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Abstract Flood warnings from various information sources are important for individuals to make evacua-

tion decisions during a flood event. In this study, we develop a general opinion dynamics model to simulate

how individuals update their flood hazard awareness when exposed to multiple information sources, includ-

ing global broadcast, social media, and observations of neighbors’ actions. The opinion dynamics model is

coupled with a traffic model to simulate the evacuation processes of a residential community with a given

transportation network. Through various scenarios, we investigate how social media affect the opinion

dynamics and evacuation processes. We find that stronger social media can make evacuation processes

more sensitive to the change of global broadcast and neighbor observations, and thus, impose larger uncer-

tainty on evacuation rates (i.e., a large range of evacuation rates corresponding to sources of information).

For instance, evacuation rates are lower when social media become more influential and individuals have

less trust in global broadcast. Stubborn individuals can significantly affect the opinion dynamics and reduce

evacuation rates. In addition, evacuation rates respond to the percentage of stubborn agents in a nonlinear

manner, i.e., above a threshold, the impact of stubborn agents will be intensified by stronger social media.

These results highlight the role of social media in flood evacuation processes and the need to monitor social

media so that misinformation can be corrected in a timely manner. The joint impacts of social media, quality

of flood warnings, and transportation capacity on evacuation rates are also discussed.

1. Introduction

With the rapid development of computer-mediated technologies and more universal internet accessibility,

social media, such as Twitter, Facebook, MySpace, WeChat, Flickr, and other information sharing platforms,

have become important tools for individuals to obtain and share information with each other (Asur &

Huberman, 2010; Gil de Z�u~niga & Diehl, 2017; Kwak et al., 2010). Unlike conventional media such as radio

and television that are typically developed for one-to-many information dissemination, social media allow

both one-to-many and many-to-many information dissemination and message exchange (Bassett et al.,

2012; Houston et al., 2015). Individuals can easily share their daily activities, news, opinions, ideas, etc., with

their neighbors, families and friends, interest groups, and the public through social networks that transcend

territorial boundaries, which makes communication between individuals faster and more efficient (Zhu,

2017). Due to the many advantages in information dissemination and social networking, social media have

been used in a variety of domains. These include political activities (e.g., presidential elections, Gil de Z�u~niga

et al., 2012, protests such as Arab Spring, Hussain & Howard, 2013), economic behaviors such as business

and marketing (Asur & Huberman, 2010; Marshall et al., 2012), and coordination and management during

natural disasters (Alexander, 2014; Houston et al., 2015; Kongthon et al., 2012; Palen et al., 2010; Smith et al.,

2015). This study focuses on the role of social media in evacuation processes during flood events.

Floods are common natural disasters in the U.S. and many other countries and have caused significant eco-

nomic damage and loss of life (Heaney et al., 2000; Smith & Matthews, 2015). Flood warning systems have

been recognized as efficient tools for flood damage mitigation and crisis management (Cloke & Pappen-

berger, 2009; Pappenberger et al., 2015; Parker, 2017; Parker et al., 2009). However, studies have shown that
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the benefits of flood warnings can be significantly affected by (1) the delivery of flood warnings that deter-

mines if communities in flood zones can receive accurate and timely flood warnings, and (2) some socioeco-

nomic factors (e.g., education and income of the members in household, economic value of the home) that

could affect households’ responses and reactions to flood warnings (Kongsomsaksakul et al., 2005; Parker

et al., 2007, 2009; Parker & Handmer, 1998). Therefore, it is important to evaluate the benefits of flood warn-

ings in the context of a coupled social, economic, and hydrologic framework (Di Baldassarre et al., 2013,

2014; Girons Lopez et al., 2017; Sivapalan et al., 2012), with consideration of the heterogeneity in house-

holds’ responses to flood warnings.

In recent years, social media have been used to spread warnings of natural disasters, including floods, to

increase awareness of the danger and to provide efficient communications between affected individuals,

emergency managers, and first responders (Alexander, 2014; Houston et al., 2015; Kongthon et al., 2012;

Palen et al., 2010). For example, during the 2009 Red River flood, over four million Tweets were posted that

are related to sandbagging, evacuation, damage reports, and other flood-related subjects (Palen et al.,

2010; Vieweg et al., 2010). Similarly, significant numbers of Twitter messages were generated and shared by

citizens in flood zones during the 2011 Thai flood. These messages provided up-to-the-minute information

about location-based flood conditions, available resources, and needed rescues. Emergency responders can

use the information to create instant flood situation maps and to better coordinate available resources for

rescues and evacuations (Kongthon et al., 2012; Russell, 2011).

Despite these advantages, social media could also pose potential threats to crisis management when out-

dated, false, or misleading information is spread through social media (Acemoglu et al., 2010; Alexander,

2014; Del Vicarioa et al., 2016; Nguyen et al., 2012). This concern is partially the result of individuals having

limited time to verify the accuracy of information on social media during emergencies. For example, during

Japan’s Fukushima nuclear crisis in 2011, rumors claiming that iodized salt can prevent radiation-related ill-

ness and that all importing of sea salt would be exposed to nuclear pollution after the nuclear meltdown

were rapidly and widely spread on China’s social media. Many people rushed into supermarkets and gro-

cery stores to buy and hoard salt, which resulted in market swarms and unprecedented salt shortage in

many regions of China (Brenhouse, 2011). In the case of Hurricane Sandy in 2012, altered images and false

news were spread and shared by many social media users, and were even picked up by mainstream media

in New York City until they were corrected by field checking (Alexander, 2014). The impact of such misinfor-

mation from social media in natural disaster management requires timely attention.

Motivated by this need, this study examines how social media affects individuals’ flood risk awareness and

consequent evacuation processes. We consider a residential area with an impending flood event, where

emergency managers obtain and broadcast flood warnings to the residents. The residents receive the flood

warnings from emergency managers and communicate with each other through social media (e.g., Twitter,

Facebook, MySpace, WeChat, Flickr, and other social media platforms) to share their opinions about their

perceived flood risk. A resident will choose to evacuate to a safe area if he thinks that the flood is sufficiently

likely to occur.

Some studies have modeled individuals’ evacuation behaviors as responses to flood warnings (Chen &

Zhan, 2008; Dawson et al., 2011; Du et al., 2016; Zhang et al., 2009). For example, Dawson et al. (2011) inte-

grated a hydrodynamic model and a traffic model to estimate the number of people exposed to floods

under varying storm surge conditions. Furthermore, Du et al. (2016) investigated how individuals’ evacua-

tion behaviors are affected by their heterogeneous responses to flood warnings, as well as flood prediction

accuracy and lead time. The results show that residents’ evacuation behaviors can be significantly affected

by various individuals’ flood risk-tolerance thresholds.

Studies have also modeled how individuals form their opinions through social interactions. Among them,

Hegselmann and Krause (2002) proposed various models for simulating individuals’ opinion formation

within interacting groups. Watts (2002) developed a binary-decision model in which individuals’ decisions

are explicitly dependent on the actions of their neighbors. The model was shown to be capable of capturing

some important features of global cascades in social and economic systems. Bassett et al. (2012) developed

an opinion dynamics model to simulate individual’s opinion formation when exposed to multiple informa-

tion sources (e.g., communication on social media and observations of the neighbors’ actions) in natural dis-

asters. Similarly, McCullen et al. (2013) developed an innovation diffusion model in which households form
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opinions through pairwise social interactions and choose to adopt

innovations when their motivations exceed a certain threshold. More-

over, Yildiz et al. (2013) investigated the role of stubborn individuals,

who can influence others but do not change their own opinions, in a

group’s opinion dynamics.

Although existing studies have shown how individuals’ opinions can be

shaped by social networking, few studies have taken into account infor-

mation from multiple sources in a consistent framework to analyze the

impact of social media on opinion dynamics. Real-world information

sources includue global broadcast, social media, and observations of

other individuals’ actions (Acemoglu & Ozdaglar, 2011; Crokidakis &

Anteneodo, 2012; Ghaderi & Srikant, 2013; Jia et al., 2015), as illustrated

in Figure 1. Global broadcast is information that emergency managers

spread to all of the agents in the system (Bassett et al., 2012). Examples

of global broadcast include radio and television emergency alerts, as

well as some other public notices. Social media (e.g., Twitter and Face-

book) allow for pairwise information transmission between the agents

in a group. When two agents interact on social media, they will

exchange each other’s opinion on flood risk (Acemoglu & Ozdaglar,

2011). Neighbor observation takes account of how an agent’s opinion is

affected by the actions of other agents in a group (Watts, 2002). In this

study, we integrate social media with global broadcast and neighbor observations into a general quantitative

framework with consideration of individual heterogeneity in beliefs about different sources of information

and learning attitudes (i.e., the extent to which individuals adopt new information).

Moreover, according to our knowledge, there is still a need to bridge the gap between opinion dynamics

and evacuation processes that are influenced by individuals’ opinions on flood risk, evacuation decisions,

and transportation networks. Thus, we propose a modeling tool to couple the simulation of opinion dynam-

ics and the evacuation processes. An agent-based model (ABM) is developed to simulate opinion dynamics.

A traffic model is used to simulate the evacuation process. The coupled ABM and traffic model simulates

how individuals update their awareness of flood risk and how individuals’ opinion dynamics affect their

evacuation processes in the transportation network. Using the modeling tool, we address the following

research questions: (1) Will social media increase the level of people’s flood risk awareness in an impending

flood event? (2) Do social media help increase the evacuation rate of a community? (3) How do stubborn

individuals (i.e., those who do not change their opinions on flood risk even when new information is avail-

able to them) affect the opinion dynamics and evacuation processes of the community?

The remainder of this paper is structured as follows: Section 2 introduces the methodology, focusing on

modeling individuals’ opinion dynamics when exposed to multiple information sources and their evacua-

tion processes in a transportation network. Section 3 presents an example of a hypothetical residential area,

the modeling results, and discussions. Section 4 discusses the empirical data that are needed to implement

the model in a real-world case study and how to collect the data from multiple sources. Finally, conclusions

are presented in section 5.

2. Methodology

We consider a residential area consisting of households and a transportation network. Following the approach

of our prior work (Du et al., 2016), the transportation network in this paper is represented by a directed graph

consisting of a number of links (i.e., roads) and nodes (i.e., road intersections). Each household is represented

by an agent with a set of attributes and rules that describe the agent’s geographical location, risk-tolerance

threshold for flooding, priorities to the various information sources, and learning attitudes, etc.

2.1. Modeling Opinion Dynamics

In this study, an agent’s opinion (denoted by a continuous variable S; S 2 ½0; 1�) refers to his perception of

how likely there will be a flood in the residential area (Lorenz, 2005). Following previous studies (Schelling,

Figure 1. Illustration of three types of information sources related to flood

warning dissemination: (a) global broadcast that spreads flood warnings from

the global source to all of the individuals, (b) social media that allow pairwise

information exchange (illustrated by the blue dashed lines), and (c) neighbor

observations that consider the influence of each individual’s neighbors

(illustrated by the red circles).
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1973; Watts, 2002), we assume that each agent has a flood risk-tolerance threshold (denoted by a continu-

ous variable s, s 2 ½0; 1�). At each time step, the agent will make a binary decision (denoted by a binary vari-

able X; X 2 f0; 1g) to evacuate (X51) or not (X50) in the face of the flood risk. In this study, we use a

simple decision rule to describe agents’ evacuation decisions: at any time step t, an agent j will choose to

evacuate if his opinion of flood risk exceeds his risk-tolerance threshold:

Xj;t5
0 if Sj;t < sj;t

1 if Sj;t � sj;t or Xj;t2151

(

(1)

Opinion dynamics refers to the process in which agents form and update their opinions over time. Given

that agents might not always collect information to update their opinions at each time step, we simulate

agents’ opinion dynamics as a stochastic process: At each time step, an agent will either choose to collect

new information and update his opinion or not. Let a binary variable lj;t (lj;t 2 f0; 1g) denote whether

agent j updates his opinion at time t. When choosing not to update his opinion (lj;t50), the agent will keep

his opinion of time step t2 1 (i.e., Sj;t5Sj;t21). Otherwise, the agent will use new information on flood risk to

update his opinion.

For agent j at time step t, we use IGj;t; I
S
j;t; and INj;t to denote the information about flood risk obtained from

global forecast, social media, and neighbor observations, respectively. Each of these information sources is

described in turn below.

Let Gt denote the value of flood risk broadcast from a global source at time t (i.e., Gt 2 ½0; 1�, a higher value

of Gt indicates a higher flood risk). Since global broadcast is a one-to-many information broadcast process,

we assume that all of the agents will obtain the same global information at each time step (i.e., IGj;t5Gt).

Following previous studies, an agent’s information obtained from social networking is modeled as a linear

combination of the opinions of all of the agents that are connected to the agent (DeGroot, 1974; Ghaderi &

Srikant, 2014; Hegselmann & Krause, 2002). Some studies have shown that the opinions of some agents

(e.g., opinion leaders, experts, etc.) are more influential than those from others (Dubois & Gaffney, 2014;

Zhang et al., 2016). Denoting xij;t as the weighting factor that measures how much agent j weights agent i’s

opinion at time t, agent j’s information obtained from social networking (ISj;t) can be modeled as a weighted

average of information from all agents with whom agent j communicates, as shown in equation (2):

ISj;t5
X

n

i51

xij;tSi;t21 (2)

We assume agents’ social networking is a binary stochastic process: at each time step t, agent j either

exchanges information with agent i (i.e., agent j reads agent i’s post on social media at time t, denoted by

aij;t51) or not (i.e., aij;t50). Taking account of all of the n agents that could be socially connected with agent

j, weighting factor xij;t can be represented by equation (3).

xij;t5
aij;t

X

n

i51

aij;t

(3)

In a social network with n agents, agents with stronger social connections have larger probabilities to read

each other’s posts. In this study, we assume that agents who are physically closer to each other have stron-

ger social connections and thus have larger probabilities to share their opinions (Bassett et al., 2012). Denot-

ing the distance between agents i and j as dij and the maximum distance between any of the two agents in

the system as dmax , we use a simple model to represent the relationship between the probability that they

exchange information at time t and their distance: pðaij;t51Þ512dij=ðdmax11Þ.

The assumption of agents’ social interaction (i.e., the likelihood of social interaction decreases with proxim-

ity) employed in this study is based on intuitive reasoning that individuals living closer to each other will

have more chance to meet each other to exchange information on social media. However, we admit that

this assumption does not necessarily hold true in some real-world case studies, but the validation of the

assumption goes beyond the scope of this work. Future work can validate or refine this assumption by
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mapping individuals’ social connections using data mining tools when detailed social communication data

become available (Gil de Z�u~niga & Diehl, 2017; Sobkowicz et al., 2012; Zhu, 2017).

Combining equations (2) and (3), agent j’s information obtained from social media can be represented by

equation (4):

ISj;t5
X

n

i51

aij;t
X

n

i51

aij;t

Si;t21 (4)

In contrast to sharing opinions over social media, neighbor observations are observed actions. Many studies

have shown that an agent’s opinion is often affected by the actions of other agents in the group, due to the

fact that individuals might not have sufficient information to make decisions, or their ability to process

information is limited during emergency situations (Centola, 2010; Kearns et al., 2009; Schelling, 1973; Watts,

2002). We use the weighted average of the actions of an agent’s neighbors to represent the information

obtained from neighbor observations. Agent j’s neighbors can be defined by a group of agents that are

close to j in their residential area. In this study, we define agent j’s neighbors as the set of agents that live

on the same road as j (e.g., the red circles in Figure 1c) based on the assumption that agents who live on

the same street can directly observe the actions of each other. Let bij denote if agents i and j are neighbors

(bij51) or not (bij50), agent j’s information obtained from neighbor observations can be represented by

equation (5):

INj;t5
X

n

i51

bij;t
X

n

i51

bij;t

Xi;t21 (5)

So far, we have modeled how agents obtain information from multiple separate sources. When all of these

information sources are available, agents might have different degrees of trust in, and are influenced differ-

ently by, these information sources, depending on a variety of factors. For example, if global broadcast

information has proven to be unreliable in the past, people might rely less on global broadcast. Similarly,

rumors and misleading information on social media might reduce the influence of social media on agents’

opinion formation. McCullen et al. (2013) proposed using a set of weighting factors to formulate agents’

opinion dynamics driven by multiple information sources. In this study, we follow this approach and intro-

duce three information influence parameters, aj; bj; and cj to represent the influence of global broadcast,

social media, and neighbor observation on agent j’s opinion adoption, respectively, and aj1bj1cj51. Thus,

the information obtained from multiple sources can be represented by equation (6).

Ij;t5aj I
G
j;t1bj I

S
j;t1cj I

N
j;t (6)

When new information on flood risk is obtained, the agent j will update his opinion on flood risk. We adopt

the Widrow-Hoff learning rule to simulate the agent’s opinion dynamics (Sutton, 1988; Widrow & Hoff, 1988;

Widrow & Lehr, 1993), as shown in equation (7).

Sj;t5Sj;t211hj3DIj;t (7)

where DIj;t is the difference between the flood risk obtained from multiple sources at time t and the agent’s

original opinion on flood risk at time t 2 1 (DIj;t5Ij;t2Sj;t21). hj is the agent’s learning rate, which is a behav-

ioral parameter measuring how much the agent adheres to his past opinion when new information is avail-

able. This parameter considers that an agent might not completely abandon his past opinion to accept new

information (hj51), nor completely disregard new information to keep his past opinion (hj50) (Friedkin &

Johnsen, 1999). The concept of opinion adherences is based on observations that individuals’ beliefs typi-

cally display some amount of inertia (Dash & Gladwin, 2007; Watts, 2002). Combining equations (6) and (7),

agent j’s opinion dynamics can be represented by equation (8).

Sj;t5ð12hjÞSj;t211hjðaj I
G
j;t1bj I

S
j;t1cj I

N
j;tÞ (8)

The opinion dynamics model (i.e., equation (8)) presented in this study is a more general form compared

with those used in previous models (e.g., Bassett et al., 2012; McCullen et al., 2013). For example, by setting
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ðaj; bj; cj; hjÞ5ð1; 0; 0; 0:5Þ (i.e., the agent only uses global information and treats prior opinion and new

information equally), equation (8) becomes equivalent to the opinion dynamics model driven by global

information proposed by Bassett et al. (2012). Similarly, the model is made equivalent to that given by

McCullen et al. (2013) by setting hj51 (i.e., the agent only uses new information to update his opinion).

In addition, equation (8) considers differences in people’s behaviors through the agents’ behavioral parame-

ters aj; bj; cj; and hj . This takes advantage of the strength of agent-based models in representing the het-

erogeneity in agents’ behaviors (Huang et al., 2013), and relaxes the assumption that all agents in a

community behave in the same manner (e.g., as handled in the opinion dynamics model by Bassett et al.,

2012). In this hypothetical study without behavioral data, we use a coefficient of variation (Cv) for each of

the behavioral parameters (a; b; c; and h) to measure the level of agents’ behavioral heterogeneity. Follow-

ing previous studies (Bertella et al., 2014; Marino et al., 2008), we use a normal distribution to sample the

behavioral parameters for each agent. Table 1 provides an example of assigning agents’ behavioral parame-

ters under three specific scenarios.

2.2. Modeling the Evacuation Process

Agents that decide to evacuate will move from their current location to the evacuation destination in the

transportation network. We assume all agents have good knowledge of the transportation network and will

choose the shortest route to evacuate. We use a categorical parameter Kj to represent agent j’s evacuation

status. Kj50 denotes that agent j decides not to evacuate; Kj 5 1 when agent j decides to evacuate but

does not arrive at the destination; Kj 5 2 when the agent arrives at the destination, which represents a suc-

cessful evacuation case.

In this study, we adopt the Nagel-Schreckenberg traffic model (N-S model) to simulate agents’ evacuation

behaviors via a transportation network (Nagel & Schreckenberg, 1992). The N-S model is an individual-oriented

cellular automation model for traffic flow simulation and is capable for simulating complex and dynamic traffic

flow in large-scale transportation systems. Recently, the N-S model has been used for emergency evacuation

simulation (Lee et al., 2014; Nagel & Rickert, 2001; Naghawi & Wolshon, 2010). In the N-S model, space and

time are both discrete variables and each traffic road in the transportation network is divided into cells, each of

which can be occupied by one vehicle. At each time step, the moving speed and the location of a vehicle is

constrained by: (1) the previous moving speed of the vehicle, (2) the acceleration and deceleration rate, (3) the

number of empty cells in front of the vehicle required to avoid collision, and (4) maximum moving speed

allowed in the transportation network. We apply the all-way stop rule in road intersections: Vehicles must stop

when arriving at road intersections and proceed only when the way ahead is clear. When multiple vehicles

approach at the same road intersection, vehicles’ right-of-way proceeds following the order of their arrival

times. For details of the N-S model and how it is implemented to simulate agents’ evacuation process, see

Nagel and Schreckenberg (1992), Nagel and Rickert (2001), and Du et al. (2016).

2.3. Model Outputs at the System Level

We use multiple indicators to measure behaviors at the system level (i.e., a community), which result from

the evacuation of individual agents, including: (1) agents’ opinion trajectory S (S5½St51; St52; . . . ; St5T �,

where St5k is the average opinion over all agents at time step k), (2) agents’ decision trajectory X

(X5½Xt51; Xt52; . . . ; Xt5T �, where Xt5k is the average decision over all agents at time step k), and (3) agents’

Table 1

The Values of Model Parameters

Scenario aj bj cj hj pj;t
a sj Gt

Case 1 1 (0)b 0 0

Case 2 0.5 (0.1) 0.5 (0.1) 0 0.5 (0.1) 0.1 (0.1) U (0.1, 0.9)c 1

Case 3 0.5 (0.1) 0 0.5 (0.1)

apj;t is the probability that agent j receives information from multiple sources to update his opinion at time step t.
bx1ðx2Þ indicates the value of the parameter is sampled from a Gaussian distribution in which the mean and the coef-

ficient of variation of the variable is set as x1 and x2 , respectively.
cUðx1; x2Þmeans the value of the parameter is sampled from a uniform distribution in which the lower and upper

bound of sample space is set as x1 and x2 , respectively.
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evacuation rate U (i.e., U5½Ut51; Ut52; . . . ; Ut5T �, where Ut5k is the percentage of agents that successfully

evacuate to the destination at time step k).

Given the fact that not everyone opens social media channels at all times for social interaction, information

transmission, and social communication are assumed to occur in a stochastic manner. In addition, coupling

the opinion dynamics and evacuation behaviors can make the system highly nonlinear, noncontinuous and

stochastic. It is very difficult, if not impossible, to obtain closed-form analytical solutions for such a system.

Therefore, we conduct the analysis using a numerical simulation approach, which is similar to other opinion

dynamics or social information network models (Bassett et al., 2012; Martins, 2008; Martins & Galam, 2013;

Rodriguez et al., 2016). The Monte Carlo method (i.e., execution of the model multiple times with model

inputs that are randomly and repeatedly sampled from the sampling space) is applied in this study to

obtain numerical results for the problem under various scenarios (Decker, 1991). We execute the model

1,000 times (the number of simulations that ensures output stabilization for this study) to obtain the ensem-

ble opinion trajectory hSi, ensemble decision trajectory hXi, and ensemble evacuation rate hUi.

3. A Demonstration Example

We apply the model described above in a synthetic residential area, which consists of a transportation net-

work and a group of agents (Figure 2). Following previous studies, we use L and T to represent the units of

length and time, respectively (Du et al., 2016; Zhang et al., 2009). In this transportation network, all of the

roads are assumed to have length of 100 L, indicating that each road can be divided into 100 cells. Among

the 16 nodes in the transportation network, the one on the bottom right is set as the evacuation destination.

We assume that agents are uniformly distributed along the roads in the transportation network. Residential

density (denoted by d) is represented by the number of agents on a road in the transportation network,

and is set as 10 in this study (i.e., corresponding to 240 agents in the transportation network). The sensitivity

of residential density is examined in section 3.5.

The following sections present the modeling results. Sections 3.1 and 3.2 present scenario-based analysis

and sensitivity analysis, respectively. Next, sections 3.3 and 3.4 evaluate the impacts of social media and

stubborn agents on evacuation processes, respectively. Finally, sec-

tion 3.5 shows how evacuation rates are jointly affected by sources

of information, transportation capacity, and flood warnings with var-

ious forecast capabilities.

3.1. Scenario-Based Analysis

To assess the impact of model parameters on the results, a scenario-

based analysis is conducted. We design three scenarios, each of

which represents a special combination of information sources. The

first scenario considers the case in which only global broadcast infor-

mation is available. The second case considers the case with only

global broadcast and social media, without neighbor observations.

The third case considers the scenario with only global broadcast and

neighbor observations, without social media. Table 1 lists the values

of the key parameters in the model.

Figure 3 provides an overview of a randomly selected agent’s opin-

ion trajectory S under the three model parameter cases, as well as

overall statistics on all agents. By comparing cases 1 and 2, it can be

noticed that, with the presence of social media, agents’ opinions

update in a smoother manner as a function of time (comparing Fig-

ure 3a and Figure 3d). There is also less variance among agents’

opinions in case 2, which results in a cascade-like pattern for opinion

update (Figure 3e). However, the speed of agents’ opinion update is

slower in case 2 compared with case 1, implying that social media

could slow down the speed of agents’ opinion update. This result is

consistent with the findings by Bassett et al. (2012).

Figure 2. Illustration of the synthetic case study area that consists of a trans-

portation network and a number of agents. The transportation network is a

regular lattice network with 24 roads and 16 nodes (the node on the bottom

right is set as the designated evacuation destination for all of the agents). The

agents are uniformly distributed along the roads.
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In case 3, when agents’ opinion exchange only occurs through neighbor observation, the individual agent’s

opinion trajectory is smoother than that in case 1. This indicates that information exchange, either by social

media or by neighbor observation, can make agents’ opinion trajectory smoother and reduce the variance

in agents’ opinions (red lines in Figures 3f and 3i). However, agents do not reach opinion consensus in case

3. A few agents’ opinions are less than 1 at the end of the simulation (e.g., agent 145 in Figure 3g). As illus-

trated by the blue line in Figure 3i, agents’ average opinion is less than, although very close to, 1 in the end.

We further investigate how the agents’ opinion dynamics affect their evacuation processes under these three cases

(Figure 4). Notice that the agents in case 1 start to take evacuation actions earlier than cases 2 or 3 (the green lines

in Figures 4c, 4f, and 4i). This is consistent with the results presented in Figure 3, which shows that information

exchange through either social media or neighbor observations will slow down the speed of agents’ opinion

update. However, there is no noticeable difference in the percentage of agents at status 2 over time (i.e., agents

that successfully evacuate to the destination, corresponding to the red lines in Figures 4c, 4f, and 4i). We also notice

that all the agents in cases 1 and 2 eventually choose to evacuate. In comparison, some agents in case 3 do not

evacuate (e.g., Figures 4g and 4h). This suggests that the decision-making rule based on neighbors’ actions some-

timeswill keep some agents fromupdating their opinions, especially when no one takes initial evacuation actions.

3.2. Sensitivity Analysis

Next, a sensitivity analysis is conducted to understand the influence of agents’ opinion adherence parame-

ter (h) and weighting parameters (a;b; c) on agents’ ensemble opinion trajectory hSi, decision trajectory hXi,

and evacuation rate hUi.

Figure 3. (a) The opinion trajectory for a randomly selected agent in case 1. (b) The opinion trajectory for all of the agents in case 1. (c) The mean (blue line) and

standard deviation (red line) of all the agents’ opinions in case 1. Figures 3d–3f and 3g–3i present the corresponding results for cases 2 and 3, respectively.
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Figures 5a–5c show the impacts of opinion adherence parameter h on the model results. The figures indi-

cate that a smaller h (i.e., agents adhere more to their past opinions) will slow down the speed of the

agents’ opinion update hSi, evacuation actions hXi, and evacuation rates hUi. However, the influence of h

on agents’ evacuation rate hUi is not as significant compared with opinion update hSi and evacuation

actions hXi. This is due to the constraint of traffic capacity as implied by Figure 4. We expect that h will have

a stronger impact on hUi with less traffic bottlenecking.

Figures 5d–5i show the influences of a, b, and c on the modeling results. It is observed that, in both cases 2

and 3, a decrease in a (i.e., the global broadcast has less impact on agents’ opinion update) will slow down

the speed of agents’ opinion update hSi, evacuation actions hXi and evacuation rates hUi. There are no opin-

ion updates and evacuation actions when a is small enough (e.g., a � 0:1 in Figures 5g–5i) in case 3. Under

these conditions, agents’ opinions remain unchanged because their opinions are mainly affected by their

neighbors’ actions. For each member in the group, an agent will not update his opinion if his neighbors do

not take evacuation actions. This in turn results in no opinion updates and no agent will evacuate in the end.

3.3. Impacts of Social Media on Agents’ Evacuation Processes

The sensitivity analysis of the previous section considers at most two information sources simultaneously. In

this section, we consider all three information sources (i.e., global broadcast, social media, and neighbor

observation as illustrated in Figure 6a) and evaluate how they jointly affect agents’ opinion dynamics and

evacuation processes. In particular, we analyze the impacts of social media on the modeling results.

Figure 4. (a) The evacuation status of a randomly selected agent in case 1. (b) All agents’ evacuation status in case 1. (c) The percentage of each type of agents as

a function of time in case 1. Figures 4d–4f and 4g–4i present the corresponding results for cases 2 and 3, respectively.
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Figure 6b shows the agents’ evacuation rates under different settings of influence parameters a; b; and c.

The modeling results provide several implications. First, we observe that the system can achieve a high

evacuation rate when global broadcast has a large influence on agents’ opinion dynamics (i.e., a is large,

corresponding to zone B in Figure 6b). In contrast, agents’ evacuation rate is low when neighbor observa-

tion has large influence (i.e., c is large, corresponding to zone A in Figure 6b).

Second, increasing influence of social media will make the system more sensitive to the influence of other

information sources (i.e., from zone C to D and E in Figure 6b). For example, a small change in a or c leads

to a significant change in agents’ evacuation rates in zone E. Social media result in lower evacuation rates

when the influence of global information decreases (indicated by the solid arrow in Figure 6b). On the other

hand, social media will increase evacuation rates when the influence of global broadcast increases (indi-

cated by the dashed arrow in Figure 6b).

The results suggest that the influence of the global forecast a is crucially important to agents’ evacuation

behaviors. No agents will evacuate if the influence of global information is very weak. This is similar to a

real-world case of a 2016 flash flood in Xingtai, a city in China. The local government’s flood warning was

not on time, many local residents did not take evacuation actions, and more than 150 people lost their lives

in the flood (Makinen, 2016).

Figure 5. The impact of the opinion adherence parameter h on (a) agents’ opinion trajectory <S>, (b) decision trajectory

hXi, and (c) evacuation rate hUi for case 1. The impact of a on agents’ (d) opinion trajectory <S>, (e) decision trajectory

<X>, and (f) evacuation rate <U> for case 2. The corresponding results for case 3 are presented in Figures 5g–5i. Note

that h50:5 for the analysis in cases 2 and 3.
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The results here also show that communication through social media decreases the variation among indi-

viduals’ opinions and causes them to take actions at a similar pace. This is in line with empirical observa-

tions of herd-like behaviors during emergency situations, in which some people simply follow others’

actions (Haque, 1995; Schelling, 1973; Watts, 2002). Social media ease sharing of individual opinions and

enhance influence on others’ decision making, and thus could cause unexpected collective behaviors or

even chaos (e.g., the ‘‘salt-rush’’ in China after the 2011 Japan nuclear crisis, Brenhouse, 2011).

3.4. Impacts of Stubborn Agents Escalated by Social Media

Many previous studies have indicated that some agents insist on their own opinions and ignore any new

information (Galam & Jacobs, 2007; Yildiz et al., 2013). These agents are typically referred to as stubborn

agents in the study of opinion dynamics (Ghaderi & Srikant, 2014). For example, in the case of the 2007

Cyclone Sidr in Bangladesh, thousands of individuals remained in their homes despite receiving early warn-

ings and evacuation orders from emergency managers (Paul & Dutt, 2010). This section investigates how

the behaviors of stubborn agents affect the opinion dynamics and evacuation processes of the entire

community.

In this study, stubborn agents’ opinions are set as 0 over the entire simulation time. Figure 7 presents the

entire population’s average opinions and evacuation rates corresponding with various percentages of stub-

born agents in the group. The stubborn agents in the current hypothetical study are randomly chosen from

the group of agents. In a real-world application of the proposed modeling framework, empirical

approaches, such as surveys and interviews, can be conducted to identify stubborn agents (Hasan et al.,

2011; Lindell et al., 2005; Parker et al., 2009). The results show that stubborn agents can prevent the entire

group from updating their opinions to high levels and therefore reduce agents’ evacuation rates, especially

when there are many stubborn agents or social media weighting is higher (b is larger). For example, the

agents’ evacuation rates decrease from 80% to 58% when the percentage of stubborn agents increases

from 10% to 20% (the red line in Figure 7b). With a fixed 5% of stubborn agents in the group, the agents’

evacuation rates are reduced to 94%, 91%, and 73% when b is 0.3, 0.5, and 0.7, respectively (Figure 7b). In

particular, as can be seen, evacuation rates respond to the percentage of stubborn agents in a nonlinear

manner when social media become more influential. When the percentage of stubborn agents exceeds a

threshold (e.g., 5% in Figure 7b for the red line), the impact of stubborn agents on evacuation rates will be

intensified by sources of information. Stronger social media can significantly reduce evacuation rates (e.g.,

Figure 6. (a) Illustration of the scenarios that consider influences of the three information sources. (b) Ternary plot of agents’ evacuation rates <U> ðt51; 000Þ

under different settings of influence parameters a; b; and c.
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in the case of 10% stubborn agents, evacuation rates decrease from 90% to 80% when b increases from 0.5

to 0.7).

Figure 8 illustrates how the impacts of stubborn agents on the evacuation rate are affected by the weights

of multiple information sources. Figure 8a displays agents’ evacuation rates with 5% stubborn agents in the

group. It is noticed that the patterns of the agents’ evacuation rates are consistent with those shown in Fig-

ure 6b (e.g., zone A has a low evacuation rate due to limited influence of global flood warnings). However,

the evacuation rate in Figure 8a changes in a smoother manner. Figure 8b compares the differences

between the cases with (Figure 8a, 5% stubborn agents) and without stubborn agents (Figure 6b). It is

noticed that the impact of stubborn agents increases from regions C to D and E. This implies that social

media, as they become more influential, make the evacuation process more vulnerable to stubborn agents.

This is shown in some real-world incidences of inaccurate and misleading information from social media,

e.g., altered images and false news about the flood conditions during the days of Hurricane Sandy in 2012

Figure 7. The impacts of stubborn agents on agents’ (a) average opinion <S> ðt51; 000Þ and (b) evacuation rates

<U> ðt51; 000Þ.

Figure 8. (a) Ternary plot of agents’ evacuation rates <U> ðt51; 000Þ with 5% of stubborn agents in the group, and (b) the differences in <U> ðt51; 000Þ
between the scenario with 5% of stubborn agents (Figure 8a) and the scenario without stubborn agents (Figure 6b).
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(Alexander, 2014). Thus, it is important for emergency managers to identify stubborn agents in the commu-

nity and correct the misinformation that they broadcast through social media in a timely manner during a

crisis.

3.5. Impacts of Flood Forecast Quality and Transportation Capacity

Lastly, we investigate the impacts of two other key factors on agents’ opinion dynamics and evacuation pro-

cesses: flood forecast quality and transportation capacity. In an impending flood event, the predicted flood

probability will increase over time before the flood. Furthermore, forecast with better prediction capability will

give a higher flood probability with a longer lead time. Considering these two factors, we modify the methods

described previously by adding a simple model, for illustrative purpose, to represent the predicted flood risk as

a function of time t during the flood forecast horizon (FH) (t51; 2; . . . ; FH), shown in equation (9):

GðtÞ5
1

FH
t1d; GðtÞ 2 ½0; 1� (9)

where d 2 ½21; 1� is a parameter that measures the quality of flood warnings. A larger d is associated with

flood warnings that can predict higher flood risk in flood events. As illustrated in the results given in Figure

9a, predicted flood risk G(t) is closer to 1 (actual flood risk) when d is larger.

Figures 9a–9c show that the quality of the flood forecast can significantly affect agents’ opinions on flood

risk and evacuation rates. Poor quality of flood warnings (i.e., with smaller d) results in slower update of

flood risk awareness (Figure 9b) and fewer agents choosing to evacuate (Figure 9c). This concurs with the

need for improving the reliability of flood warnings for crisis management, as evidenced by the case of

2016 Xingtai flood in China (Makinen, 2016).

Furthermore, we assess the joint impacts of multiple modeling parameters, i.e., flood forecast uncertainty,

residential density (a substitute for network capacity), and weights of information sources, on agents’

Figure 9. (a) A simple model of flood forecast quality with smaller d for poorer forecast. (b) Agents’ opinion trajectories

under scenarios of different flood risk forecast qualities when ða;b; cÞ5ð0:3; 0:4; 0:3Þ: (c) The joint impacts of weighting

parameters for information sources (a; b; and c) and forecast quality (d) on agents’ evacuation rate (when the residential

density is set as d520). (d) The joint impacts of weighting parameters and residential density on agents’ evacuation rate

(when d50).
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evacuation rates (Figures 9c–9d). In general, the figures show that evacuation rates are higher when global

flood warnings are more influential (a is larger), flood forecast quality is higher (d is larger), and residential

density is lower (d is smaller). However, the impacts of each individual parameter on the modeling results

also depend on other parameters. The complex interplay of these parameters is summarized as follows.

First, under a poor flood forecast scenario (e.g., d < 0), the quality of flood warnings becomes a dominant

factor that affects the modeling results. When flood forecast improves (d becomes larger), the weighting

parameters for information sources (a; b; and c) become more important factors. It is also noticed that

more influential social media can slow down the increase of agents’ evacuation rates with improved flood

forecast (Figure 9c). Second, when the residential density is low (e.g., d510), the weighting parameters for

information sources are the dominant factors on agents’ evacuation rates. In contrast, when residential den-

sity is high (e.g., d590), the weighting parameters have little impact on the modeling results (Figure 9d).

These findings suggest that the quality of flood warnings and residential density determine the range of

agents’ evacuation rates. In comparison, the weighting parameters of the information sources determine

the actual evacuation rates based on the influence of the various information sources. When flood warning

and residential density are not hard constraints (e.g., d � 0; d � 30 in Figures 9c and 9d), the weighting

parameters of the information sources become the dominant factors that affect agents’ evacuation pro-

cesses. This highlights that crisis management in flood events requires (1) satisfactory flood forecasts, (2)

efficient flood warning dissemination systems, and (3) well-planned evacuation procedures in a community

with low residential density and high transportation capacity (Litman, 2006; Murray-Tuite & Wolshon, 2013).

4. Discussion

Opinion dynamics and flood evacuation are complex social phenomena. This study presents a theoretical

modeling framework that couples an opinion dynamics model and a traffic model to simulate how individu-

als update their flood risk awareness and how they behave under the influence of social media. Due to the

lack of empirical data, the modeling results of this study are derived from a representative, although hypo-

thetical, residential area. To apply the modeling framework to a real-world flooding evacuation case study,

one needs to collect a variety of data from multiple sources, as listed in the following.

The first set of data is on weather forecast and flood warnings in the neighborhood. These data can be acquired

from local and regional weather forecast services (e.g., National Weather Service) (Bedient et al., 2003; Sorensen,

2000). The second set of data is about the traffic network and the transportation infrastructure in the community, as

inputs for the traffic model. This set of data is available from local and regional transportation departments and/or

web mapping services (e.g., satellite imagery and street view from Google and Bing map) (Farkas et al., 2014; Wu

et al., 2007). The third set of data is on demography and residents’ behaviors on the usage of social media during

flood events. These data include, but are not limited to, the population and the geographical distribution of the resi-

dents, the individualswho use socialmedia during flood events, the number of social friends on their social networks

and the influences from their social friends, the weights onmultiple flood warning sources, and the identification of

stubborn individuals in the community. These data can be acquired from census bureaus and by conducting inter-

views and surveys in the neighborhood community (Huang et al., 2012; Lindell et al., 2005; Paul & Dutt, 2010). In

addition, with advanced data retrieval tools, such as Application Programming Interface (API), considerable amount

of data can be collected from social mediawebsites for real-time analysis (Li et al., 2012; Rieder, 2013).

The current study focuses on developing a theoretical modeling framework. Based on a hypothetical case

study, we conduct a sensitivity analysis for multiple modeling parameters to understand the role of social

media and individual behaviors in flood evacuation under the various scenarios. Future work can implement

the model with a real-world case study by collecting the various data as listed above. Implementing the

model with empirical data can lead to more insights and a more realistic estimation of the influence of social

media in a particular residential community. However, it is not expected that such applications will qualita-

tively alter the findings and implications obtained from the hypothetical study as presented in this paper.

5. Conclusions

In this study, we develop an agent-based modeling framework that couples a general opinion dynamics

model and a traffic model to investigate the influence of opinion dynamics on flood evacuation processes.
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The coupled model simulates agents’ opinion dynamics and evacuation processes under the influence of

multiple information sources, flood forecast quality, and transportation systems. The results show that stron-

ger social media can make evacuation processes more sensitive to the change of global flood warnings

and/or neighbor observations, and thus, impose larger uncertainty on evacuation processes (i.e., a large

range of evacuation rates corresponding to the change of global information and/or neighbor observation).

We also find that evacuation rates respond to the percentage of stubborn agents in a nonlinear manner.

After the percentage of stubborn agents exceeds a threshold, the impact of stubborn agents on evacuation

rates will be intensified by sources of information, and stronger social media can significantly reduce evacu-

ation rates under this condition. Therefore, social media impose uncertainties to the flood evacuation pro-

cesses and complicate evacuation planning and coordination during flood events.

Our results highlight the importance of mapping inaccurate or misleading information in social media and

identifying stubborn individuals to allow first responders and emergency managers to mitigate any undesir-

able influences. In addition, flood warnings with low quality and high residential density can result in low

evacuation rates, which highlight the need for improving the quality flood warnings and transportation

infrastructure during flooding events.

Opinion formation, flood risk perception, and evacuation decision are complex processes that need both

empirical and theoretical investigation from interdisciplinary fields (Gladwin et al., 2009; Haque, 1995; Parker

et al., 2007). Social media not only provide efficient communication platforms for individuals to exchange

information, but also create large amounts of data that describe people’s behaviors. These data can be col-

lected and analyzed by advanced data query and machine learning technologies (Bellomo et al., 2016; Gil

de Z�u~niga & Diehl, 2017; Granell et al., 2016). Synthetic models, such as the one presented in this study, can

benefit from these data and technologies for model verification and calibration. Recommended future stud-

ies include the use of empirical data to measure the various behavioral parameters, validating or modifying

assumptions in the opinion dynamics simulation, extending the model to more realistic and complex trans-

portation networks, investigating the differences in social media platforms, and incorporating uncertainties

in spatial and temporal variability in flood warnings.
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