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Abstract This paper concerns the problem of global

exponential synchronization for a class of memristor-based

Cohen–Grossberg neural networks with time-varying dis-

crete delays and unbounded distributed delays. The drive-

response set is discussed. A novel controller is designed such

that the response (slave) system can be controlled to syn-

chronize with the drive (master) system. Through a nonlin-

ear transformation, we get an alternative system from the

considered memristor-based Cohen–Grossberg neural net-

works. By investigating the global exponential synchroni-

zation of the alternative system, we obtain the corresponding

synchronization criteria of the considered memristor-based

Cohen–Grossberg neural networks. Moreover, the condi-

tions established in this paper are easy to be verified and

improve the conditions derived in most of existing papers

concerning stability and synchronization for memristor-

based neural networks. Numerical simulations are given to

show the effectiveness of the theoretical results.

Keywords Exponential synchronization � Memristor �

Cohen–Grossberg neural networks � Unbounded distributed

delay � Control

Introduction

Memristor is a contraction for memory resistor, which was

firstly postulated by Chua (1971) and Chua and Kang (1976).

However, memristor did not cause much attention of

researchers until the papers Strukov et al. (2008) and Tour

and He (2008) announced that a memristor of nanometer-size

solid-state two-terminal device has been fabricated by a team

from the Hewlett-Packard Company. In this memristor, the

value (memristance) depends on the magnitude and polarity

of the voltage applied to it and the length of the time that the

voltage has been applied. When the voltage is turned off, the

memristor remembers its most recent value until it is turned

on next time. Because of this feature, the passive electronic

device has generated unprecedented worldwide interest

because of its potential applications (Itoh and Chua 2008;

Wang et al. 2010; Kvatinsky et al. 2013). For instance, based

on the memristor technique, the next generation computers

may be powerful brain-like ‘‘neural’’ computers and turn on

instantly without the usual ‘‘booting time’’ currently required

in personal computers (Itoh and Chua 2008).

Neural networks can be constructed by nonlinear circuits

and have been extensively studied because of their immense

potential applications in different areas such as pattern rec-

ognition, parallel computing, signal and image processing,

and associative memory (Balasubramaniam et al. 2011;

Yang et al. 2010; Zhu and Cao 2010; Chen and Song 2010;
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Tsukada et al. 2013). Recently, dynamical behaviors of

memristor-based neural networks have attracted increasing

attention of researchers because this class of neural networks

is a new model to emulate the human brain (Itoh and Chua

2009; Thomas 2013). It is known that memristor-based

neural networks is a special kind of differential equations

with discontinuous right-hand side (Liu and Cao 2011),

which indicates that this class of systems may not have any

solution in the classical sense. In fact, Filippov proposed a

novel method, i.e., Filippov regularization (Filippov 1988),

to transform differential equations with discontinuous right-

hand side into a differential inclusion (Aubin and Cellina

1984). By utilizing theories of differential inclusion,

dynamical behaviors of differential equations with discon-

tinuous right-hand side can be investigated under the

framework of Filippov solution (Shen and Cao 2011).

Recently, authors in Wu and Zeng (2012, 2013), Zhang

et al. (2012, 2013a, b), and Wu et al. (2011, 2012) studied

the stability and synchronization of a class of memristor-

based neural networks with discrete time delays by using

differential inclusion method. However, the main conditions

in Wu and Zeng (2012, 2013), Wu et al. (2011, 2012), and

Zhang et al. (2012, 2013a, b) were not correct.

The study of synchronization for neural networks with

discontinuous right-hand sides is not an easy work, since the

conditions for the stability of neural networks with discon-

tinuous right-hand sides cannot be simply utilized to study

synchronization. In Liu and Cao (2011), attempted to inves-

tigate the synchronization of neural networks with discontin-

uous activation functions, but the obtained synchronization

criterion is local.Moreover, when the usual control techniques

are considered, only qusi-synchronization results can be

derived (Liu andYu 2012; Liu et al. 2012). Recently, in Yang

and Cao (2013), the authors investigated exponential syn-

chronization of delayed neural networks with discontinuous

activations by designing discontinuous state feedback con-

troller and adaptive controller; the authors in Yang et al.

(2013) studied finite-time synchronization of complex net-

works with nonidentical discontinuous nodes by designing

special discontinuous state feedback controllers. Although

memristor-based neural networks are also belong to the non-

linear systems with discontinuous right hand sides, their dis-

continuities are different from those of neural networks with

discontinuous activations, and hence the analytical technology

utilized to study the synchronization of neural networks with

discontinuous activations may not be applicable to investigate

the synchronization of memristor-based neural networks.

Therefore, in this paper, we shall study the drive-response

synchronization issue of memristor-based neural networks

and improve the results in Wu and Zeng (2012, 2013), Wu

et al. (2011, 2012), and Zhang et al. (2012, 2013a, b).

As an important neural network model, Cohen–Gross-

berg neural networks were firstly introduced by Cohen and

Grossberg (1983). Cohen–Grossberg neural networks model

is one of the most popular and typical neural network

models. Some other models, such as Hopfield neural net-

works, cellular neural networks, and bidirectional associa-

tive memory neural networks, are special cases of the model

(Kamel and Xia 2009; Mahdavi and Kurths 2013; Yang

et al. 2008, 2011). Stability and synchronization of contin-

uous Cohen–Grossberg neural networks with or without

discrete and distributed delays were studied in the literature

(Zhu and Cao 2010; He and Cao 2008; Song and Wang

2008). Recently, stability of Cohen–Grossberg neural net-

works with discontinuous activations were considered in

Chen and Song (2010) and Lu and Chen (2008). However, to

the best of our knowledge, few published paper considered

synchronization control of memristor-based Cohen–Gross-

berg neural networks. Moreover, according to our study,

results on stability of neural networks with discontinuous

activations and memristors can not be extended to investi-

gate the synchronization of discontinuous chaotic systems

due to the special requirements of stability on the connection

weight matrices of the neurons. For example, the connection

matrices of discontinuous activations must satisfy the

Lyapunov Diagonal Stable (LDS) condition (Chen and Song

2010; Cheng et al. 2007; Di Marco et al. 2012; Forti et al.

2006; Lu and Chen 2008; Wu et al. 2010). However, when

these special and strict conditions are satisfied, neural net-

works usually do not exhibit chaotic behaviors. Therefore,

the methods applicable to the stability of neural networks

with discontinuous activations and memristors can not be

directly employed to study the synchronization of memris-

tor-based Cohen–Grossberg neural networks.

Motivated by the above analysis, this paper proposes a

memristor-based Cohen–Grossberg neural networks model

with time-varying discrete delays and unbounded distributed

delays, and then investigates global exponential synchroni-

zation of the model. By using the sign function, we design a

novel state feedback controller, which is added to the slave

system such that its driven states can globally exponentially

synchronize with those in the master system. Based on the

characteristics of amplification function, behaved function,

and derivative theorem for inverse function, we first get an

alternative system from the considered memristor-based

Cohen–Grossberg neural networks. By investigating the

global exponential synchronization of the alternative system,

we obtain the corresponding synchronization criteria of the

considered model. The convergence rate is explicitly esti-

mated. Moreover, the conditions utilized in this paper are

easy to be verified and improve the conditions derived in

Wu and Zeng (2012, 2013), Wu et al. (2011, 2012), and

Zhang et al. (2012, 2013a, b). Numerical simulations are

given to show the effectiveness of the theoretical results.

The rest of this paper is organized as follows. In Sect. 2,

model of memristor-based Cohen–Grossberg neural
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networks with mixed delays is described. Some necessary

assumptions, definitions, and lemmas are also given in this

section. Exponential synchronization of the considered

model under state feedback control are studied in Sect. 3. In

Sect. 4, numerical example is given to show the effectiveness

of our results. Conclusions are finally reached in Sect. 5.

Model description and some preliminaries

Referring to the relevant models in Wu and Zeng (2012,

2013), Wu et al. (2011, 2012), and Zhang et al. (2012,

2013a, b) for memristor-based recurrent neural networks,

in this paper, we consider a memristor-based Cohen–

Grossberg neural network model with mixed delays which

is described as follows:

_uiðtÞ ¼ �aiðuiðtÞÞ biðuiðtÞÞ �
X

n

j¼1

wijðuiðtÞÞ
�

(

� fjðujðtÞÞ þ cijðuiðtÞÞfjðujðt � sijðtÞÞÞ

þ dijðuiðtÞÞ

Z

t

�1

Kijðt � sÞfjðujðsÞÞds

3

5� Ii

9

=

;

;

i ¼ 1; 2; . . .; n; ð1Þ

where uiðtÞ denotes the state variable of the ith neuron at

time t; Ii is the external input to the ith neuron, aiðuiðtÞÞ and

biðuiðtÞÞ represent the amplification function and

appropriately behaved function at time t, respectively; the

time-varying delay sijðtÞ corresponds to the finite speed of

the axonal signal transmission; KijðtÞ is a non-negative

bounded scalar function defined on ½0;þ1Þ describing the

delay kernel of the unbounded distributed delay;

wijðuiðtÞÞ; cijðuiðtÞÞ and dijðuiðtÞÞ are connection weights

of the neural network satisfying the following conditions:

wijðuiðtÞÞ ¼
ŵij; juiðtÞj\Ti;

�wij; juiðtÞj[ Ti;

�

ð2Þ

cijðuiðtÞÞ ¼
ĉij; juiðtÞj\Ti;

�cij; juiðtÞj[ Ti;

�

ð3Þ

dijðuiðtÞÞ ¼
d̂ij; juiðtÞj\Ti;

�dij; juiðtÞj[ Ti;

(

ð4Þ

where switching jumps Ti[ 0; ŵij; �wij; ĉij; �cij; d̂ij; �dij; i; j ¼

1; 2; . . .; n; are constants.

Remark 1 Model (1) includes the memristor-based recur-

rent neural networks studied in Wu and Zeng (2012, 2013),

Wu et al. (2011, 2012), and Zhang et al. (2012, 2013a, b) as

a special case since unbounded distributed delays are also

considered in Model (1).When wijðuiðtÞÞ; cijðuiðtÞÞ,and

dijðuiðtÞÞ are deterministic constants and KijðtÞ ¼ 1 for t 2

½0; h� (h is a positive constant) and KijðtÞ ¼ 0 for t[ h, the

model (1) turns out to the systems studied in Gan (2012),

Zhu and Cao (2010) and Song and Wang (2008). Therefore,

models in this paper are general.

In order to achieve our main results, the following

assumptions are needed:

ðH1Þ The parameters wijðuiðtÞÞ; cijðuiðtÞÞ, and dijðuiðtÞÞ

satisfy the conditions (3) and (4), and there exist

constants sij[ 0 such that 0� sijðtÞ� sij; i; j ¼ 1; 2; . . .;

n; t 2 R.

ðH2ÞaiðuÞ is continuous and there exist positive con-

stants ai and �ai such that 0\ai � aiðuÞ� �ai; u 2 R;

i ¼ 1; 2; . . .; n.

ðH3Þ There exist positive constants li such that b0iðuÞ� li,

where b0iðuÞ denotes the derivative of b0iðuÞ; u 2 R and

bið0Þ ¼ 0; i ¼ 1; 2; . . .; n.

ðH4Þ There exist constants Li such that jfiðxÞ � fiðyÞj
� Lijx� yj; 8x; y 2 R; x 6¼ y; i ¼ 1; 2; . . .; n.

ðH5Þ There exist constants Mi such that jfiðxÞj �Mi for

bounded x; 8x 2 R; i ¼ 1; 2; . . .; n.

ðH6Þ The delay kernels Kij : ½0;þ1Þ ! ½0;þ1Þ are

real-valued non-negative continuous functions and there

exist positive numbers bij such that
Rþ1
0

KijðsÞds� bij;

i ¼ 1; 2; . . .; n.

From ðH2Þ, the antiderivative of 1
aiðuiÞ

exists. We choose

an antiderivative hiðuiÞ of 1
aiðuiÞ

that satisfies hið0Þ ¼ 0.

Obviously, d

dui
hiðuiÞ ¼

1
aiðuiÞ

: By aiðuiÞ[ 0, we obtain that

hiðuiÞ is strictly monotone increasing about ui. In view of

derivative theorem for inverse function, the inverse func-

tion h�1
i ðuiÞ of hiðuiÞ is differentiable and d

dui
h�1
i ðuiÞ ¼

aiðuiÞ: By ðH3Þ, composition function biðt; h
�1
i ðzÞÞ is dif-

ferentiable. Denote xiðtÞ ¼ hiðuiðtÞÞ. It is easy to see that

x0iðtÞ ¼
u0
i
ðtÞ

aiðuiðtÞÞ
and uiðtÞ ¼ h�1

i ðxiðtÞÞ. Substituting these

equalities into system (1), we get

_xiðtÞ ¼ � bi h
�1
i ðxiðtÞÞ

� �

þ
X

n

j¼1

wij h
�1
i ðxiðtÞÞ

� ��

� fj h�1
j ðxjðtÞÞ

� �

þ cij h
�1
i ðxiðtÞÞ

� �

� fj h�1
j ðxjðt � sijðtÞÞÞ

� �

þ dij h
�1
i ðxiðtÞÞ

� �

Z

t

�1

Kijðt � sÞ

� fj h�1
j ðxjðsÞÞ

� �

ds
i

þ Ii: ð5Þ

From conditions (2), (3), and (4), one can see that system

(1) is a differential equation with discontinuous right-hand

side. In this case, the solution of (1) in the conventional
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sense does not exist. However, we can discuss the dynam-

ical behaviors of system (1) by means of Filippov solution.

In the following, we first recall the notation of set-valued

map, which is needed to define Filippov solution.

Definition 1 Filippov(1960). The Filippov set-valued

map of f ðxÞ at x 2 Rn is defined as follows:

FðxÞ ¼
\

d[ 0

\

lðXÞ¼0

co f ðBðx; dÞ n XÞ½ �;

where co½E� is the closure of the convex hull of the set

E;Bðx; dÞ ¼ fy : ky� xk� dg, and lðXÞ is the Lebesgue

measure of set X: For the convenience of later study, we

introduce the following notations: �wij ¼ maxfŵij; �wijg;

wij ¼ minfŵij; �wijg; �cij ¼ maxfĉij; �cijg; cij ¼ minfĉij; �cijg;

�dij ¼ maxfd̂ij; �dijg; dij ¼ minfd̂ij; �dijg:

Based on Definition 1 and theory of differential inclu-

sion, it can be obtained from (5) that

_xiðtÞ 2 �bi h
�1
i ðxiðtÞÞ

� �

þ
X

n

j¼1

co wij; �wij

h ih

� fj h�1
j ðxjðtÞÞ

� �

þ co½cij; �cij�

� fj h�1
j ðxjðt � sijðtÞÞÞ

� �

þ co dij;
�dij

h i

Z

t

�1

Kijðt � sÞ

� fj h�1
j ðxjðsÞÞ

� �

ds
i

þ Ii: ð6Þ

or equivalently, there exist cijðtÞ 2 co½wij; �wij�; dijðtÞ 2

co½cij; �cij�; fijðtÞ 2 co½dij; �dij� such that

_xiðtÞ ¼ � bi h
�1
i ðxiðtÞÞ

� �

þ
X

n

j¼1

cijðtÞ
�

� fj h�1
j ðxjðtÞÞ

� �

þ dijðtÞ fj h�1
j ðxjðt � sijðtÞÞÞ

� �

þ fijðtÞ

Z

t

�1

Kijðt � sÞ

� fj h�1
j ðxjðsÞÞ

� �

ds� þ Ii: ð7Þ

Let system (1) be the driving system. We construct a

controlled response system described by

_viðtÞ ¼� aiðviðtÞÞ

(

biðviðtÞÞ �
X

n

j¼1

"

wijðviðtÞÞ

� hjðvjðtÞÞ þ cijðviðtÞÞ fjðvjðt� sijðtÞÞÞþdijðviðtÞÞ

Z

t

�1

Kijðt� sÞgjðvjðsÞÞds

#

� Ii

)

þ RiðtÞ; ð8Þ

where the feedback control term RiðtÞ is

RiðtÞ ¼ � piðviðtÞ � uiðtÞÞ

� gisignðviðtÞ � uiðtÞÞ; t� 0;

ð9Þ

where pi; gi are the control gains to be determined.

Similar to the analysis of (5), (6), and (7), we have from

(8) and (9) that

_yiðtÞ ¼ � biðh
�1
i ðyiðtÞÞÞ þ

X

n

j¼1

�cijðtÞfjðh
�1
j ðyjðtÞÞÞ

h

þ �dijðtÞfjðh
�1
j ðyjðt � sijðtÞÞÞÞ

þ �fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðyjðsÞÞÞds�

þ Ii �
pi

aiðh�1
i ðyiðtÞÞÞ

ðh�1
i ðyiðtÞÞ � h�1

i ðxiðtÞÞÞ

�
gi

aiðh�1
i ðyiðtÞÞÞ

signðh�1
i ðyiðtÞÞ

� h�1
i ðxiðtÞÞÞ; ð10Þ

where yiðtÞ ¼ hiðviðtÞÞ; �cijðtÞ 2 co½wij; �wij�; �dijðtÞ 2 co½cij;

�cij�; �fijðtÞ 2 co½dij; �dij�

The initial values uðsÞ ¼ ðu1ðsÞ;u2ðsÞ; . . .;unðsÞÞ
T
of

(1) and /ðsÞ ¼ ð/1ðsÞ;/2ðsÞ; . . .;/nðsÞÞ
T
of (8) are of the

following form

uiðsÞ ¼ uiðsÞ; viðsÞ ¼ /iðsÞ; ð11Þ

where s� 0; i ¼ 1; 2; . . .; n;uiðsÞ and /iðsÞ are continuous

functions.

Then the initial values hðuðsÞÞ ¼ ðh1ðu1ðsÞÞ; h2

ðu2ðsÞÞ; . . .; hnðunðsÞÞÞ
T
of (7) and hð/ðsÞÞ ¼ ðh1ð/1ðsÞÞ;

h2ð/2ðsÞÞ; . . .; hnð/nðsÞÞÞ
T

of (10) are of the following

form

xiðsÞ ¼ hiðuiðsÞÞ; yiðsÞ ¼ hið/iðsÞÞ; s� 0; ð12Þ

where i ¼ 1; 2; . . .; n.

Remark 2 The assumptions in this paper are very mild

and can be easily verified. Recently, the authors in Wu and

Zeng (2012, 2013), Wu et al. (2011, 2012), and Zhang

et al. (2012, 2013a, b) investigated the stability and syn-

chronization of neural networks with memristors under the

following condition ðH�Þ:

co½wij; �wij�fjðxjÞ � co½wij; �wij�fjðyjÞ

	 co½wij; �wij�ðfjðxjÞ � fjðyjÞÞ;

co½dij;
�dij�fjðxjÞ � co½dij;

�dij�fjðyjÞ

	 co½dij; �wij�ðfjðxjÞ � fjðyjÞÞ;

co½f
ij
;

�fij�fjðxjÞ � co½f
ij
;

�fij�fjðyjÞ

	 co½f
ij
; �wij�ðfjðxjÞ � fjðyjÞÞ:

242 Cogn Neurodyn (2014) 8:239–249
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However, the condition ðH�Þ is not right. We take the first

inclusion relation as example. When n1 ¼ wij and n2 ¼ �wij;

then, for any xj; yj 2 R; there exists n 2 co½wij; �wij� such

that

n1fjðxjÞ � n2fjðyjÞ ¼wijfjðxjÞ � �wijfjðyjÞ

¼ nðfjðxjÞ � fjðyjÞÞ:
ð13Þ

Obviously, n 6¼ wij and n 6¼ �wij: Otherwise, n ¼ wij ¼ �wij;

which contradicts the condition wij\ �wij: Hence,

wij\n\ �wij: ð14Þ

It follows from (13) and (14) that

fjðxjÞ ¼
�wij � n

wij � n
fjðyjÞ; ð15Þ

which means that

fjðxjÞ � fjðyjÞ ¼
�wij � n

wij � n
� 1

" #

fjðyjÞ: ð16Þ

On the other hand, one has from (14) that
�wij�n

w
ij
�n
\0: So, the

equality (16) implies that fjðxjÞ\0. From the arbitrariness

of xj 2 R we get that fjðuÞ is an negative-valued function

on R: However, considering fjðxjÞ\0 and
�wij�n

w
ij
�n
\0; we

obtain from (15) that fjðyjÞ[ 0, which implies that fjðuÞ is

a positive-valued function on R; this is a contradiction.

Hence, there is no n 2 co½wij; �wij� such that the equality

(13) holds, and so the first inclusion relation ðH�Þ is not

correct.

If fjðuÞ; j ¼ 1; 2; . . .; n; u 2 R satisfy the Lipschitz con-

dition, i.e., there exist positive constants Lj such that

jfjðxjÞ � fjðyjÞj � Ljjxj � yjj for all xj; yj 2 R; then other

contradiction can also derived. It is obtained from (16)

that

jfjðxjÞ � fjðyjÞj ¼
�wij � n

wij � n
� 1

 !

fjðyjÞ

�

�

�

�

�

�

�

�

�

�

� Ljjxj � yjj:

ð17Þ

Letting xj ! yj; the above inequality implies that

fjðyjÞ ¼ 0, which contradicts the practical meaning of

neural networks. This contradiction also means the Lips-

chitz condition of the activation and the condition ðH�Þ
cannot coexist.

Definition 2 The controlled system (8) is said to be

globally exponentially synchronized with system (1) if

there exist positive constants M and a such that

jviðtÞ � uiðtÞj �MkuðsÞ � /ðsÞkexpð�atÞ;

i ¼ 1; 2; . . .; n; hold for t� 0, where kuðsÞ � /ðsÞk ¼
sups� 0 max1� i� n juiðsÞ � /iðsÞj:

Lemma 1 (Chain rule) Clarke (1987). If VðxÞ : Rn ! R

is C-regular and xðtÞ is absolutely continuous on any

compact subinterval of ½0;þ1Þ; then xðtÞ and

VðxðtÞÞ : ½0;þ1Þ ! R are differentiable for a.a. t 2

½0;þ1Þ and

d

dt
VðxðtÞÞ ¼ cðtÞ _xðtÞ; 8cðtÞ 2 oVðxðtÞÞ; ð18Þ

where oVðxðtÞÞ is the Clark generalized gradient of V at

xðtÞ.

Synchronization control of memristor-based Cohen–

Grossberg neural networks

In this section, synchronization criteria for memristor-

based Cohen–Grossberg neural networks with time-varying

and unbounded distributed delays under the controller (9)

is derived by rigorous mathematical proof. One corollary,

which is applicable to memristor-based recurrent networks,

is also derived.

Theorem 1 Assume (H1)–(H6) hold and the following

inequalities are satisfied:

pi[
�ai

ai
�aili þ

X

n

j¼1

�ajLjð �wij þ �cij

 

þ �dijbijÞÞ ¼ Ni;

ð19Þ

gi � �ai
X

n

j¼1

½jŵij � �wijj þ jĉij � �cijj

 

þjd̂ij � �dijjbij�Mj

�

¼ Ki;

ð20Þ

i ¼ 1; 2; . . .; n; then the controlled system (8) is globally

exponentially synchronized with system (1) under the

controller (9).

Proof Set zðtÞ ¼ ðz1ðtÞ; z2ðtÞ; . . .; znðtÞÞ
T ¼ yðtÞ � xðtÞ: It

follows from systems (7) and (10) that
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_ziðtÞ ¼ � ½biðh
�1
i ðyiðtÞÞÞ � biðh

�1
i ðxiðtÞÞÞ�

þ
X

n

j¼1

h

�cijðtÞfjðh
�1
j ðyjðtÞÞÞ: � cijðtÞfjðh

�1
j ðxjðtÞÞÞ

i

þ
X

n

j¼1

�dijðtÞfjðh
�1
j ðyjðt � sijðtÞÞÞÞ

h

�dijðtÞfjðh
�1
j ðxjðt � sijðtÞÞÞÞ

i

þ
X

n

j¼1

"

�fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðyjðsÞÞÞds:

�fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðxjðsÞÞÞds

#

�
pi

aiðh�1
i ðyiðtÞÞÞ

ðh�1
i ðyiðtÞÞ � h�1

i ðxiðtÞÞÞ

�
gi

aiðh�1
i ðyiðtÞÞÞ

signðh�1
i ðyiðtÞÞ � h�1

i ðxiðtÞÞÞ:

ð21Þ

Construct the function qiðkÞ as follows:

qiðkÞ ¼k� aili �
piai

�ai
þ
X

n

j¼1

�ajLj �wij þ �cije
ksij

�

þ�dij

Z

þ1

0

jkijðsÞje
ksds

1

A

; i ¼ 1; 2; . . .; n: ð22Þ

It follows from (19) that qi(0)\ 0. Moreover, qiðkÞ; i ¼

1; 2; . . .; n; are continuous functions about k 2 R; and

q0iðkÞ ¼ 1þ
X

n

j¼1

�ajLjðsij�cije
ksij þ �dij

Z

þ1

0

jkijðsÞjse
ksdsÞ[ 0;

and qiðþ1Þ ¼ þ1; hence qiðkÞ; i ¼ 1; 2; . . .; n; are

strictly monotonically increasing functions. Therefore, for

any i 2 f1; 2; . . .; ng; there is a unique ki[ 0 such that

ki � aili �
piai

�ai
þ
X

n

j¼1

�ajLjð �wij þ �cije
kisij

þ�dij

Z

þ1

0

jkijðsÞje
kisdsÞ ¼ 0:

Taking a ¼ minfk1; k2; . . .; kng yields

qiðaÞ ¼ a� aili �
piai

�ai
þ
X

n

j¼1

�ajLjð �wij þ �cije
asij

þ�dij

Z

þ1

0

jkijðsÞje
asdsÞ� 0; i ¼ 1; 2; . . .; n: ð23Þ

Define a Lyapunov functional by Vi ¼ eatjziðtÞj; i ¼

1; 2; . . .; n: In view of Lemma 1, it can be obtained from

system (21) that

_ViðtÞ ¼eatsignðziðtÞÞ �½biðh
�1
i ðyiðtÞÞÞ

	

�biðh
�1
i ðxiðtÞÞÞ� þ

X

n

j¼1

�cijðtÞfjðh
�1
j ðyjðtÞÞÞ

h

�cijðtÞfjðh
�1
j ðxjðtÞÞÞ

i

þ
X

n

j¼1

�dijðtÞfjðh
�1
j ðyjðt � sijðtÞÞÞÞ

h

�dijðtÞfjðh
�1
j ðxjðt � sijðtÞÞÞÞ

i

þ
X

n

j¼1

�fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðyjðsÞÞÞds

2

4

�fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðxjðsÞÞÞds

3

5

�
pi

aiðh�1
i ðyiðtÞÞÞ

ðh�1
i ðyiðtÞÞ � h�1

i ðxiðtÞÞÞ

�
gi

aiðh�1
i ðyiðtÞÞÞ

signðh�1
i ðyiðtÞÞ

�h�1
i ðxiðtÞÞÞg þ aeatjziðtÞj: ð24Þ

Since biðuÞ and h�1
i ðkÞ are strictly monotonically

increasing and differentiable, bið0Þ ¼ 0, and h�1
i ð0Þ ¼

0; biðh
�1
i ðkÞÞ is strictly monotonically increasing and

differentiable about k 2 R and

biðh
�1
i ðyiðtÞÞÞ � biðh

�1
i ðxiðtÞÞÞ

¼ b0iðh
�1
i ðkÞÞjk¼nðyiðtÞ � xiðtÞÞ;

ð25Þ

where b0iðh
�1
i ðkÞÞjk¼n denote the derivative of biðh

�1
i ðkÞÞ at

the point k ¼ n; n is between yiðtÞandxiðtÞ. It is obvious

that b0iðh
�1
i ðkÞÞjk¼n is unique for any yiðtÞandxiðtÞ.

Moreover, b0iðh
�1
i ðkÞÞjk¼n � aili: Therefore, it is obtained

from (25) that

� signðziðtÞÞbiðh
�1
i ðyiðtÞÞÞ � biðh

�1
i ðxiðtÞÞÞ

¼ �b0iðh
�1
i ðkÞÞjk¼njziðtÞj� � ailijziðtÞj;

ð26Þ

and

� signðziðtÞÞ
pi

aiðh�1
i ðyiðtÞÞÞ

ðh�1
i ðyiðtÞÞ � h�1

i ðxiðtÞÞÞ

� �
piai

�ai
jziðtÞj: ð27Þ

Moreover, since h�1
i ðkÞ strictly monotone increasing and

h�1
i ð0Þ ¼ 0, we get signðh�1

i ðyiðtÞÞ � h�1
i ðxiðtÞÞÞ ¼

signðziðtÞÞ. Thus,
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� signðziðtÞÞ
gi

aiðh�1
i ðyiðtÞÞÞ

signðh�1
i ðyiðtÞÞ

� h�1
i ðxiðtÞÞÞ ¼ �

gi
aiðh�1

i ðyiðtÞÞÞ
� �

gi
�ai

: ð28Þ

It is derived from ðH1Þ; ðH4Þ; ðH5Þ and ðH6Þ that

j�cijðtÞfjðh
�1
j ðyjðtÞÞÞ � cijðtÞfjðh

�1
j ðxjðtÞÞÞj

� j�cijðtÞfjðh
�1
j ðyjðtÞÞÞ � �cijðtÞfjðh

�1
j ðxjðtÞÞÞj

þ j�cijðtÞfjðh
�1
j ðxjðtÞÞÞ � cijðtÞfjðh

�1
j ðxjðtÞÞÞj

� �wijLj�ajjzjðtÞj þ jŵij � �wijjMj; ð29Þ

j�dijðtÞfjðh
�1
j ðyjðt � sijðtÞÞÞÞ

� dijðtÞfjðh
�1
j ðxjðt � sijðtÞÞÞÞj

� �cijLj�ajjzjðt � sijðtÞÞj þ jĉij � �cijjMj; ð30Þ

and

�fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðyjðsÞÞÞds

�

�

�

�

�

�

�fijðtÞ

Z

t

�1

Kijðt � sÞfjðh
�1
j ðxjðsÞÞÞds

�

�

�

�

�

� �dijLj�aj

Z

t

�1

Kijðt � sÞjzjðsÞjdsþ jd̂ij � �dijjbijMj: ð31Þ

Substituting (26)–(9) into (24) produces the following

inequality:

_ViðtÞ� eat a� aili �
piai

�ai


 �

jziðtÞj

�

þ
X

n

j¼1

�wijLj�ajjzjðtÞj þ �cijLj�ajjzjðt � sijðtÞÞj
�

þ�dijLj�aj

Z

t

�1

Kijðt � sÞjzjðsÞjds

3

5

þ
X

n

j¼1

½jŵij � �wijj þ jĉij � �cijj

þjd̂ij � �dijjbij�Mj �
gi
�ai

�

: ð32Þ

Considering the condition (20), we get from (32) that

_ViðtÞ� a� aili �
piai

�ai


 �

ViðtÞ þ
X

n

j¼1

½ �wijLj�ajVjðtÞ

þ �cije
asijLj�ajVjðt � sijðtÞÞþ�dijLj�aj

Z

t

�1

Kijðt � sÞeaðt�sÞVjðsÞds�; i ¼ 1; 2; . . .; n:

ð33Þ

It is obvious that

jziðtÞj � khðuÞ � hð/Þk� khðuÞ � hð/Þke�at

for t� 0; i ¼ 1; 2; . . .; n: We claim that

ViðtÞ ¼ jziðtÞje
at �khðuÞ � hð/Þk ð34Þ

for all t� 0; i ¼ 1; 2; . . .; n: Contrarily, there must exists

i0 2 f1; 2; . . .; ng and ~t[ 0 such that

Vi0ð~tÞ ¼ khðuÞ � hð/Þk;
_Vi0ð~tÞ[ 0; ð35Þ

and

ViðtÞ� khðuÞ � hð/Þk; 8t� ~t; i ¼ 1; 2; . . .; n: ð36Þ

Together with (33), (35), and (36), we obtain that

0\ _Vi0ð~tÞ

� a� ai0 li0 �
pi0ai0
�ai0


 �

Vi0ð~tÞ

þ
X

n

j¼1

�wi0jLj�ajVjðtÞ þ �ci0je
asi0 jLj�aj�

�

Vjð~t � si0jð~tÞÞ

þ�di0jLj�aj

Z

~t

�1

Ki0jð~t � sÞeað~t�sÞVjðsÞds�

� khðuÞ � hð/Þkfa� ai0 li0 �
pi0ai0
�ai0

þ
X

n

j¼1

�ajLjð �wi0j þ �ci0je
asi0 j

þ�di0j

Z

þ1

0

jki0jðsÞje
asdsÞg:

Hence,

0\a� ai0 li0 �
pi0ai0
�ai0

þ
X

n

j¼1

�ajLjð �wi0j þ �ci0je
asi0 j

þ�di0j

Z

þ1

0

jki0jðsÞje
asdsÞ;

which contradicts (23). Hence (34) holds. It follows that

jziðtÞj � khðuÞ � hð/Þke�at
; ð37Þ

for 8t� 0; i ¼ 1; 2; . . .; n: It follows from (37) that

jviðtÞ � uiðtÞj ¼ jh�1
i ðyiðtÞÞ � h�1

i ðxiðtÞÞj

� �aijziðtÞj

�
�a

a
ku� /ke�at ð38Þ
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for 8t� 0; i ¼ 1; 2; . . .; n; where �a ¼ maxf�ai; i ¼

1; 2; . . .; ng and a ¼ minfai; i ¼ 1; 2; . . .; ng: According to

Definition 2, the controlled system (8) is globally expo-

nentially synchronized with system (1) under the controller

(9). This completes the proof.

Remark 3 We first transform the Cohen–Grossberg neural

network (1) and (8) into (7) and (10) respectively, then we

get the exponential synchronization criteria between (1) and

(8) through investigating the exponential synchronization

criteria between (7) and (10). By this way, we need not to

introduce special condition as those in Gan (2012) for

Cohen–Grossberg neural network to derive synchronization

criteria. Moreover, the transformation technique used in this

paper also enables us to simplify Lyapunov function to

prove our main results. However, the conventional Lyapu-

nov functions for studying stability and synchronization of

Cohen–Grossberg neural network are not so simple.

Remark 4 How to deal with the general amplification

function aiðuiðtÞÞ is a key technology in studying synchro-

nization of Cohen–Grossberg neural networks. In Zhu and

Cao (2010) and He and Cao (2008), the amplification func-

tion aiðuiðtÞÞ was constant, which simplified the research

greatly. Hence the methods in Zhu and Cao (2010) and He

and Cao (2008) are invalid for the models of this paper.

When ai ¼ �ai ¼ 1 in ðH2Þ, then the memristor-based

Cohen–Grossberg neural networks in this paper turn out to

the models considered in Wu and Zeng (2012, 2013), Wu

et al. (2011, 2012), and Zhang et al. (2012, 2013a, b). We

derive the following corollary from Theorem 1.

Corollary 1 Assume ðH1Þ�ðH6Þ hold and ai ¼ �ai ¼ 1;

and the following inequalities are satisfied:

pi[ � li þ
X

n

j¼1

Ljð �wij þ �cij þ �dijbijÞ; ð39Þ

gi �
X

n

j¼1

½jŵij � �wijj þ jĉij � �cijj

þ jd̂ij � �dijjbij�Mj;

ð40Þ

i ¼ 1; 2; . . .; n; then the controlled system (8) is globally

exponentially synchronized with system (1) under the

controller (9).

Remark 5 The designed controller (9) synchronizes the

memristor-based Cohen–Grossberg neural networks

effectively. One may notice that the designed controller

consists two parts: �piðviðtÞ � uiðtÞÞ and �gisignðviðtÞ

�uiðtÞÞ. It can be seen from the proof of Theorem 1 that

the part �gisignðviðtÞ � uiðtÞÞ in the controller plays an

important role in dealing with the uncertain differences

between the Filippov solutions of the drive and response

systems, while the other part �piðviðtÞ � uiðtÞÞ is to drive

the state of the slave system to synchronize with the

master system.

Examples and simulations

In this section, numerical example is given to show

the effectiveness of our theoretical results obtained

above.

Consider a memristor-based Cohen–Grossberg neural

network model with mixed delays as follows:

_uiðtÞ ¼ � aiðuiðtÞÞ biðuiðtÞÞ �
X

2

j¼1

wijðuiðtÞÞ
�

(

� fjðujðtÞÞ þ cijðuiðtÞÞfjðujðt � sijðtÞÞÞ

þdijðuiðtÞÞ

Z

t

�1

Kijðt � sÞfjðujðsÞÞds

3

5

�Iig; i ¼ 1; 2; ð41Þ

where a1ðu1Þ ¼ 6þ 1
1þu2

1

; a2ðu2Þ ¼ 3� 1
1þu2

2

; b1ðu1Þ ¼ 1:61

u1 þ sinðu1Þ; b2ðu2Þ ¼ 1:45u2 þ sinðu2Þ; I1 ¼ �0:01; I1 ¼

�0:12; s11ðtÞ ¼ 1� 0:2j sinðtÞj; s12ðtÞ ¼ 0:9� 0:1j cosðtÞj;

s21ðtÞ ¼ j sinðtÞj; s22ðtÞ ¼ j cosðtÞj;KijðtÞ ¼ e�0:5t
; fiðuiÞ ¼

tanhðuiÞ; i; j ¼ 1; 2;

w11ðu1Þ ¼
1:81; ju1j\0:3;

2:2; ku1j[ 0:3;

�

w12ðu1Þ ¼
�0:14; ku1j\0:3;

0:12; ku1j[ 0:3;

�

w21ðu2Þ ¼
�1:9; ku2j\1;

�2:2; ku2j[ 1;

�

w22ðu2Þ ¼
5; ku2j\1;

5:2; ku2j[ 1;

�

c11ðu1Þ ¼
�0:95; ku1j\0:3;

�1:3; ku1j[ 0:3;

�

c12ðu1Þ ¼
0:08; ku1j\0:3;

0:15; ku1j[ 0:3;

�

c21ðu2Þ ¼
�0:2; ku2j\1;

�0:18; ku2j[ 1;

�

c22ðu2Þ ¼
�2:5; ku2j\1;

�2:3; ku2j[ 1;

�
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d11ðu1Þ ¼
0:6; ku1j\0:3;

0:65; ku1j[ 0:3;

�

d12ðu1Þ ¼
0:12; ku1j\0:3;

�0:12; ku1j[ 0:3;

�

d21ðu2Þ ¼
�0:2; ku2j\1;

�0:18; ku2j[ 1;

�

d22ðu2Þ ¼
�0:1; ku2j\1;

�0:12; ku2j[ 1:

�

Obviously, the assumptions ðH1Þ � ðH6Þ are satisfied

with s11 ¼ 1:2; s12 ¼ 1; s21 ¼ s22 ¼ 1; a1 ¼ 6; �a1 ¼ 7; a2 ¼

2; �a2 ¼ 3; l1 ¼ 0:61; l2 ¼ 0:45; Li ¼ 1, and bij ¼ 2; i; j ¼

1; 2. Figure 1 describes trajectories of (41) with different

initial valves. Moreover, when uðtÞ ¼ ð�0:2; 1:2ÞT ; t 2

½�5; 0�; uðtÞ ¼ 0 for t 2 ð�1;�5Þ, we have

M1 ¼ 0:6206andM2 ¼ 1.

The controlled response system is described by

_viðtÞ ¼ � aiðviðtÞÞ

(

biðviðtÞÞ �
X

2

j¼1

"

wijðviðtÞÞ::

� hjðvjðtÞÞ þ cijðviðtÞÞfjðvjðt � sijðtÞÞÞ

þdijðviðtÞÞ

Z

t

�1

Kijðt � sÞgjðvjðsÞÞds

#

�Ii

)

þ RiðtÞ; i ¼ 1; 2; ð42Þ

where the feedback control RiðtÞ is defined in ((9).

By simple computation, we have N1 ¼ 36:8550;

N1 ¼ 63:78, K1 ¼ 9:0763; and K2 ¼ 1:9456: According to

Theorem 1, the response system (42) can globally expo-

nentially synchronize with the drive system (41) if we take

p1 ¼ 67; p2 ¼ 64; g1 ¼ K1; and g2 ¼ K2: In the simula-

tions, the initial condition of system (41) and (42) are the

same as those of (a) and (b) in the Fig. 1, respectively.

Figure 2 shows the time responses of synchronization
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Fig. 1 Trajectories of system (41) with different initial values:

a uðtÞ ¼ ð�0:2; 1:2ÞT ; t 2 ½�5; 0�; uðtÞ ¼ 0 for t 2 ð�1;�5Þ;

b uðtÞ ¼ ð0:4; 0:6ÞT ; t 2 ½�5; 0�; uðtÞ ¼ 0 for t 2 ð�1;�5Þ:
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Fig. 2 Time responses synchronization errors e1ðtÞ (upper) and e2ðtÞ
(lower) between (41) and (42) under the controller (9)
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errors, which implies that the states of the two systems

realize synchronization quickly as time goes.

Remark 6 Figure 2 shows that initial values have impor-

tant effects on the trajectories of memristor-based neural

networks. This is because the parameters of memristor-

based neural networks depend on the states. Moreover, the

numerical example demonstrates that the designed controller

(9) is powerful to synchronize memristor-based neural net-

works even though the different trajectories of the coupled

memristor-based neural networks.

Conclusions

In this paper, global exponential synchronization of

memristor-based Cohen–Grossberg neural networks model

with time-varying discrete delays and unbounded distrib-

uted delays has been studied. The considered model is

general and covers most of the existing neural network

models. By adding a new controller to the response system,

this paper shows theoretically and numerically that the

response system can globally exponentially synchronize

with the drive system, where the synchronization criteria

are easily verified. As a by product, numerical simulations

also show that the initial values of the memristor-based

Cohen–Grossberg neural networks have key effects on their

trajectories.
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