
Exploring High Performance Distributed File Storage
Using LDPC Codes

Benjamin Gaidioza , Birger Koblitza , Nuno Santosa,∗
aCERN, Geneva, Switzerland

Abstract

We explore the feasibility of implementing a reliable, high performance, distributed storage
system on a commodity computing cluster. Files are distributed across storage nodes using
erasure coding with small Low-Density Parity-Check (LDPC) codes, which provide high-
reliability with small storage and performance overhead. We present performance measure-
ments done on a prototype system comprising 50 nodes, which are self organised using a
peer-to-peer overlay.

Key words: Distributed File Storage, Low Density Parity Check (LDPC) Codes,
High-availability, High-performance

1 Introduction

With the growing popularity of Grid and cluster computing, computer clusters built
out of cheap commodity computers are becoming commonplace.While their CPU
power is readily made available through batch or grid computing systems, the often
substantial amount of disk space on the computer nodes is usually not made avail-
able for mid or long term storage. In this paper we investigate how to use this idle
storage for high performance and reliable file storage, targeted mainly at workloads
where files are written once and read often.

Erasure coding has been proposed [1,2] as an alternative to replication for reliable
storage of files using unreliable nodes. It consists of splitting the original file inn
data blocks plusm coding blocks of equal size, such that the original file can be

∗ Corresponding author. Tel.: +41 22 76 75710, E-mail address: nuno.santos@cern.ch
Email addresses:benjamin.gaidioz@cern.ch (Benjamin Gaidioz),

birger.koblitz@cern.ch (Birger Koblitz),nuno.santos@cern.ch (Nuno
Santos).

Preprint submitted to Elsevier 4 January 2007

reconstructed from subsets of the blocks. Compared to replication, erasure coding
has a smaller space overhead for similar levels of availability. However, in practice,
most of the storage systems used on Local Area Networks rely on replication to
ensure reliability. The reason is that traditional erasurecoding like Reed-Solomon
codes [3] demand a high computational effort, which grows quadratically withn
andm, to reassemble the original data out of anyn data or coding blocks.

Low-Density Parity-Check codes (LDPC) [4] provide a solutionto this problem
because they allow to reconstruct the original data using relatively few and cheap
XOR operations. They do not, however, code the data optimally (in contrast to
Reed-Solomon codes) but requirefn blocks to reconstruct the stored file, where
f ≥ 1, while Reed-Solomon codes require onlyn blocks. The properties of LDPC
codes are well understood in the asymptotics ofn → ∞ wheref → 1, but little
is known about how to construct smaller codes (n,m < 1000). The discovery of
efficient algorithms for creating large LDPC codes (n > 10000) with very fast
encoding and decoding [5] has lead to a surge in the interest in these codes, in
particular for the resilient storage of files on Grid and peer-to-peer networks. In
this scenario a file is decomposed into many (n + m large) blocks which are stored
in a distributed manner on hosts connected by a Wide Area Network (WAN) [6].

The paper is organised as follows. In Section 3.2, we comparethe availability pro-
vided by LDPC codes, Reed-Solomon codes and replication. We explain why small
LDPC codes (n,m ≈ 10) fit better the criteria needed for the implementation of
a distributed storage system in a commodity computing cluster. These small codes
cannot be constructed with standard techniques. We therefore present a way of con-
structing graphs with good guarantees on their redundancy using Monte Carlo tech-
niques in Section 2. In Section 4, we describe the implementation of a file storage
system based on small LDPC codes. Performance measurementsare presented in
Section 5. The remainder of the paper is a discussion of the implementation and the
results obtained so far including references to related work (Section 6) and finally
conclusions and a preview of our ongoing and future work (Section 7).

2 LDPC Codes

In the following we will give a brief overview of LDPC codes, for a full introduction
see e.g. [7]. An example of a graph describing a simple LDPC code is shown in
Fig. 1. Fromn = 3 data wordsd1, d2, d3 (bits in the simplest case),m = 2 coding
wordsc1, c2 are calculated byxoring the data words. For examplec1 = d1xord2.
Encoding the redundant information in the coding words is done in a time growing
linearly with the number of edges in the graph. The data and coding words are then
assembled into data and coding blocks, which can be stored ina distributed manner.

The original information of a file can be reconstructed directly from the data blocks

2

1

3d

d 1

2d

d2+d 3=c2

d1+d 2=c1

2c

c

Fig. 1. An example of a systematic graph withn = 3 andm = 2.

by simply concatenating them. This will be possible in the majority of cases on
LANs, which are normally relatively reliable. If data blocks are unavailable then
they can be reconstructed from coding blocks using the following algorithm: if
for a known coding block all but one of the data blocks from which it has been
calculated are known, then the words in that unknown data block are the exclusive
or of the corresponding words in the coding block and the known data blocks. By
applying this algorithm recursively to the downloaded or reconstructed blocks, the
original data can be reconstructed in linear time, if a sufficient number of data and
coding blocks is available.

The amount of information encoded using an LDPC graph is the rateR = n/(n +
m). Since LDPC codes do not encode optimally, when randomly downloading
blocks more thann blocks are needed to reconstruct the original file. The over-
head factorf is defined by the average numberfn of blocks which need to be
downloaded to reconstruct the file, wheref > 1. In the limit of very large (n,m →
∞), LDPC codes become optimal (f → 1), for small and medium sized codes
(n,m < 10000) the overhead is typically in the order of 10%, depending onR [8].

2.1 Generating Efficient Codes

The construction of very small (n ∈ {2, 3} andm ∈ {3, 4, 5}) optimal codes has
been recently done [9] using exhaustive enumeration of all the possible graphs.
However, such techniques are not feasible for generating larger codes, like the ones
we are interested in using. The alternative is to use Monte Carlo techniques to
construct and evaluate these graphs [8].

Using such a Monte Carlo technique we created graphs randomlyfor a fixedn
andm and a probabilityp for a right-hand node to be connected to a given left-
hand node. We used0.4 < p < 0.6 depending onn,m based on the findings in
[9]. Instead of evaluating the average overhead factor by sampling the necessary
overhead for many different downloading sequences of blocks, we computefmax

3

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
F

ac
to

r
f

n

Overview of R=1/2 LDPC codes

fmax(n)
f(n)

fpublished(n)

Fig. 2. Average overheadf(n) of best generated codes compared to the overhead of pub-
lished codesfpublished(n) (taken from [8,9]) forR = 1/2. In addition the worst-case over-
head factorfmax of the best generated graphs is shown.

for the given graph. Calculating the average overhead withs samples in average

E = s
fn
∏

i=n

i (1)

evaluations whether with the given set of blocks the original data can be recon-
structed. The resulting error onf is f/

√
s. Computingfmax requires at most

E ′ =
n+m−1

∏

i=fmaxn

i (2)

reconstruction tries whereE ′ < E for small graphs (n ≪ s). Since in practice most
generated graphs will be unable to cope with even a very smallnumber of missing
coding blocks andfmax is found as soon as a single download sequence fails, the
average number of tries is close ton(n − 1) (most graphs failing to compensate
for 2 missing data blocks in all cases). Fig. 2 shows that the performance of the
graphs generated and evaluated in this manner forR = 1/2 can compete with the
best known graphs forn < 15.

3 LDPC Codes For Storage Applications

In this section we discuss the suitability of LDPC codes for storage applications.

4

3.1 Optimaln andm Values for LAN Storage

Erasure code techniques can be used with very different values forn andm, pro-
viding different levels of availability and of system complexity. Larger number of
blocks improve the chances of recovering a file in the presence of failures, but in-
crease the overhead to reassemble the file, the storage overhead and the complexity
of the system.

Most storage systems designed for WANs assume a large numberof very unreli-
able nodes, like personal computers connected through the Internet. Under these
conditions, it will be common for a significant fraction of the file chunks to be un-
available and, therefore, good file availability can only beachieved with high levels
of redundancy. For LDPC or Reed-Solomon codes, this means splitting the file in
many blocks, possibly hundreds. Another argument for having a large number of
blocks is that it allows to better select blocks for downloading based on latency or
available bandwidth, which can vary widely on a WAN. More choices equates to
potentially better performance.

On a LAN the picture is very different. The node availabilityis typically much bet-
ter than on a WAN, making it possible to achieve high-levels of file availability with
lower redundancy levels. In addition, the latency and bandwidth are typically ho-
mogeneous, which removes the need for selecting ”nearby” blocks for optimising
file download, as all blocks are equally near. In fact, in the normal case clients will
try to reconstruct the file by retrievingn data blocks, which need only to be con-
catenated, without requiring any expensive decoding. In this case, having a smalln
is advantageous as it simplifies the management of the systemand minimizes the
overhead to reconstruct the file, as fewer storage nodes needto be contacted.

For our purposes we chose ton,m ≅ 10, as this provides a good balance between
file availability and storage/performance overhead.

3.2 Availability Analysis - LDPC vs Reed-Solomon vs Replication

Replication, Reed-Solomon codes and LDPC codes are three techniques that can
be used to achieve high-availability in storage systems. Inthis section we evaluate
the availability provided by each of them and the corresponding cost in terms of
storage overhead.

For each redundancy mechanisms considered here, the availability of a file can be
expressed by a formula that takes as input the availability of the storage nodeµ
plus some parameters specific to the coding mechanism. A common parameter to
all these mechanisms is the stretch factorS = (n + m)/n, which indicates the
storage overhead.

5

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3

F
ai

lu
re

 R
at

e

Storage Overhead S

LDPC µ=0.5
LDPC µ=0.95
LDPC µ=0.99

Rep. µ=0.5
Rep. µ=0.95
Rep. µ=0.99

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3

F
ai

lu
re

 R
at

e

Storage Overhead S

Rep. µ=0.5
Rep. µ=0.95
Rep. µ=0.99

Fig. 3. The average failure rate of files stored redundantly using replication and using LDPC
codes versus a given storage overhead. We choosen = 8 for the LDPC codes and assume
an overhead factor off = 1.1.

The availability of a replicated file is provided by the following equation:

Ar(µ, S) =
S

∑

i=1

(

S

i

)

µi(1 − µ)S−i (3)

For a file encoded using Reed-Solomon codes, the equation is:

Ae(µ, n,m) =
n+m
∑

i=n

(

n + m

i

)

µi(1 − µ)n+m−i , (4)

The rate of the codes is

R =
1

S
=

n

n + m
. (5)

LDPC codes do not code optimally and therefore introduce an overhead factorf .
This means they are only able to reconstruct the original filefrom in averagefn
chunks, wheref > 1. Concerning the overhead, LDPC codes are comparable to
normal erasure codes with

n′ = fn and m′ = (1 − f)n + m . (6)

An upper bound for the availability of an LDPC encoded file canbe given by (4)
using fmax, the maximum overhead of a graph (that is the original data can be
reconstructed fromanyfmaxn blocks).

Fig. 3 shows a comparison of the failure rate(1−A) of files stored using replication
and stored using LDPC for three different node availabilities ofµ = 0.5, 0.95 and
0.99. For LDPC, we usen = 8 and an assumed overhead factor off = 1.1. For low

6

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10 12 14 16 18 20

F
ai

lu
re

 R
at

e

n

R=2/3
R=4/7
R=1/2
R=1/3

Fig. 4. Failure Rate as a function of the numbern of data chunks for different code rates.
We assume a node availability ofµ = 0.95.

node availability (µ = 0.5), LDPC codes with such small number of coding blocks
perform worse than file replication, at least for small storage overhead factors of
S < 1.5. However for a good availabilityµ = 0.95 (an estimate for the availability
of nodes in a cluster of custom hardware) or even0.99 small LDPC codes provide
a better file availability for smaller overheads. This meansthat small LDPC codes
have the potential to provide small storage overhead and excellent file availability
on LANs while introducing only a small networking overhead due to the relatively
small number ofn parallel downloads.

3.3 Performance of LDPC Codes

In this section, we evaluate the performance of LDPC codes ofdifferent rates in
order to select good values form andn. We then use the solution presented in
Section 2.1 to generate a graph with good properties. We implement this graph in
our storage system prototype and evaluate the overhead of decoding with a varying
number of missing data chunks.

Fig. 4 shows the system failure rate provided by four different code rates as a
function of the number of data chunksn. Rates like1/2 and1/3 provide a low
failure rate at the price of a high storage overhead. RateR = 2/3 has a low overhead
but a high failure rate. For example, withR = 2/3, we needn = 14 andm = 7 for
reaching a failure rate of10−6, while the same availability can be obtained with a
R = 4/7 (which has almost the same storage overhead) withn = 8 andm = 6. For
our availability goals, rateR = 4/7 provides a good trade off in storage overhead
and availability. We usen = 8 andm = 6.

To generate a good graph for the parametersn = 8 andm = 6, we ran the graph
generation algorithm presented in Section 2.1. The resulting graph is shown on
Fig. 5. It has the property of tolerating the loss of any threedata chunks, that is, the

7

0 1

89 12

2

13

3

11

4

10

5 6 7

Fig. 5. An example of a graph withn = 8 andm = 6 which can be reconstructed with any
11 nodes. The average overhead factor isf = 1.108.

file can always be reconstructed even if any three data chunksare missing.

Reconstructing a file out of both control and data chunks has some overhead be-
cause it requires computations instead of simple concatenation of chunks. We eval-
uated this overhead by decoding files with variable number ofmissing chunks. Ta-
ble 1 shows the data rates obtained when downloading chunks from several servers,
as a function of the number of failing data chunks.

Table 1
Performance of reading a 500 MB file as a function of missing data chunks.

missing chunks time (s) rate (MB/s)

0 4.79 109.5

1 5.23 100.25

2 5.73 91.5

3 6.47 81.0

The file size is 500 MB. It was encoded using the graph shown on Fig. 5. Since this
graph allows to reconstruct a file with up to three missing chunks out of fourteen,
we vary the number of missing data chunks from zero to three. The client ran in the
same LAN as the servers. We show here the average of 50 downloads.

There is an obvious cost in decoding missing data chunks out of control chunks.
However, the performance is still acceptable, even in the worse case of three miss-
ing chunks. Considering that the worse case will not occur often in a LAN, the
overhead in general will be much smaller.

4 A Prototype Implementation

A prototype for the system presented in the article has been implemented. We give
in this section a description of the implementation.

There are two main components in the system: storage serversand a client applica-
tions.

Servers The server is run on the storage nodes and is responsible for hosting file

8

chunks, distributing them to clients (and also to receive them when a client stores
a file in the system). We use HTTP both for file transfers and forcontrol mes-
sages.

Clients Client applications link against a C++ client library that provides access to
the storage system. The library currently provides calls tostore and retrieve files.
For the file names, we use a flat name space, as we do not intend toimplement a
file system interface to the system.

For better fault-tolerance we designed the system to be decentralized, using peer-to-
peer techniques for organising the storage nodes. There areseveral freely available
Distributed Hash Tables (DHT) implementations, but we decided against using one
of these since they are all targeted to WANs. In a LAN the number of hosts and
the churn rate are typically much lower, which allows different and more efficient
strategies than the ones used in WANs. For instance, DHTs forWANs cannot keep
full routing tables at each node, since the cost of maintaining them on a system
with a large number of very volatile nodes would be excessive. Instead, they keep
tables with a size around O(log N), which allows routing to bedone in an average
of O(log N) steps. But on a LAN it is feasible to keep full routing tables, thereby
achieving one-hop routing. We considered that an efficient routing mechanism is
important enough to justify developing a peer-to-peer overlay tailored to a LAN.

In our system, each server is identified by an id obtained by computing a hash on
the name of the host it is running on. This implicitly defines an order on servers
and provides a Distributed Hash Table that can be used to store file chunks.

When a client is started, it needs to update its local list of hosts in the system
so that it will be able to get file chunks from them. For bootstrapping, clients are
configured manually with a list of well-known hosts that theycontact at startup
to obtain an updated list. Clients store their list persistently, so that when they are
restarted they can quickly reestablish contact with existing hosts. The list of hosts
is kept consistent using a peer-to-peer overlay network.

To store a file, the client first splits it inton+m chunks and assigns to each a name
consisting of the original file name plus the index of the chunk. It then computes
the hash of each chunk’s name and stores the chunk on the server whose identi-
fier is closer to the hash. Using a hash function enables chunks to be randomly
distributed in the system. If one of the nodes selected to store the file fails before
receiving the chunk assigned to it, our current implementation discards its chunk,
but proceeds with the write using the other nodes. If the missing chunks are less
than three, clients will still be able to reconstruct the filefrom the other chunks.
This is of course not the ideal solution, since it reduces theredundancy of a file
and, therefore, its availability. This is a limitation of assigning chunks to nodes in
a static way, which does not reassigning a chunk easily. As future work, we would
like to improve our implementation to assign chunks dynamically and to perform
reconstruction of lost chunks when nodes fail.

9

To download a file, the client computes the hash of each chunk’s name to deter-
mine the hosts storing each chunk. Initially, it tries to download only then data
chunks. Unless some nodes are unreachable or some chunks arenot found, thesen
fragments are sufficient to reassemble the file very efficiently, as they only have to
be concatenated. In case of failure, the client selects another chunk for download.
This is done by analysing the graph to find one chunk that minimizes the number
of extra downloads. It is possible that some control chunks fail, in which case the
graph may permit to rebuild them with other chunks. If the available chunks do not
permit to reconstruct the file, that is, if there are more thanthree missing chunks,
the call fails.

There are many other details about the storage system, like the reconstruction of
lost chunks, load balancing and security, but as this is not the main focus of the
article we will not discuss them here.

5 Performance

In this section, we show performance measurements obtainedwith our prototype
implementation. The main goal of these measurements is to have an idea of the
overall data rate one can achieve with a system like the one presented here. Deeper
studies regarding availability are ongoing work which we intend to implement
through simulations instead. This would permit to evaluatethe robustness of the
system with various failure patterns.

We ran the prototype on two different clusters.

CERN “lxplus” computing farm is a cluster of about 100 dual Xeon 2.8 GHz
with 2 GB of RAM with a Fast-Ethernet access to the network. We used 40 of
them.

Münster cluster is a set of 50 dual Opteron 2 GHz with 2 GB of RAM. There are
interconnected with a Gigabit network.

Each node is running a storage server. We then store files in the system by sending
chunks to servers. When the files have been stored, we start a client on each node.
Clients download all the files one after the other but following a random order to
avoid a situation where all clients start downloading the same file simultaneously,
which would skew the tests in an unrealistic way. Each clientdownloads all the
required chunks in parallel by opening TCP connections to each server at the same
time.

Both clusters were being used by other users during the tests,with many of the
nodes being busy with other computations. This is not a drawback because our
system is intended to be ran under such conditions in practice.

10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

ra
te

 (
M

B
/s

)

number of clients

aggregated rate

lxplus
Muenster

Fig. 6. Aggregated rate obtained on both clusters as a function of the number of client
nodes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

ra
te

 (
M

B
/s

)

number of clients

rate per client

lxplus
Muenster

Fig. 7. Rate per node obtained on both clusters as a function of the number of client nodes.

5.1 Measurements

Fig. 6 shows the overall rate measured on both clusters and Fig. 7 the rate per client.

For a large number of hosts, the system hits a limit of 110MB/s on lxplus and
350MB/s in the Münster cluster. This corresponds very likelyto the bandwidth of
the switch backplane and shows that the use of LDPC coding by itself is not the
bottleneck.

For a low number of hosts, although the rate per node decreases when increasing
the number of clients, the loss in performance is relativelylow compared to the
number of nodes. On lxplus, the gain in performance per node is about 9.78 MB/s.
On Münster’s cluster, the increase in performance per node is about 50 MB/s.

While performing these measurements, we noticed that as the number of clients
increases, the increase in the data rate is lower than what should be expected con-
sidering the speed of the network.

11

We believe this is a consequence of different load levels in the storage nodes, with
the more loaded nodes slowing down the others. This happens because the TCP
connections open by each client are kept synchronized so that the file can be re-
assembled in memory, thus avoiding the overhead of writing the individual chunks
to the local hard drive. If one connection is substantially slower than the others,
the others will stall waiting for the slow connection to receive the data needed to
reassemble the current part of the file. When the connections finally restart, they
have to go through TCP slow start again, resulting in degradedperformance. If the
slowest connection was able to continue operating at its topspeed, this wouldn’t be
a problem as it is this connection that determines the whole file download speed.
But when the fast connections resume the transfer, they saturate the network, forc-
ing the slow connection to drop its speed and go through TCP slow start again. We
are investigating the problem but we consider the numbers shown in this section
promising. In fact, since we intend to implement this storage system on commodity
computing clusters, we expect data rate to be affected more strongly by other fac-
tors like other tasks running on the nodes, the disk usage, and network usage. The
most critical goal is to ensure high availability of the service.

6 Related Work

Reed-Solomon codes have been used by several storage systems, both for WAN
environments (OceanStore [10]) and for LAN (RepStore [11] and FAB [12]). All
these systems use erasure coding only for archival storage,since Reed-Solomon
codes have a significant performance overhead. For frequently accessed files and
for supporting updates, these systems rely on replication.In FAB, the storage space
is statically partitioned into pools that are set at creation time to use either repli-
cation or erasure coding as redundancy mechanism. On the other hand, RepStore
exposes a single storage pool that is divided internally into an hot and cold space;
the hot space uses replication and is intended for frequently-accessed data or for
performing updates, while the cold space uses erasure coding and is intended for
rarely-accessed data. The two spaces are managed dynamically by RepStore, tak-
ing in consideration the access patterns. Many other distributed storage systems
rely solely on replication, including Gnutella [13], CFS [14] and PAST [15] for
WANs, and Petal [16] and the Google File System (GFS) [17] forLANs. In con-
trast to these systems, we rely solely on erasure coding by using LDPC codes. This
is possible due to the LDPC codes’ near real-time decoding speed, which allows us
to have space efficiency without sacrificing performance.

LDPC codes have not been explored as much for storage applications. The most
significant example of their use is the Digital Fountain system [18], where LDPC
codes are used for the dissemination of bulk data to a large number of receivers over
Wide Area Networks. There is also some recent work [6] that studies the suitability
of LDPC codes for Wide Area Network storage. But to our knowledge, there is

12

no previous work on the use of LDPC codes for storage on a LocalArea Network
environment, where the focus is on performance and a small storage overhead.

The granularity of storage used by most of the systems mentioned here are files,
just like in our system. The only exception is FAB which exposes blocks of storage
to provide the abstraction of a virtual hard-drive.

Our system is based on a Peer-to-Peer topology due to its fault-tolerance and scala-
bility properties. For the same reasons, many other storagesystems use Peer-to-Peer
or decentralised topologies. On the Wide-Area Network someexamples include
Gnutella, CFS, PAST and OceanStore. Gnutella is based on an unstructured topol-
ogy, while the other three systems are structured using a distributed hash table. For
Local Area Networks, xFS [19], Petal and FAB are all decentralised systems that
rely on voting and consensus algorithms for organising their topology. RepStore
takes an alternative approach by using a distributed hash table optimized to Local
Area Networks. In traditional DHTs each node maintains onlypartial routing tables
with size typically of the order ofO(logN), which allows for routing in an average
of O(logN) hops. RepStore, on the other hand, keeps full routing tables in every
node, thereby achieving one-hop routing. This is more suitable to LANs, where the
number of nodes rarely exceeds a few thousands and churn rates are low compared
to WANs. In contrast to these systems, our gossiping protocol is more light weight
and scalable, having as a drawback the possibility of temporary inconsistencies.

7 Conclusion and Future Work

We have presented a novel architecture for a reliable, high performance, distributed
storage system on a commodity computing cluster. Storage offiles is based on
erasure coding with small Low-Density Parity-Check (LDPC) codes. These codes
provide high reliability with a low storage and performanceoverhead. The main
contributions of this paper are:

• an analytic evaluation of the availability provided by LDPCcodes versus repli-
cation and Reed-Solomon codes,

• a way of constructing small LDPC codes with good guarantees on their redun-
dancy,

• the description of an implementation of a file storage systembased on LDPC
encoding and performance measurements obtained with it on two different com-
puting clusters of both the overall rate it provides and evaluation of the overhead
of decoding.

Compared to other fault-tolerant storage systems that use replication or Reed-Solomon
codes for redundancy, our prototype based on LDPC codes has asmaller storage
overhead for similar levels of fault-tolerance. In addition, the performance is bet-

13

ter than in system using Reed-Solomon codes, since LDPC codesare substantially
faster.

Availability provided by LDPC encoding techniques makes ita satisfying redun-
dancy schema for the implementation of a storage system on a computing cluster.
Our work on generation small graphs allows us to obtain a goodavailability of
the service against possible failures of nodes. The initialperformance results are
promising.

The work presented here is ongoing work and many interestingdetails are under
study.

• Techniques regarding LDPC codes are still being investigated. We continue our
activity of generating good graphs with more sophisticatedways of controlling
the probability distribution of the edges in the graphs as proposed in [8].

• So far we presented an analytic evaluation of the availability provided by the
use of LDPC codes. In the future we intend to use simulations of the entire
system instead, so that we can study various failure patterns, e.g. introduced due
to failures in the peer-to-peer overlay.

• The implementation itself is still at an early stage. Using the peer-to-peer over-
lay it would be also possible for the system to actively recover missing blocks.
In fact, given the nature of the coding graphs this would involve only a small
number of hosts which have blocks that are related to the missing one.

• There is currently no load-balancing done by the implementation apart from the
trivial case that node becomes unavailable due to their loadsuch that blocks are
taken from elsewhere. However, the servers could also distribute information
about their load through the P2P network and actively reroute clients or initiate
further replication.

• Since we intend to use this system in production, in particular on grid comput-
ing sites, part of our activity will be dedicated to its integration into grid file
catalogues which will also allow to implement access controls.

8 Acknowledgements

This work was performed within the LCG-ARDA project and the authors would
like to thank in particular Massimo Lamanna (CERN) for many fruitful discus-
sions on this paper’s subject. For the performance measurements a computer clus-
ter at the University of Munster, Germany was used and we are very grateful for
the excellent operator support we got. This work was partially funded by grant
SFRH/BD/17276/2004 of the Portuguese Foundation for Scienceand Technology
(FCT) and by Bundesministerium fur Bildung und Forschung, Berlin, Germany.

14

References

[1] W. K. Lin, D. M. Chiu, Y. B. Lee, Erasure Code Replication Revisited,in: 4th
International Conference on Peer-to-Peer Computing (P2P 2004), IEEE, Zurich,
Switzerland, 2004, pp. 90–97.

[2] H. Weatherspoon, J. Kubiatowicz, Erasure coding vs. replication:A quantitative
comparison, in: International Workshop on Peer-to-Peer Systems (IPTPS), Vol. 1,
2002.

[3] J. S. Plank, A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems, Software – Practice & Experience 27 (9) (1997) 995–1012.

[4] R. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.

[5] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, V. Stemann,
Practical loss-resilient codes, in: 29th Ann. ACM Symp. on Th. of Comp., 1997, pp.
150–159.

[6] R. L. Collins, J. S. Plank, Assessing the performance of erasure codes in the wide-area,
in: DSN-05: International Conference on Dependable Systems and Networks, IEEE,
Yokohama, Japan, 2005.

[7] S. B. Wicker, S. Kim, Fundamentals of Codes, Graphs, and IterativeDecoding, Kluwer
Acad. Publ., Norwell, MA, 2003.

[8] J. S. Plank, M. G. Thomason, A practical analysis of low-density parity-check erasure
codes for wide-area storage applications, in: DSN-2004: The International Conference
on Dependable Systems and Networks, IEEE, 2004.

[9] J. S. Plank, A. L. Buchsbaum, R. L. Collins, M. G. Thomason, Small parity-check
erasure codes - exploration and observations, in: DSN-05: International Conference
on Dependable Systems and Networks, IEEE, Yokohama, Japan, 2005.

[10] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y. Zhao, J. Kubiatowicz,
Pond: The oceanstore prototype, in: Proceedings of the Conferenceon File and Storage
Technologies (FAST’03), 2003.

[11] S. Lin, C. Jin, Repstore: A self-managing and self-tuning storage backend with smart
bricks, in: ICAC ’04: Proceedings of the First International Conference on Autonomic
Computing (ICAC’04), IEEE Computer Society, Washington, DC, USA, 2004, pp.
122–129.

[12] S. Frølund, A. Merchant, Y. Saito, S. Spence, A. C. Veitch, FAB:Enterprise storage
systems on a shoestring, in: 9th Workshop on Hot Topics in Operating Systems
(HotOS IX), 2003, pp. 169–174.

[13] M. Ripeanu, I. Foster, A. Iamnitchi, Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design, IEEE Internet
Computing Journal 6 (1) (2002) 50–57.

15

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-area cooperative
storage with cfs, SIGOPS Oper. Syst. Rev. 35 (5) (2001) 202–215.

[15] A. Rowstron, P. Druschel, Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility, in: SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, ACM Press, New York, NY, USA,
2001, pp. 188–201.

[16] E. K. Lee, C. A. Thekkath, Petal: distributed virtual disks, SIGOPSOper. Syst. Rev.
30 (5) (1996) 84–92.

[17] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System, in: Symposium on
Operating Systems Principles (SOSP), 2003, pp. 29–43.

[18] J. W. Byers, M. Luby, M. Mitzenmacher, A. Rege, A digital fountainapproach to
reliable distribution of bulk data, SIGCOMM Comput. Commun. Rev. 28 (4) (1998)
56–67.

[19] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, R. Y. Wang,
Serverless network file systems, ACM Trans. Comput. Syst. 14 (1) (1996) 41–79.

16

