Exploring High Performance Distributed File Storage
Using LDPC Codes

Benjamin Gaidio? , Birger Koblitz* , Nuno Santos™

2CERN, Geneva, Switzerland

Abstract

We explore the feasibility of implementing a reliable, high performance, distdziteage
system on a commodity computing cluster. Files are distributed across sto@gggusing
erasure coding with small Low-Density Parity-Check (LDPC) codes, vpiovide high-
reliability with small storage and performance overhead. We presemtrpefce measure-
ments done on a prototype system comprising 50 nodes, which are selfsegjaising a
peer-to-peer overlay.

Key words: Distributed File Storage, Low Density Parity Check (LDPC) Codes,
High-availability, High-performance

1 Introduction

With the growing popularity of Grid and cluster computingngputer clusters built
out of cheap commaodity computers are becoming commonplehée their CPU
power is readily made available through batch or grid comggystems, the often
substantial amount of disk space on the computer nodes &lyisiwt made avail-
able for mid or long term storage. In this paper we investigedw to use this idle
storage for high performance and reliable file storageetagymainly at workloads
where files are written once and read often.

Erasure coding has been proposed [1,2] as an alternatieplioation for reliable
storage of files using unreliable nodes. It consists oftamijtthe original file inn
data blocks plusn coding blocks of equal size, such that the original file can be

* Corresponding author. Tel.: +41 22 76 75710, E-mail address: ramtos@cern.ch
Email addresseshenj ami n. gai di oz@er n. ch (Benjamin Gaidioz),

bi rger. kobl i t z@er n. ch (Birger Koblitz),nuno. sant os@er n. ch (Nuno

Santos).

Preprint submitted to Elsevier 4 January 2007

reconstructed from subsets of the blocks. Compared to egglic erasure coding
has a smaller space overhead for similar levels of avaitaldiowever, in practice,
most of the storage systems used on Local Area Networks releplication to
ensure reliability. The reason is that traditional erasar@ing like Reed-Solomon
codes [3] demand a high computational effort, which growadyatically withn
andm, to reassemble the original data out of anglata or coding blocks.

Low-Density Parity-Check codes (LDPC) [4] provide a soluttonthis problem
because they allow to reconstruct the original data usitagively few and cheap
XOR operations. They do not, however, code the data opyn{adl contrast to
Reed-Solomon codes) but requife blocks to reconstruct the stored file, where
f > 1, while Reed-Solomon codes require onlyplocks. The properties of LDPC
codes are well understood in the asymptotica 6> oo wheref — 1, but little
is known about how to construct smaller codesrt < 1000). The discovery of
efficient algorithms for creating large LDPC codes & 10000) with very fast
encoding and decoding [5] has lead to a surge in the intemet$teise codes, in
particular for the resilient storage of files on Grid and peepeer networks. In
this scenario a file is decomposed into many-m large) blocks which are stored
in a distributed manner on hosts connected by a Wide Area dikt(WAN) [6].

The paper is organised as follows. In Section 3.2, we comparavailability pro-
vided by LDPC codes, Reed-Solomon codes and replicationxXplaia why small
LDPC codes#, m = 10) fit better the criteria needed for the implementation of
a distributed storage system in a commodity computing efu$hese small codes
cannot be constructed with standard techniques. We threrpfesent a way of con-
structing graphs with good guarantees on their redundasiog Wonte Carlo tech-
niques in Section 2. In Section 4, we describe the implentientaf a file storage
system based on small LDPC codes. Performance measureanemgsesented in
Section 5. The remainder of the paper is a discussion of theeimentation and the
results obtained so far including references to relatek®ection 6) and finally
conclusions and a preview of our ongoing and future work tiSe@).

2 LDPC Codes

In the following we will give a brief overview of LDPC codegyfa full introduction
see e.g. [7]. An example of a graph describing a simple LDPdg& ¢® shown in
Fig. 1. Fromn = 3 data wordsl, d,, d3 (bits in the simplest case); = 2 coding
wordsc;, ¢, are calculated byoring the data words. For exampte = d;xords.
Encoding the redundant information in the coding words isedio a time growing
linearly with the number of edges in the graph. The data addthgovords are then
assembled into data and coding blocks, which can be stoeedistributed manner.

The original information of a file can be reconstructed digeitom the data blocks

Fig. 1. An example of a systematic graph with= 3 andm = 2.

by simply concatenating them. This will be possible in thganty of cases on
LANSs, which are normally relatively reliable. If data blaclare unavailable then
they can be reconstructed from coding blocks using theviatig algorithm: if
for a known coding block all but one of the data blocks from athit has been
calculated are known, then the words in that unknown datekdoe the exclusive
or of the corresponding words in the coding block and the kndata blocks. By
applying this algorithm recursively to the downloaded amstructed blocks, the
original data can be reconstructed in linear time, if a sigffitnumber of data and
coding blocks is available.

The amount of information encoded using an LDPC graph isdteR = n/(n +

m). Since LDPC codes do not encode optimally, when randomlyntteading
blocks more tham blocks are needed to reconstruct the original file. The over-
head factorf is defined by the average numbgn of blocks which need to be
downloaded to reconstruct the file, wheie- 1. In the limit of very large ¢, m —

o0), LDPC codes become optimaf (— 1), for small and medium sized codes
(n, m < 10000) the overhead is typically in the order of 10%, dependingd8].

2.1 Generating Efficient Codes

The construction of very smalh(€ {2,3} andm € {3,4,5}) optimal codes has
been recently done [9] using exhaustive enumeration ofhallpossible graphs.
However, such techniques are not feasible for generatiggid@odes, like the ones
we are interested in using. The alternative is to use MontéoGachniques to

construct and evaluate these graphs [8].

Using such a Monte Carlo technique we created graphs randimmby fixed n
andm and a probabilityp for a right-hand node to be connected to a given left-
hand node. We usel4 < p < 0.6 depending om,m based on the findings in
[9]. Instead of evaluating the average overhead factor bypfiag the necessary
overhead for many different downloading sequences of Isloale computef,,,..

Overview of R=1/2 LDPC codes

fraod)
1.8 F fgng —_—
foubiisne(n) -

Overhead Factor f
=
kN

10 12 14 16

Fig. 2. Average overheafl(n) of best generated codes compared to the overhead of pub-
lished codes,ublished (1) (taken from [8,9]) fork = 1/2. In addition the worst-case over-
head factorf,,,.x of the best generated graphs is shown.

for the given graph. Calculating the average overhead wsdimples in average

fn
E:sl:[i Q)

evaluations whether with the given set of blocks the origdesta can be recon-
structed. The resulting error ghis f//s. Computingf,,.. requires at most

n+m—1
E= 1] i (2)

1= fmaxn

reconstruction tries wher®’ < E for small graphsi{ < s). Since in practice most
generated graphs will be unable to cope with even a very smaiber of missing
coding blocks and,,.. is found as soon as a single download sequence fails, the
average number of tries is closen¢n — 1) (most graphs failing to compensate
for 2 missing data blocks in all cases). Fig. 2 shows that #gréopmance of the
graphs generated and evaluated in this manneRfer 1/2 can compete with the
best known graphs for < 15.

3 LDPC Codes For Storage Applications

In this section we discuss the suitability of LDPC codes forage applications.

3.1 Optimaln andm Values for LAN Storage

Erasure code techniques can be used with very differenesdtrn andm, pro-
viding different levels of availability and of system corapity. Larger number of
blocks improve the chances of recovering a file in the preseféailures, but in-
crease the overhead to reassemble the file, the storagesadeathd the complexity
of the system.

Most storage systems designed for WANs assume a large nwhbery unreli-
able nodes, like personal computers connected througmteenket. Under these
conditions, it will be common for a significant fraction oktlfile chunks to be un-
available and, therefore, good file availability can onlyalskieved with high levels
of redundancy. For LDPC or Reed-Solomon codes, this meaitSrgpthe file in
many blocks, possibly hundreds. Another argument for lgaaitarge number of
blocks is that it allows to better select blocks for downiogdbased on latency or
available bandwidth, which can vary widely on a WAN. More ides equates to
potentially better performance.

On a LAN the picture is very different. The node availabilgytypically much bet-
ter than on a WAN, making it possible to achieve high-levéR®availability with
lower redundancy levels. In addition, the latency and badtihnware typically ho-
mogeneous, which removes the need for selecting "nearlmgkilfor optimising
file download, as all blocks are equally near. In fact, in tbenmal case clients will
try to reconstruct the file by retrieving data blocks, which need only to be con-
catenated, without requiring any expensive decoding.ithd&se, having a smatl

is advantageous as it simplifies the management of the symterminimizes the
overhead to reconstruct the file, as fewer storage nodestodadcontacted.

For our purposes we chosentom = 10, as this provides a good balance between
file availability and storage/performance overhead.

3.2 Availability Analysis - LDPC vs Reed-Solomon vs Refpdoa

Replication, Reed-Solomon codes and LDPC codes are thresidqeels that can

be used to achieve high-availability in storage systemghimsection we evaluate
the availability provided by each of them and the correspandost in terms of

storage overhead.

For each redundancy mechanisms considered here, theldtitgilaf a file can be
expressed by a formula that takes as input the availabifityh@ storage node
plus some parameters specific to the coding mechanism. A conparameter to
all these mechanisms is the stretch facfoe= (n + m)/n, which indicates the
storage overhead.

0.1 RN

0.01

0.001 |

0.0001
1e-05 |

Failure Rate

1e-06 LDPC [i£0,5 ™
le.07 | LOPCHE098
O T
Lo00 LN Rep, 4=0.99 = -

o o5 1 15 2 25 3

Storage Overhead S

Fig. 3. The average failure rate of files stored redundantly using réplicand using LDPC
codes versus a given storage overhead. We choese for the LDPC codes and assume
an overhead factor of = 1.1.

The availability of a replicated file is provided by the follmg equation:

A 8) =3 (F) - ©)

=1

For a file encoded using Reed-Solomon codes, the equation is:

n+m

n—+m i n+m—1
Ay = 3 (") = et (4)
The rate of the codes is
R—t__ " (5)

S n+m

LDPC codes do not code optimally and therefore introducevanhead factorf.

This means they are only able to reconstruct the originaffde in averagefn
chunks, wheref > 1. Concerning the overhead, LDPC codes are comparable to
normal erasure codes with

n=fn and m'=(1-fn+m . (6)

An upper bound for the availability of an LDPC encoded file bangiven by (4)
using fmax, the maximum overhead of a graph (that is the original databe=
reconstructed fromany f,,.xn blocks).

Fig. 3 shows a comparison of the failure réte- A) of files stored using replication
and stored using LDPC for three different node availabgitof,, = 0.5, 0.95 and
0.99. For LDPC, we use = 8 and an assumed overhead factof et 1.1. For low

R=2/3 ——
0.01 R=1/2 o

0.0001

le-06

Failure Rate

1le-08

le-10

le-12
0 2 4 6 8 10 12 14 16 18 20

n

Fig. 4. Failure Rate as a function of the numbeof data chunks for different code rates.
We assume a node availability pf= 0.95.

node availability z = 0.5), LDPC codes with such small number of coding blocks
perform worse than file replication, at least for small sgeraverhead factors of
S < 1.5. However for a good availability = 0.95 (an estimate for the availability
of nodes in a cluster of custom hardware) or e0€)9 small LDPC codes provide
a better file availability for smaller overheads. This metag small LDPC codes
have the potential to provide small storage overhead anellert file availability

on LANs while introducing only a small networking overheacedo the relatively
small number of. parallel downloads.

3.3 Performance of LDPC Codes

In this section, we evaluate the performance of LDPC codeafiffdrent rates in
order to select good values for andn. We then use the solution presented in
Section 2.1 to generate a graph with good properties. Weeingit this graph in
our storage system prototype and evaluate the overheadodlitg with a varying
number of missing data chunks.

Fig. 4 shows the system failure rate provided by four difiéreode rates as a
function of the number of data chunks Rates likel/2 and1/3 provide a low
failure rate at the price of a high storage overhead. Rate2/3 has a low overhead
but a high failure rate. For example, with= 2/3, we neech = 14 andm = 7 for
reaching a failure rate af0—%, while the same availability can be obtained with a
R = 4/7 (which has almost the same storage overhead)avith8 andm = 6. For
our availability goals, raté&? = 4/7 provides a good trade off in storage overhead
and availability. We use = 8 andm = 6.

To generate a good graph for the parameters 8 andm = 6, we ran the graph
generation algorithm presented in Section 2.1. The resulgraph is shown on
Fig. 5. It has the property of tolerating the loss of any thdata chunks, that is, the

Fig. 5. An example of a graph with = 8 andm = 6 which can be reconstructed with any
11 nodes. The average overhead factgtis 1.108.

file can always be reconstructed even if any three data chaneksissing.

Reconstructing a file out of both control and data chunks hagesaverhead be-
cause it requires computations instead of simple conctenaf chunks. We eval-
uated this overhead by decoding files with variable numbemis§ing chunks. Ta-
ble 1 shows the data rates obtained when downloading chtorksseveral servers,
as a function of the number of failing data chunks.

Table 1
Performance of reading a 500 MB file as a function of missing data chunks.

missing chunks time (s) | rate (MB/s)
0 4.79 109.5
1 5.23 100.25
2 5.73 91.5
3 6.47 81.0

The file size is 500 MB. It was encoded using the graph shown @rbi-Since this
graph allows to reconstruct a file with up to three missingnésuout of fourteen,
we vary the number of missing data chunks from zero to three client ran in the
same LAN as the servers. We show here the average of 50 da¥gnloa

There is an obvious cost in decoding missing data chunks focrdrol chunks.
However, the performance is still acceptable, even in thesgvoase of three miss-
ing chunks. Considering that the worse case will not occueroih a LAN, the
overhead in general will be much smaller.

4 A Prototype Implementation

A prototype for the system presented in the article has baefemented. We give
in this section a description of the implementation.

There are two main components in the system: storage semeés client applica-
tions.

Servers The server is run on the storage nodes and is responsibl@$ting file

chunks, distributing them to clients (and also to receiesrthivhen a client stores
a file in the system). We use HTTP both for file transfers anccémtrol mes-
sages.

Clients Client applications link against a C++ client library thatyides access to
the storage system. The library currently provides caltgaoe and retrieve files.
For the file names, we use a flat name space, as we do not intengléanent a
file system interface to the system.

For better fault-tolerance we designed the system to benttadized, using peer-to-
peer techniques for organising the storage nodes. Theseweeal freely available
Distributed Hash Tables (DHT) implementations, but we dediagainst using one
of these since they are all targeted to WANSs. In a LAN the nunabdosts and
the churn rate are typically much lower, which allows difier and more efficient
strategies than the ones used in WANS. For instance, DHTWAMS cannot keep
full routing tables at each node, since the cost of maintginhem on a system
with a large number of very volatile nodes would be excessiaead, they keep
tables with a size around O(log N), which allows routing todo@e in an average
of O(log N) steps. But on a LAN it is feasible to keep full rogitables, thereby
achieving one-hop routing. We considered that an efficieating mechanism is
important enough to justify developing a peer-to-peer layeiailored to a LAN.

In our system, each server is identified by an id obtained Ioypzding a hash on
the name of the host it is running on. This implicitly definesader on servers
and provides a Distributed Hash Table that can be used te Si@chunks.

When a client is started, it needs to update its local list cfthian the system
so that it will be able to get file chunks from them. For bo@tgping, clients are
configured manually with a list of well-known hosts that thmyntact at startup
to obtain an updated list. Clients store their list persitgerso that when they are
restarted they can quickly reestablish contact with engshiosts. The list of hosts
is kept consistent using a peer-to-peer overlay network.

To store a file, the client first splits it into+ m chunks and assigns to each a name
consisting of the original file name plus the index of the dhuhthen computes
the hash of each chunk’s name and stores the chunk on the sérose identi-
fier is closer to the hash. Using a hash function enables chtmke randomly
distributed in the system. If one of the nodes selected t@ st file fails before
receiving the chunk assigned to it, our current implemaémadiscards its chunk,
but proceeds with the write using the other nodes. If the imgsshunks are less
than three, clients will still be able to reconstruct the filem the other chunks.
This is of course not the ideal solution, since it reducesrédaindancy of a file
and, therefore, its availability. This is a limitation ofsigning chunks to nodes in
a static way, which does not reassigning a chunk easily. Asduvork, we would
like to improve our implementation to assign chunks dynathycand to perform
reconstruction of lost chunks when nodes fail.

To download a file, the client computes the hash of each ckumdkmne to deter-
mine the hosts storing each chunk. Initially, it tries to déead only then data
chunks. Unless some nodes are unreachable or some chumict fvand, these
fragments are sufficient to reassemble the file very effiyieas they only have to
be concatenated. In case of failure, the client selecthanchunk for download.
This is done by analysing the graph to find one chunk that magsmthe number
of extra downloads. It is possible that some control chuaksifi which case the
graph may permit to rebuild them with other chunks. If thellatde chunks do not
permit to reconstruct the file, that is, if there are more tthaae missing chunks,
the call fails.

There are many other details about the storage system higkeetonstruction of
lost chunks, load balancing and security, but as this is m®tain focus of the
article we will not discuss them here.

5 Performance

In this section, we show performance measurements obtaitbdur prototype
implementation. The main goal of these measurements isve & idea of the
overall data rate one can achieve with a system like the agsepted here. Deeper
studies regarding availability are ongoing work which wéemd to implement
through simulations instead. This would permit to evaluage robustness of the
system with various failure patterns.

We ran the prototype on two different clusters.

CERN “Ixplus” computing farm is a cluster of about 100 dual Xeon 2.8 GHz
with 2 GB of RAM with a Fast-Ethernet access to the network. \&Wedud0 of
them.

Munster cluster is a set of 50 dual Opteron 2 GHz with 2 GB of RAM. There are
interconnected with a Gigabit network.

Each node is running a storage server. We then store fileg isytem by sending
chunks to servers. When the files have been stored, we staghaah each node.
Clients download all the files one after the other but follogvanrandom order to
avoid a situation where all clients start downloading thaedile simultaneously,

which would skew the tests in an unrealistic way. Each claawnloads all the

required chunks in parallel by opening TCP connections th sacver at the same
time.

Both clusters were being used by other users during the tggtsmany of the

nodes being busy with other computations. This is not a daawlbecause our
system is intended to be ran under such conditions in pectic

10

aggregated rate

400

X
R TN X e
350 Vi LR X
300
@ 250
[a1]
2 200
)
T 150 |
100 L4 ARy
;i "
50 Ixplus ——
Myenstgr """f”"

0

0 5 10 15 20 25 30 35 40 45 50
number of clients

Fig. 6. Aggregated rate obtained on both clusters as a function of the nuhbkent
nodes.

rate per client

80 ‘ ‘ ‘
X Ixplus ——
70 \\X uenster -—x-—-— _|
60
’\g? 50 5
& X
S 40 \\x
= .
T 30 : x
20 > Xt
.
=l N (ionas = VR A -
— R
\‘—N\‘\AO—H\Q‘AQ\Q-H“O—HO\H“_‘_“F]

0

0 5 10 15 20 25 30 35 40 45 50
number of clients

Fig. 7. Rate per node obtained on both clusters as a function of the nufrdliend nodes.

5.1 Measurements

Fig. 6 shows the overall rate measured on both clusters @nd Hie rate per client.

For a large number of hosts, the system hits a limit of 110MBYdxplus and
350MB/s in the Munster cluster. This corresponds very likelyhe bandwidth of
the switch backplane and shows that the use of LDPC codingsbif is not the
bottleneck.

For a low number of hosts, although the rate per node de@e@sen increasing
the number of clients, the loss in performance is relatively compared to the
number of nodes. On Ixplus, the gain in performance per n@deaout 9.78 MB/s.
On Munster’s cluster, the increase in performance per nodbout 50 MB/s.

While performing these measurements, we noticed that asuimber of clients
increases, the increase in the data rate is lower than whatdshe expected con-
sidering the speed of the network.

11

We believe this is a consequence of different load levelbénstorage nodes, with
the more loaded nodes slowing down the others. This happeseube the TCP
connections open by each client are kept synchronized s$dhédile can be re-
assembled in memory, thus avoiding the overhead of writiegridividual chunks
to the local hard drive. If one connection is substantialyver than the others,
the others will stall waiting for the slow connection to raeethe data needed to
reassemble the current part of the file. When the connectinabyfirestart, they
have to go through TCP slow start again, resulting in degrapeeidrmance. If the
slowest connection was able to continue operating at itspeed, this wouldn’t be
a problem as it is this connection that determines the whidedéwnload speed.
But when the fast connections resume the transfer, theyagatime network, forc-
ing the slow connection to drop its speed and go through TGR stiart again. We
are investigating the problem but we consider the numbera/shn this section
promising. In fact, since we intend to implement this steragstem on commaodity
computing clusters, we expect data rate to be affected ntamegdy by other fac-
tors like other tasks running on the nodes, the disk usagenetwork usage. The
most critical goal is to ensure high availability of the seev

6 Related Work

Reed-Solomon codes have been used by several storage syst¢imsor WAN
environments (OceanStore [10]) and for LAN (RepStore [14 BAB [12]). All
these systems use erasure coding only for archival stosagee Reed-Solomon
codes have a significant performance overhead. For frelyusrtessed files and
for supporting updates, these systems rely on replicatidfAB, the storage space
is statically partitioned into pools that are set at creatime to use either repli-
cation or erasure coding as redundancy mechanism. On tke lntind, RepStore
exposes a single storage pool that is divided internally amt hot and cold space;
the hot space uses replication and is intended for frequentiessed data or for
performing updates, while the cold space uses erasuregadith is intended for
rarely-accessed data. The two spaces are managed dyrdgroic&epStore, tak-
ing in consideration the access patterns. Many other liged storage systems
rely solely on replication, including Gnutella [13], CFS [lahd PAST [15] for
WANSs, and Petal [16] and the Google File System (GFS) [17L#&Ns. In con-
trast to these systems, we rely solely on erasure codingibyg u®PC codes. This
is possible due to the LDPC codes’ near real-time decodiag&pvhich allows us
to have space efficiency without sacrificing performance.

LDPC codes have not been explored as much for storage agmplisaThe most
significant example of their use is the Digital Fountain egs{18], where LDPC
codes are used for the dissemination of bulk data to a lang@auof receivers over
Wide Area Networks. There is also some recent work [6] thatiss the suitability
of LDPC codes for Wide Area Network storage. But to our knogkedthere is

12

no previous work on the use of LDPC codes for storage on a LA Network
environment, where the focus is on performance and a snoafige overhead.

The granularity of storage used by most of the systems meedihere are files,
just like in our system. The only exception is FAB which exp@blocks of storage
to provide the abstraction of a virtual hard-drive.

Our system is based on a Peer-to-Peer topology due to itstédetance and scala-
bility properties. For the same reasons, many other st@ggjems use Peer-to-Peer
or decentralised topologies. On the Wide-Area Network semsmples include
Gnutella, CFS, PAST and OceanStore. Gnutella is based onsaructured topol-
ogy, while the other three systems are structured usingadied hash table. For
Local Area Networks, xXFS [19], Petal and FAB are all decdiseed systems that
rely on voting and consensus algorithms for organisingr ttogaology. RepStore
takes an alternative approach by using a distributed hddd ¢gtimized to Local
Area Networks. In traditional DHTs each node maintains qalstial routing tables
with size typically of the order oD (log V), which allows for routing in an average
of O(logN) hops. RepStore, on the other hand, keeps full routing tablesery
node, thereby achieving one-hop routing. This is more Blg&tt LANS, where the
number of nodes rarely exceeds a few thousands and chusraratéow compared
to WANSs. In contrast to these systems, our gossiping prdiscoore light weight
and scalable, having as a drawback the possibility of teargonconsistencies.

7 Conclusion and Future Work

We have presented a novel architecture for a reliable, heglopnance, distributed
storage system on a commodity computing cluster. Storagdesfis based on

erasure coding with small Low-Density Parity-Check (LDPCle®s These codes
provide high reliability with a low storage and performarmesrhead. The main
contributions of this paper are:

e an analytic evaluation of the availability provided by LDIe@des versus repli-
cation and Reed-Solomon codes,

e a way of constructing small LDPC codes with good guaranteetheir redun-
dancy,

e the description of an implementation of a file storage sydtaised on LDPC
encoding and performance measurements obtained withw@ditferent com-
puting clusters of both the overall rate it provides and @eatbn of the overhead
of decoding.

Compared to other fault-tolerant storage systems that pieaton or Reed-Solomon
codes for redundancy, our prototype based on LDPC codes siamléer storage
overhead for similar levels of fault-tolerance. In additithe performance is bet-

13

ter than in system using Reed-Solomon codes, since LDPC emdesibstantially
faster.

Availability provided by LDPC encoding techniques makea #atisfying redun-
dancy schema for the implementation of a storage system omauting cluster.
Our work on generation small graphs allows us to obtain a go@dlability of
the service against possible failures of nodes. The insaformance results are
promising.

The work presented here is ongoing work and many intereskatgils are under
study.

e Techniques regarding LDPC codes are still being invesigjaiVe continue our
activity of generating good graphs with more sophisticategs of controlling
the probability distribution of the edges in the graphs appsed in [8].

e So far we presented an analytic evaluation of the avaitglpifovided by the
use of LDPC codes. In the future we intend to use simulatidnthe entire
system instead, so that we can study various failure patterg. introduced due
to failures in the peer-to-peer overlay.

e The implementation itself is still at an early stage. Usihg peer-to-peer over-
lay it would be also possible for the system to actively rezawissing blocks.
In fact, given the nature of the coding graphs this would iveanly a small
number of hosts which have blocks that are related to theimgisse.

e There is currently no load-balancing done by the implentemtapart from the
trivial case that node becomes unavailable due to theirdoat that blocks are
taken from elsewhere. However, the servers could alsoilalisgr information
about their load through the P2P network and actively reralients or initiate
further replication.

e Since we intend to use this system in production, in paiicah grid comput-
ing sites, part of our activity will be dedicated to its intatjon into grid file
catalogues which will also allow to implement access cdsitro

8 Acknowledgements

This work was performed within the LCG-ARDA project and thehaus would
like to thank in particular Massimo Lamanna (CERN) for manyitful discus-
sions on this paper’s subject. For the performance measuntsma computer clus-
ter at the University of Munster, Germany was used and we arng grateful for
the excellent operator support we got. This work was p#rtiainded by grant
SFRH/BD/17276/2004 of the Portuguese Foundation for Sciandelechnology
(FCT) and by Bundesministerium fur Bildung und Forschung, Befiermany.

14

References

[1] W. K. Lin, D. M. Chiu, Y. B. Lee, Erasure Code Replication Revisitéuat, 4th
International Conference on Peer-to-Peer Computing (P2P 200EE, IEurich,
Switzerland, 2004, pp. 90-97.

[2] H. Weatherspoon, J. Kubiatowicz, Erasure coding vs. replicatforquantitative
comparison, in: International Workshop on Peer-to-Peer System$8RMol. 1,
2002.

[3] J. S. Plank, A tutorial on Reed-Solomon coding for fault-tolerance AllRlike
systems, Software — Practice & Experience 27 (9) (1997) 995-1012.

[4] R. Gallager, Low-Density Parity-Check Codes, MIT Press, CangleritlA, 1963.

[5] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, V. 8tann,
Practical loss-resilient codes, in: 29th Ann. ACM Symp. on Th. of Conf{®71pp.
150-159.

[6] R.L.Collins,J.S. Plank, Assessing the performance of erasulesdn the wide-area,
in: DSN-05: International Conference on Dependable Systems andoNetWEEE,
Yokohama, Japan, 2005.

[7] S.B.Wicker, S. Kim, Fundamentals of Codes, Graphs, and Itef@te®ding, Kluwer
Acad. Publ., Norwell, MA, 2003.

[8] J.S.Plank, M. G. Thomason, A practical analysis of low-densititypaheck erasure
codes for wide-area storage applications, in: DSN-2004: The Irttenad Conference
on Dependable Systems and Networks, IEEE, 2004.

[9] J. S. Plank, A. L. Buchsbaum, R. L. Collins, M. G. Thomason, Smaiitypaheck
erasure codes - exploration and observations, in: DSN-05: Intena&t@onference
on Dependable Systems and Networks, IEEE, Yokohama, Japan, 2005.

[10] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y. ,Zhadubiatowicz,
Pond: The oceanstore prototype, in: Proceedings of the Confesarkike and Storage
Technologies (FAST'03), 2003.

[11] S. Lin, C. Jin, Repstore: A self-managing and self-tuning storag&dnd with smart
bricks, in: ICAC '04: Proceedings of the First International Confiee2on Autonomic
Computing (ICAC'04), IEEE Computer Society, Washington, DC, USA,£2Q6p.
122-129.

[12] S. Frglund, A. Merchant, Y. Saito, S. Spence, A. C. Veitch, FEBterprise storage
systems on a shoestring, in: 9th Workshop on Hot Topics in Operating riyste
(HotOS IX), 2003, pp. 169-174.

[13] M. Ripeanu, |. Foster, A. lamnitchi, Mapping the gnutella networlogerties of
large-scale peer-to-peer systems and implications for system desidh, |iE&fnet
Computing Journal 6 (1) (2002) 50-57.

15

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, ¥/atea cooperative
storage with cfs, SIGOPS Oper. Syst. Rev. 35 (5) (2001) 202-215.

[15] A. Rowstron, P. Druschel, Storage management and caching ingerge-scale,
persistent peer-to-peer storage utility, in: SOSP '01: Proceedingsecgitihteenth
ACM symposium on Operating systems principles, ACM Press, New YorkU$A,
2001, pp. 188-201.

[16] E. K. Lee, C. A. Thekkath, Petal: distributed virtual disks, SIGAR&r. Syst. Rev.
30 (5) (1996) 84-92.

[17] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System, im#&sium on
Operating Systems Principles (SOSP), 2003, pp. 29-43.

[18] J. W. Byers, M. Luby, M. Mitzenmacher, A. Rege, A digital fountaipproach to
reliable distribution of bulk data, SIGCOMM Comput. Commun. Rev. 28 (4) 8199
56-67.

[19] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, DR8selli, R. Y. Wang,
Serverless network file systems, ACM Trans. Comput. Syst. 14 (1) J¥99.

16

