrestrial macroorganisms inhabiting various habitats1–14. Recently, 
high-throughput parallel DNA sequencing (HTS) has been applied in eDNA studies1,3,14–21 for simultaneous 
detection of multiple species from eDNA. �is technique is called eDNA metabarcoding and is a rapid method 
of biodiversity assessment with DNA-based identi�cation and HTS14,16,17. For example, Miya et al.16 developed 
MiFish primers (MiFish-U/E) to amplify a hypervariable region of the mitochondrial 12S rRNA gene, and tested 
the versatility of these PCR primers using eDNA from four aquaria with known species composition and that of 
natural seawater. �ey successfully detected eDNA from 232 �sh species distributed across 70 families and 152 
genera from the aquaria and the �eld, with a higher detection rate for species (>93%) in the aquaria. Such an 
eDNA metabarcoding technique has great potential as a useful tool for biodiversity assessment.

Species-detection via eDNA metabarcoding involves multiple sequential steps, such as �eld sampling, labora-
tory experiments, and bioinformatics14,22, each of which may be prone to species detection errors; false-negative 
and false-positive errors. False negative errors, failures to detect species that actually are present in the habitat, 
prevail in ecological �eld surveys23. Although the eDNA methodology may accomplish e�cient detection of 
species24, it can still be subject to false negatives25,24–27. False negatives may occur even in laboratory experiments 
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(e.g., PCR dropout)27. False positives also may occur even in laboratory experiments (e.g., DNA contamination 
from the environments and the other samples)24. �us, the eDNA sampling approach can also su�er from false 
positive errors, because of contamination and/or errors in PCR or sequencing, which may result in the spurious 
detection of species22,24,28,29. It is clear that both false-positive and false-negative errors in the eDNA survey are 
critical, while the error rates have not yet been well investigated. Until now, ad hoc procedures have been pro-
posed, such as not considering species detected in just a few PCR replicates. Despite these methodological issues, 
which are obviously critical to the assessment of biodiversity based on eDNA metabarcoding, they have not yet 
been well investigated, especially for laboratory experiments. Knowledge about detection error rates will contrib-
ute to determining an e�cient sampling strategy and optimising the design and settings for laboratory experi-
ments25,26. We should note that we do not evaluate false-positive rate in this study, due to the limited information 
for the modelling together with false-negative evaluation. We here focused on the false-negative rate in species 
detection by eDNA metabarcoding.

Rate of errors in species detection can be estimated within the site occupancy modelling framework. A site 
occupancy model30 is a hierarchical model that explains replicated detection/non-detection data of species across 
multiple sampling units (i.e., sites). It models species detection data conditional on the latent state of site occu-
pancy (i.e., the existence of species within the site), thereby accounting for detection errors. Although the site 
occupancy model was originally developed to account for imperfect detection of species within a ‘site’ (e.g., a 
pond), it can also be applied to account for detection errors in laboratory experiments31 and has been proven to 
be useful for ecological surveys using eDNA25,26,29. An extension of the site occupancy model to the multispecies 
context, known as the multispecies site occupancy model32,33, can account for variation in detection probabilities 
among species. It therefore may have the potential to provide a powerful modelling framework for biodiversity 
assessments based on eDNA metabarcoding.

�e objective of this study was to illustrate how the multispecies occupancy modelling framework can be used 
to evaluate probabilities of species detection in di�erent steps of laboratory experiments for eDNA metabarcod-
ing. As a case study, we present the results of eDNA metabarcoding for the �sh community in a large aquarium 
with known �sh species, where replicates were taken in the �ltration and the PCR (1st PCR for library prepara-
tion) steps of the laboratory experiment. We estimated species-speci�c detection probabilities at these experi-
mental steps by �tting a multispecies site occupancy model to the data, in which the dependence of the detection 
probability on the PCR annealing temperature was accounted for. In fact, the e�ect of the PCR annealing tem-
perature has been shown to a�ect DNA metabarcoding and the use of inappropriate PCR conditions can also 
a�ect the �nal taxonomic assignment in metazoan metabarcoding analyses34. Given these estimates of detection 
probabilities, we show that the e�ectiveness of an experimental design and setting can be evaluated in terms of 
the e�ciency of species detection.

Methods
Brief description of sampling and experimental design. We developed an experimental design in 
which replicates were taken hierarchically to estimate detection probabilities at two experimental steps: (1) water 
�ltration and (2) 1st PCR (Fig. 1). In addition, di�erences in the annealing temperatures at the 1st PCR were also 
considered (14 levels of temperature, 54–67 °C with one-degree intervals), totalling 672 PCR libraries (=8 �lter 
replicates × 6 PCR replicates (including one non-template PCR blank) × 14 temperature levels) (Fig. 1). Here, 
we brie�y describe the sampling and experimental procedure (see Appendix S1 for more details). First, we col-
lected approximately 10 L of surface seawater from the Kuroshio tank (water volume = 7,500 m3) in the Okinawa 
Churaumi Aquarium, Okinawa, Japan (26º41′39″N, 127º52′41″E), where Miya et al.16 performed their eDNA 
metabarcoding study (see Appendix S1). �e tank harbours taxonomically diverse �sh species (ca. 63 species in 
the tank) from cartilaginous �sh (sharks and rays) to bony �sh. �e sampled water was �ltered through a 47-mm 
GF/F glass-�bre �lter. In total, eight �lter replicates were taken. Two litres of Milli-Q water was used as the equip-
ment control to monitor contamination during �ltering and subsequent DNA extraction. In the laboratory, we 
extracted the DNA from the �lters using DNeasy blood and tissue kits (see Appendix S1). For MiSeq sequencing, 
we employed a two-step tailed PCR approach to construct the paired-end libraries; the 1st PCR was performed 
using two universal primer pairs (MiFish-U/E)16. �en, the 2nd PCR step and the sequence library preparation 
were performed (see Appendix S1). A�er sequencing, the Miseq-output data were prepared according to the bio-
informatics pipeline process of Miya et al.16 (see Appendix S1 for the details and the so�ware). �ose sequences 
represented by >1 identical read and the remaining under-represented sequences (with <2 identical reads) were 
subjected to pairwise alignment. If the latter sequences observed from <2 reads showed ≥99% identity with one 
of the former reads, they were operationally considered identical (because of sequencing or PCR errors and/or 
actual nucleotide variations in the populations) and they were added to the >2 reads (see Appendix S1 for the 
details). All sequence data are available from the DDBJ/EMBL/NCBI Sequence Read Archives under the acces-
sion numbers DRA005190 and 005191.
Data analysis. We developed a hierarchical model that could estimate the error rate for false negative detec-
tion of species that occurs at the �ltration and 1st PCR steps. With the estimates of these error rates, we then 
considered the e�ciency of some speci�c experimental designs and settings for detecting species eDNA in the 
sampled water. �e following analysis was applied to data for �sh species that were actually present in the aquar-
ium; we omitted data for �sh species that were absent from the tank to eliminate obvious false positive errors 
from the data. We could easily identify the false positives because the 12S rDNA sequences of all �sh species in 
the aquarium were included in the database. For each species and sample, the MiSeq read data were reduced to 
detection/non-detection data. Species were treated as detected from a sample when the number of MiSeq reads 
of the sample was greater than that of the corresponding negative control. In this study, according to negative 
control, we �xed the detection threshold criteria. Also, we preliminary con�rmed the same results from the data 
without using threshold criteria of negative control. �is issue is discussed in many studies but there is little 
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consensus about what criteria constitute a species detection. �us, the setting of the detection threshold criteria 
would a�ect the results as suggested in the other study35. Because the number of reads was extremely low in a total 
of seven PCR replicates, probably due to a failure in the library preparation, data from these replicates were omit-
ted. We analysed detection/non-detection observations of the 62 �sh species detected by the MiFish sequencing 
(Table S1).

In the following analyses, false negative errors in species detection were formally accounted for, whereas false 
positive errors were not. Although analytical approaches that account for false positive errors may be applied in 
eDNA surveys22,24,28,29, the existence of false-positive errors complicates the problem of occupancy estimation 
considerably36,37, especially in a multispecies context. We note, however, that the unwanted e�ects of ignoring 
false positive errors should have been minimised in our study, because sampling from the aquarium enabled us to 
remove species that were absent from the analysed data, although we acknowledge that some unidenti�able false 
positives (e.g., cross-contamination) may yet remain in them.

A multispecies site occupancy model32,33 was �tted to the data to account for the false-negative detection error 
occurring at the two stages of the experiment (i.e., �ltration and 1st PCR). Our model was a variant of the model 
described in Dorazio and Royle32, in which species-speci�c detection probabilities were estimated in accordance 
with their community-level distribution.

�e term xijk denotes the number of detections of species i summed over Mijk PCR replicates of temperature 
level k in �lter j (for i = 1, ..., 62, j = 1, ..., 8, and k = 1, ..., 14, respectively). We considered the occurrence of eDNA 
of species i on �lter j, which we denote by zij, and modelled the data generating process as follows:

x M zBinomial ( , ) (1)ijk ijk ik ij~ θ

~ ψz Bernoulli ( ) (2)ij ij

where θik and ψij are the conditional detection probabilities for species i for the 1st PCR of temperature level k, and 
the occurrence probability of species i for �lter j, respectively. Note that in our formulation, �lters and 1st PCR 
replicates correspond to ‘sites’ and ‘surveys’ in a conventional occupancy model, respectively. �e occurrence of 
each species within the tank was not modelled here, because inference was restricted to species that were present 
in the tank.

We let g(i) be a function indicating the group of each species: g(i) = 1 if species i is a cartilaginous �sh and 
g(i) = 2 if species i is a bony �sh. Variation in occurrence/detection probability was decomposed as follows:

logit (3)ij g i g i j i ij( ) ( )
(f) (s) (fs)ψ = α + α + α + α

Figure 1. Sampling design for this study.
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θ = β + β + β + βlogit (4)ik g i g i k i ik( ) ( )
(t) (s) (ts)

Here, αg, αgj
(f), i

(s)α  and ij
(fs)α  are the group-speci�c intercepts (for g = 1, 2) of the �ltration-level occurrence proba-

bility (on the logit scale), group-specific among-filter variation, species-specific variation, and interaction 
between �lter and species, respectively. βg, βgk

(t), βi
(s), and βik

(ts) are the group-speci�c intercept of the 1st PCR-level 
detection probability (on the logit scale), group-speci�c among-temperature variation, species-speci�c variation, 
and interaction between temperature and species, respectively. It was assumed that among-species variation in 
the error rate and interaction terms varied randomly, which respectively comes from a community-level prior 
normal distribution with mean 0:

σα ~ Normal(0, ) (5)i g i
(s)

( )
(s)2

~ σα Normal(0, ) (6)ij g i
(fs)

( )
(fs)2

τβ Normal(0, ) (7)i g i
(s)

( )
(s)2~

~ τβ Normal(0, ) (8)ik g i
(ts)

( )
(ts)2

where σg
(s)2, σg

(fs)2, g
(s)2τ , and g

(ts)2τ  are the group-speci�c variance parameters for each random e�ect.
�e model was �tted in a Bayesian inference framework where vague prior distributions were speci�ed for the 

unknown �xed parameters (i.e., αg, gj
(f)α , βg, βgk

(t), σg
(s)2, σg

(fs)2, g
(s)2τ , and τg

(ts)2). We conducted the Markov chain 
Monte Carlo (MCMC) method in JAGS so�ware version 4.2.038 to obtain samples from the posterior distribution 
of parameters. Posterior samples were obtained from three independent chains of 100,000 iterations a�er a 
burn-in of 100,000 thinning at intervals of 100. �e convergence of MCMC was a�rmed by determining if the R̂ 
statistic for each parameter of interest was less than 1.1.

Under the assumption that the statistical distributions of occurrence/detection probability were the same as 
in this experiment, an estimate for the proportion of the species detected for a given experimental design and 
settings could be derived for each group based on the parameter estimates of the model. We denote the expected 
proportion of the speies in group g detected in an experimental design with annealing temperature k, J �lter repli-
cates and M PCR replicates by E(g, k, J, M), which we termed the species detection e�ciency. In Appendix S2, the 
derivation of this quantity is described in more detail.

Results
MiSeq sequencing. A MiSeq paired-end sequencing (2 × 150 bp) for the 672 PCR libraries yielded a total of 
10,073,869 reads with 92.1% base-calls having Phred quality scores (Q) of ≥30.0 (excluding 8,617,531 reads from 
the PhiX spike-in control). �is run was highly successful with the quality scores speci�ed by Illumina ≥80% 
bases higher than Q30 at 2 × 150 bp (Illumina Publication No. 770-2011-001 as of May 27, 2014). A�er demul-
tiplexing and pre-processing of the raw sequence data from MiSeq, the outputs were subjected to the BLAST 
searches for taxonomic assignment. In total, 6,634,131 reads were assigned to �sh species with ≥97% identity 
to reference sequences in the custom database. Of these, 6,416,876 reads (96.7%) are identi�ed as those �shes 
contained in the tank and the remaining 217,255 reads (3.3%) are derived from species absent from the tank. 
�e rate of detection and the average of the log of the number of sequence reads is summarised in Figs S1 and S2, 
respectively.

Occurrence/detection probabilities. At the �ltration level, the occurrence rate of species was uniformly 
very high. Most of the posterior medians of ψ were close to 1 (Fig. 2A), indicating that eDNA was successfully 
captured on each �lter and very few species were missed at this level of the procedure. Re�ecting this uniformly 
high level of the occurrence rate, signi�cant variation was not found in the �lter (αgj

(f)), species ( i
(s)α ), or their 

interaction (α ij
(fs)) e�ects (Figs 2B,C, S3). We also found no obvious association between the species e�ect for the 

�ltration-level occurrence probability ( i
(s)α ) and the logarithms of the average number of reads (Fig. 2D), suggest-

ing that, at �ltration, eDNA was e�ciently captured regardless of its concentration.
At the 1st PCR step, in contrast to the �ltration step, the detection rate varied largely among species and tem-

perature (Fig. 2E–G). Changes in detection probability along annealing temperatures were apparently di�erent 
between two groups, bony and cartilaginous �shes. Estimates of temperature e�ects on the 1st PCR level detec-
tion probability (βgk

(t)) suggested that the detection rate of bony �sh was consistently higher at temperature above 
57 °C, whereas that of cartilaginous �sh was maximised at 58–59 °C (Fig. 2F). In addition, the detection probabil-
ity varied considerably among species (Figs 2G, S4). �ese results suggested that the detection probability at this 
step was associated with the concentration of eDNA in the samples.

Species detection efficiency. We evaluated the species detection e�ciency with the parameter estimates 
for annealing temperatures of 58, 59 and 60 °C, �lter replicates of 2, 4, 6 and 8, and PCR replicates of up to 16, 
which is shown in Fig. 3. We found that, at these levels of annealing temperatures, species of cartilaginous �sh 
were captured more e�ciently than those of bony �sh. We noted that re�ecting the high occurrence probability at 
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the �ltration level, the species detection e�ciency depended entirely on the total number of the 1st PCR replicates 
in the experiment; hence, for a given set of g, k, J, and M, E(g, k, 0.5 J, 2 M) was virtually identical to E(g, k, J, M).

Discussion
�e multispecies occupancy modelling framework we employed enabled us to successfully quantify the prob-
abilities of detecting DNA in a tank of aquarium at multiple experimental steps of the eDNA metabarcoding. 
Our example analysis showed consistently high occurrence rates at the �ltration step, whereas relatively low and 
variable detection rates were seen in the 1st PCR step. A uniformly high occurrence probability at the �ltration 
step suggests that a small number of �lter replicates were su�cient to capture the eDNA of most species that 
were contained in the sampled water. On the other hand, low and variable detection probabilities at the 1st PCR 
step imply that increasing the number of PCR replicates would have improved the e�ciency of species detection. 
�is has been shown quantitatively by the species detection e�ciency, which can be obtained with the estimated 
parameter values.

�e results highlight the advantage of using the multispecies occupancy modelling framework for eDNA 
metabarcoding, which can help to determine the number of replicates at di�erent experimental steps, as well as 
estimate the e�ciency of species detection in a given experiment. In this case, we performed an experiment in an 
aquarium tank, thus, provided an practical example for the modelling and experimental frameworks to evaluate 
the e�ciency of species detection in the eDNA metabarcoding.

Figure 2. Result of the model �tting. (A) Filter-level occurrence probabilities; (B) �lter replication e�ects on 
the occurrence probability; (C) species e�ects on the occurrence probability; (D) the relationship between the 
species e�ect on the occurrence probability and the log of reads; (E) 1st PCR level detection probabilities; (F) 
PCR annealing temperature e�ects on the detection probability; (G) species e�ects on the detection probability. 
Filled circles and error bars indicate medians and 95% credible intervals of the posterior distribution. For the 
species ID, refer to Appendix Table S1.
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PCR annealing temperature had signi�cant e�ects on the detection rates. �e DNA from two �sh groups, 
bony and cartilaginous �shes, responded di�erently to PCR annealing temperature. For bony �sh, the detection 
rate was consistently high at temperatures higher than 57 °C, whereas for cartilaginous �sh, the detection rate had 
a positive hump-shaped relationship with PCR annealing temperature, which was maximised at 58–59 °C. �is 
di�erence could have been caused by the di�erent universal primers for bony and cartilaginous �shes because 
we used two universal primers (MiFish-U and E)16 in this study. From the results of Miya et al.16, MiFish-U can 
amplify DNA of most of bony �sh species, and MiFish-E can amplify that of cartilaginous �sh species. �e prim-
ers, MiFish-U and E, have the same base length, but the Tm (melting temperature for PCR) of the primers were 
di�erent; Tm of MiFish-U-F/R were 56.6 °C and 56.5 °C, respectively, and Tm of MiFish-E-F/R were 54.1 °C and 
55.2 °C, respectively. �e di�erence in Tm, as well as that in the primer sequence, such as G/C content, might have 
in�uenced the responses observed for PCR annealing temperature. To maximise species detection using eDNA 
metabarcoding by MiFish primers, the suitable PCR temperature was 58–59 °C for both bony and cartilaginous 
�shes. �e suitable temperature for PCR was 3–4 °C higher than the Tm values.

�e design of perfectly matching universal primers for DNA metabarcoding can strongly in�uence sequencing 
performance39–41. �us, the PCR bias associated with preferential ampli�cation caused by primer mismatching 
is important for amplicon sequencing40,41. �e MiFish universal primer almost perfectly matched the �sh species 
in this study16. Other types of universal primers with greater mismatching for the targeted community might 
reduce the detection rate for the species and number of detected species by eDNA metabarcoding. In fact, using 
this method with MiFish primers, and sampling with four replicates produced higher detection rates than those 
obtained by Ficetola et al.24. In the current studies, using detection of the DNA reads by HTS, eDNA metabar-
coding provide only qualitative data regarding the species16,42. However, some quantitative methods for metabar-
coding using amplicon HTS have recently been developed43,44. For such quantitative evaluation, the PCR bias will 
be a critical issue43,44, because variation in PCR e�ciency among species will in�uence the number of sequence 
reads by HTS. eDNA metabarcoding currently uses amplicon sequencing with universal PCR primers. However, 
HTS techniques have recently been developed for non-amplicon sequencing, for example, shotgun sequencing 
for HTS has been recently performed for metagenomes1,45. �ese new HTS technologies without PCR for library 
preparation could decrease the variability in the replicates for sequencing and increase the detection rate of spe-
cies because the e�ect of PCR replication was relatively high in the detection rate for eDNA metabarcoding.

Our analysis showed consistently high detection rates at the �ltration step, whereas relatively low and variable 
detection rates in the 1st PCR step. Our general recommendation is, therefore, to favour increasing the number 
of PCR replicates rather than �lter replicates if the higher detection rates at the �ltration step than the 1st PCR 
step. From our preliminary results in an aquarium, we encourage further research to quantify detection proba-
bilities of eDNA metabarcoding. Although our results provided a useful guide for the allocation for replications 
in an eDNA metabarcoding analysis, it might not be quantitatively informative for other metabarcoding studies 

Figure 3. Species detection e�ciency (E). Solid lines and coloured bands indicate medians and 95% credible 
intervals of the posterior distribution.
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because of di�erences in �eld sampling conditions and experimental settings, which could result in di�erences in 
the detection probabilities at the experimental steps we examined.

Information on the probabilities of detecting species is critical to sampling and estimating biodiversity. �e 
lack of such information can make a study more costly and time-consuming, while being less e�cient. Using 
the our model framework, future researchers can quantify detection probabilities in eDNA metabarcoding. �e 
di�erences in �eld sampling conditions and experimental settings may result in di�erences in the probabilities 
of detecting species eDNA. For example, detection probabilities could be di�erent depending on the underlying 
population density. �ey may also be di�erent if other universal primers for eDNA metabarcoding, such as eco-
Primer46 and Folmer’s COI primers47, were used. Other PCR conditions, including the PCR solution, number 
of cycles, and methods, might also in�uence the detection rate in the PCR step40. Adopting the multispecies 
occupancy modelling approach will be helpful to �nd an optimal sampling and experimental design for eDNA 
metabarcoding. Although the experimental and analytical approach we employed required the preliminary exclu-
sion of false positive reads from the analysis because the hierarchical model we described only accounted for the 
false negative detection error, it would be applicable to eDNA metabarcoding data collected from the �eld, when 
a catalogue of species is available in the area where eDNA sampling was conducted.

Data Availability
Sequencing data: All sequence data are available from the DDBJ/EMBL/NCBI Sequence Read Archives under the 
accession numbers DRA005190 and 005191.
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