
 Open access  Journal Article  DOI:10.1038/NMETH.2656

eXtasy: variant prioritization by genomic data fusion — Source link 

Alejandro Sifrim, Dusan Popovic, Léon-Charles Tranchevent, Amin Ardeshirdavani ...+6 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 01 Nov 2013 - Nature Methods (Nat Methods)

Topics: Exome sequencing, Exome, Massive parallel sequencing, Genomics and Nonsynonymous substitution

Related papers:

 Improved exome prioritization of disease genes through cross-species phenotype comparison.

 Phen-Gen: combining phenotype and genotype to analyze rare disorders

 A method and server for predicting damaging missense mutations.

 
Phevor Combines Multiple Biomedical Ontologies for Accurate Identification of Disease-Causing Alleles in Single
Individuals and Small Nuclear Families

 Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome

Share this paper:    

View more about this paper here: https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-
37psbbd28z

https://typeset.io/
https://www.doi.org/10.1038/NMETH.2656
https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-37psbbd28z
https://typeset.io/authors/alejandro-sifrim-45mjketaeb
https://typeset.io/authors/dusan-popovic-2mjva2y3zw
https://typeset.io/authors/leon-charles-tranchevent-26zzo9117d
https://typeset.io/authors/amin-ardeshirdavani-4lxlj645av
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/nature-methods-2zkopt6l
https://typeset.io/topics/exome-sequencing-2vbpip7x
https://typeset.io/topics/exome-aovl2uct
https://typeset.io/topics/massive-parallel-sequencing-2hfjsuka
https://typeset.io/topics/genomics-2xj41atv
https://typeset.io/topics/nonsynonymous-substitution-3ji18fef
https://typeset.io/papers/improved-exome-prioritization-of-disease-genes-through-cross-2gimh4bbbk
https://typeset.io/papers/phen-gen-combining-phenotype-and-genotype-to-analyze-rare-4fqbs932fw
https://typeset.io/papers/a-method-and-server-for-predicting-damaging-missense-3oxxwc0wx3
https://typeset.io/papers/phevor-combines-multiple-biomedical-ontologies-for-accurate-1638ow00tb
https://typeset.io/papers/effective-diagnosis-of-genetic-disease-by-computational-1g29iamyqd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-37psbbd28z
https://twitter.com/intent/tweet?text=eXtasy:%20variant%20prioritization%20by%20genomic%20data%20fusion&url=https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-37psbbd28z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-37psbbd28z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-37psbbd28z
https://typeset.io/papers/extasy-variant-prioritization-by-genomic-data-fusion-37psbbd28z


eXtasy: variant prioritization by genomic data fusion 
 

Alejandro Sifrim1,2,4, Dusan Popovic1,2,4, Leon-Charles Tranchevent1,2, Amin 
Ardeshirdavani1,2, Ryo Sakai1,2, Peter Konings1,2,  Joris R. Vermeesch3, Jan Aerts1,2, Bart 
De Moor1,2,   Yves Moreau1,2 
 
 

1 Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal 
Processing and Data Analytics, KU Leuven, Leuven, Belgium 
2 iMinds Future Health Department, Leuven, Belgium  
3 Laboratory of Molecular Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium 
4 These authors contributed equally to this work 
 

Corresponding author: Yves Moreau, yves.moreau@esat.kuleuven.be 

 

 

 

ABSTRACT 

Massive parallel sequencing greatly facilitates the discovery of novel disease genes causing 

Mendelian and oligogenic disorders. However, many mutations are present in any individual 

genome, and identifying which ones are disease causing remains a largely open problem. We 

introduce a new approach to prioritize nonsynonymous single nucleotide variants (nSNVs) that 

substantially improves prediction of disease-causing variants in exome sequencing data by 

integrating variant impact prediction, haploinsufficiency prediction and phenotype-specific gene 

prioritization.  

MAIN TEXT 

Rare exomic variation identified by exome sequencing is particularly useful to discover the 

cause of many previously unresolved rare monogenic disorders. By filtering down the exome 

against nonsynonymous single nucleotide variants (nSNVs) and loss-of-function mutations that 

are not present in healthy populations or unaffected samples, we can discard a large proportion 

of the exomic variation as probably neutral. However, despite such aggressive filtering, several 

thousand candidate causal mutations remain and we need predictive methods to prioritize 

variants for further validation. Several computational methods have been proposed that take 

into account biochemical, evolutionary and structural properties of mutations to assess their 

potential deleteriousness1–5. However, most of these methods suffer from high false positive 

rates when predicting the impact of rare nSNVs4. A plausible explanation for this poor 

performance is that many of the scrutinized variants are mildly deleterious and subject to weak 



purifying selection6,7, but not specific to the disease of interest. To assess this hypothesis and to 

further enhance variant prioritization, we propose a genomic data fusion methodology8 that 

integrates multiple strategies to detect deleteriousness of mutations and prioritizes them in a 

phenotype-specific manner. A key innovation that we incorporate into our strategy is a 

computational method for gene prioritization9, which scores mutated genes based on their 

similarity to known disease genes by fusing heterogeneous genomic information. We also 

integrate haploinsufficiency prediction scores10 that predict the probability that the function of a 

gene is affected if present in a functionally haploid state. To integrate or fuse these data 

sources, we use random forest learning11 and train our model on the Human Gene Mutation 

Database (HGMD) of human disease-causing mutations12 compared to three control sets: 

common polymorphisms and two independent sets of rare variation. 

After generating and annotating the different data sets, we inspected the distribution of the 

different deleteriousness prediction scores across the positive and control sets (Supplementary 

Fig. 1). All deleteriousness prediction scores seemed to score the positive set high and thus 

showed a high sensitivity. When looking at the control sets, we observed that most methods 

correctly classified common polymorphisms as benign - yet classified a substantial proportion of 

rare variation as deleterious, leading to a low precision. Control variants seemed to occur more 

often in genes predicted to maintain functionality in a haploid state (being haplosufficient), 

whereas disease-causing variants showed no clear pattern. Disease-causing variants were 

primarily found in top-ranked genes after gene prioritization. By contrast, control variants 

showed a homogeneous distribution of gene prioritization ranks, which is to be expected under 

the assumption that they are prioritized for randomly selected phenotypes.  

By integrating these different scores, we aimed to boost our ability to discriminate between 

putatively mildly deleterious rare variants and actual disease causing variation. We evaluated 

several commonly used classification approaches and chose a Random Forest (RF) 

classification algorithm because it outperformed all other classification algorithms on this task 

(Supplementary Table 1). This classifier is trained by comparing our positive set of disease-

causing variants to the rare variant control sets.  When compared to classical deleteriousness 

prediction scores, we observe a considerable improvement in all performance measures. This is 

the case when distinguishing between disease-causing and rare control variants (Fig. 1a, 

Supplementary Fig. 2a,b and Supplementary Table 2), as well as with distinguishing disease 

causing variants from common polymorphisms (Fig. 1b, Supplementary Figure 2c,d and 

Supplementary Table 2). The performance against common polymorphisms is in line with 

published results for deleteriousness prediction tools because these tools were trained using 



common polymorphisms as controls. The performance of these tools against rare non-disease-

causing variants is much lower than against common polymorphisms. Precision is the most 

improved performance measure, which is important when dealing with a prioritization task 

(Supplementary Table 1, Supplementary Note). However, performance measures obtained in 

retrospective benchmarks such as ours are usually optimistic estimates, because of the bias of 

prior information for gene prioritization predictions8,13. This problem is difficult to address in an 

initial study and can only be truly resolved by long-term prospective benchmarks where 

predictions are made on the current state of knowledge and validated in future studies. To 

estimate to which degree such bias was present in our benchmark, we assessed classification 

performance based on the date of discovery of the causative variation using data for gene 

prioritization anterior to the year of discovery (Supplementary Fig. 3). If a bias is present, it 

would be less prominent in recent discoveries as these gene-disease associations would be 

less likely to be directly or indirectly incorporated in the gene prioritization data sources.  Even 

though we see a slight decline in performance (in terms of Area Under the Curve) for more 

recent discoveries, the method still performs considerably better than classical deleteriousness 

prediction scores (Fig. 1c, Supplementary Table 3). The performance of deleteriousness 

prediction scores is not affected by the year of discovery of the association, which is expected 

because these scores do not integrate time-dependent information. Finally, we looked at feature 

importance by shuffling each feature across disease-causing and control variants evaluating the 

increase in classification error (Supplementary Fig. 4). This analysis showed that all included 

features were informative and improved classification to some degree.   

In this study, we show a novel approach towards integrating biochemical, evolutionary and 

phenotype-specific information to prioritize mutations for follow-up validation studies. This 

approach helps to distinguish disease-causing mutations from neutral common polymorphisms 

as well as rare, potentially deleterious but phenotypically unrelated variation in the coding 

genome.  We acknowledge that performance measures are likely overestimated because of the 

biased nature of retrospective benchmarks, yet we can clearly appreciate a marked 

improvement in prediction performance over frequently used deleteriousness prediction scores 

in recently published mutations. We envision that in the near future current initiatives such as 

the Critical Assessment of Genome Interpretation (CAGI), although currently focused on single 

phenotype benchmarks, will play a major role in providing unbiased prospective benchmarks to 

optimally assess the performance of methods such as the one described in this study. 

Future research and the availability of larger public disease-causing variation data sets will likely 

widen the scope of the method to other types of mutations (mitochondrial, noncoding, 



synonymous, nonsense, splice-site mutations, indels). Also, the addition of other data sources, 

such as locus-specific information (e.g., copy number variant prevalence, GWAS-associated 

loci), to our prioritization method and its integration into genetic association test across multiple 

samples14,15 will likely increase its power to discover the cause of genetic disease. 

We freely provide public access to the described methodology through a web tool and also 

provide an offline standalone version (http://homes.esat.kuleuven.be/~bioiuser/eXtasy/, source 

code: http://github.com/asifrim/eXtasy).  
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FIGURE LEGENDS 

Figure 1: Receiver-Operator Curves (ROC) comparing eXtasy and classical 

deleteriousness prediction scores: ROC curves for (a) disease-causing vs. rare control 

variants (b) disease-causing vs. common polymorphisms. In both cases eXtasy outperforms 

other methods as can be seen by an increase in the area under the curve (AUC). (c) To test the 

effect of biases in our retrospective benchmark we compared obtained AUCs by stratifying 

disease-causing variants on the year of discovery. More recent disease variant associations 



show a decrease in performance for eXtasy as biases decrease. The method however always 

outperforms classical deleteriousness prediction scores. 

ONLINE METHODS 

Data generation 

To evaluate the effectiveness of our approach, we assembled and evaluated a data set 

consisting of disease-causing variants and different types of control variants. We used a positive 

data set consisting of 24,454 disease-causing nSNVs from the HGMD associated to 1,142 

different Human Phenotype Ontology (HPO) terms16. Mapping between HGMD disease 

descriptors and HPO terms was performed using the Phenomizer tool17. Phenotypic terms for 

which fewer than three implicated genes were known were discarded (excluding the gene in 

which the variant was located) so as to allow meaningful subsequent gene prioritization. For the 

control data sets, we considered two classes of variants based on their minor allele frequency 

(MAF) in the 1000 Genomes Project data set: common polymorphisms (MAF > 1%) and rare 

variation (MAF <= 1%). Additionally we compiled a third control set of rare variants using in-

house sequenced exomes of healthy individuals and retaining only high quality calls (coverage 

> 30X) not present in any publicly available variant database (NHLBI EVS, dbSNP, 1000G). 

After randomly assigning groups of 500 control variants from each control set to each HPO term 

represented in the disease-causing variants, we annotated all variant-phenotype combinations 

with functional information. For every variant, we extracted Polyphen21, SIFT2, MutationTaster3 

and LRT5 deleteriousness prediction scores from the dbNSFP database18. We calculated 

CAROL aggregate deleteriousness scores19 and added phyloP20 and PhastCons21 evolutionary 

conservation scores across vertebrates, primates and placental mammals subsets from the 

UCSC genome browser database. We also included precalculated gene haploinsufficiency 

prediction scores10 where available. Finally, we computed gene prioritization scores with 

Endeavour9 using gene-phenotype associations obtained from HPO. (For additional information 

on the data generation and annotation process see Supplementary Note) 

 

Classifier benchmarks 

We set up a benchmark to determine the optimal classifier for genomic data fusion. To do this, 

we followed published guidelines22 applicable to these types of studies. Initially, we removed all 

records containing missing values and split the disease-causing variants into training (two thirds 

of the total number of genes) and testing sets (one third of the genes)(Supplementary Fig. 5). 

The data records were stratified at the gene level (the highest level of granularity) to assure that 

the algorithm is not overfitting the gene level information and thus does not overestimate 



performance. Subsequently, we randomly subsampled the negative examples in the training 

set, so as to balance their number with the number of positive examples. We then trained 8 

different classifiers  using the same combinations of training and test subsets for all classifiers. 

In addition, we applied state-of-the-art deleteriousness prediction methods (Polyphen, SIFT, 

Mutation Taster and Carol scores) using their respective published or documented decision 

thresholds (0.85, 0.95, 0.5, 0.98). As there were several records per single variant in the data 

set (because of the different phenotypes per variant), we used the maximum score across 

phenotypes in testing to predict the outcome for each variant. We chose the maximum as this is 

robust to non-informative phenotypes (because of phenotypically variable diseases) which might 

be present in our benchmark data set of disease-causing variants. This did not apply for 

methods that produce a single score per variant because they are not phenotype specific 

(Polyphen, SIFT, Mutation Taster, and Carol). 

The procedure was repeated 100 times on different random splits of data to obtain an estimate 

of the variance of the resulting performance measures. The results were computed in terms of 

accuracy, sensitivity, specificity, positive and negative predictive value, Matthews correlation 

coefficient, area under the Receiver/Operator Curve (ROC) and Precision/Recall (PR) Curves. 

We observed that all the classifiers built using all heterogeneous data sources perform better 

than state-of-the-art deleteriousness prediction methods, proving that these data sources 

contain additional information that facilitates better predictions.  

Among all classification algorithms, the random forest (RF) outperformed all others in terms of 

all performance metrics, with the exception of sensitivity and negative predictive value (NPV) 

where linear discriminant analysis (LDA) performed marginally better (Supplementary Table 1, 

Supplementary Fig. 6 and 7). However, precision (positive predictive value or PPV) of the LDA 

is very low (0.35), indicating that the classifier is overly optimistic. The same observation holds 

for all of the state-of-the-art methods (precision between 0.20-0.23). Furthermore, the PR curve 

for the random forest shows that changing the default threshold (0.5) of the classifier results in a 

sharp increase in precision yet a small loss in sensitivity. This suggests that most of the true 

positives are highly ranked by the method.  Also, the reported accuracy and other aggregate 

performance measures of the state-of-the-art tools depend greatly on where the decision 

threshold is set and the skewness of the class distribution. Even though the AUC for some of 

the ROC curves are higher on one tool compared to another, sometimes a point can be found 

where a certain measure is higher for the tool with the lower AUC. 

For all classification algorithms, we use their respective Matlab 7.10 implementations – 

classregtree class for the decision trees, TreeBagger class for the random forests, function 



knnclassify for k-nearest-neighbours, function classify (with argument “linear” or “quadratic”) for 

the LDA and QDA respectively, class NaiveBayes for Naive Bayes classification and functions 

svmtrain and svmclassify for the feed-forward neural networks. Most of the used functions and 

classes are part of the Statistical Toolbox, except for KNN and SVMs (Bioinformatics Toolbox). 

The details on parameter settings of particular classifiers are provided in Supplementary Table 

5. 

 

Control set benchmarks 

We set up an additional benchmark to assess the behaviour of the final model under different 

classification schemes with regard to the different negative outcomes. We considered two 

different scenarios for training and testing. In a first scenario, the Random Forest model is 

trained using a subset of the rare non-disease causing variants as negatives, and tested against 

the rest of them (as in our standard setup).In a second scenario, the Random Forest model is 

trained using all of the rare non-disease causing variants available as negatives, and tested 

against the data set containing common polymorphisms. 

In the case of the first scenario, the validation scheme is identical to the classifier benchmark: all 

data, including all positive and the negative examples, have been repeatedly (100 iterations) 

divided at random into training and testing subsets, grouped gene by gene. In the case of the 

second scenario, only the positive examples were randomly assigned, while the two distinct 

groups of negatives, rare and polymorphisms were used for respectively training and testing 

(Supplementary Fig. 8). We made sure that during a single iteration a split of positives stayed 

the same across the two scenarios.  

 

Temporal stratification analysis 

To analyze the sensitivity of the method with regard to a priori gene or disease association 

biases, we set up an additional benchmark to estimate the effect size of such biases. Under the 

assumption that recently published genes would be less likely to be biased by our gene 

prioritization step, we stratified our positive testing set of disease-causing variants by year of 

publication (2000-2012), while training the model only on data published prior to 2000.  In this 

way we can measure performance before and after Endeavour’s data sources were last 

updated (last update occurred in 2008).  This threshold applies to both variant and gene level of 

data granularity, so that variants that are discovered after 2000 but which are associated with 

genes that are part of the training (i.e., for which the gene-phenotype association was 

discovered prior to 2000) are also removed from test sets. The negative examples (non-disease 



causing variants) were randomly assigned to one given year between 2000 and 2012, in 

numbers matching the class distribution of the whole data (given the number of positives in a 

particular year), and with no overlap between training and test sets (see Supplementary Fig. 

9). As before, the splits are performed gene-wise. After the training phase the classifier was 

used on cases from the subsequent years (2000-2011). The whole procedure of randomly 

assigning negatives was repeated 100 times to get stable estimates of performance metrics.  

We observe a slight temporal decline in performance throughout all testing years. Nevertheless, 

eXtasy still significantly outperforms all classical deleteriousness prediction methods across all 

years. We attribute this decline in performance to the fact that over time some disease-causing 

genes are better described in the gene prioritization sources (e.g., literature mining) and are 

therefore easier to classify. Although such effects are likely present and point to the fact that our 

main benchmark is an overoptimistic estimate of the real performance, this benchmark setting is 

a pessimistic estimate of the real performance due to various properties of the training/validation 

scheme. First, only a fraction of the positive training data can be used (data prior to 2000), 

leading to suboptimal learning of the features of disease-causing variants. Secondly, the training 

data itself contains well-described genes and is thus itself biased towards easier to classify 

examples. This leads to overly optimistic decision thresholds in the classifier, and thus degrades 

the performance when faced with more difficult examples of less well-described genes in the 

testing set. Finally, due to the gene-wise stratification of training and testing sets (to avoid 

overfitting specific genes), if a gene was published prior to 2000 but then later published in the 

light of a new phenotype, it was omitted from the test set. Well-described genes are often 

discovered to play important roles in new (and often related) physiological processes. This type 

of discoveries can greatly benefit from gene prioritization approaches but are excluded from this 

benchmark.  

The real performance of the classifier depends greatly on the use case which is unknown to the 

researcher applying the method. In the case where the cause of the phenotype is a novel 

mutation in a previously described gene, the performance is likely to resemble, or even exceed, 

that of the cross-validation benchmark. When the phenotype is caused by a novel mutation in a 

gene not previously associated with the phenotype, or associated with a different phenotype, 

the real performance lies likely between the overoptimistic cross-validation benchmark and the 

pessimistic temporal analysis benchmark (the shaded light blue area in Supplementary Fig. 3).   

 

Feature importance analysis 



The Random Forest algorithm has the intrinsic ability to estimate the importance of features 

used for training11. This is achieved by measuring the difference between the mean square error 

of the prediction on out-of-bag (OOB) examples when values of a given feature are shuffled 

compared to the error on undisturbed OOB data. This procedure is repeated for each and every 

tree in the ensemble with its corresponding OOB examples, providing a global measure of 

feature importance. Here, we analyzed how the different features in the data contributed to the 

overall classification. In particular, we ran 100 simulations (in line with previously described 

benchmarks) per feature during which ensembles are built using different random subsamples 

of the negative data. The result in terms of mean square error increase when shuffling the 

feature is displayed in Supplementary Fig. 4. From the plot, it appears that all features 

contribute to the classification to some degree. The increase of total MSE when one of them is 

randomized ranges from around 2% for PPI-HPRD to 12% for sequence similarity and 

functional annotations. Secondly, highly correlated features, such as various Endeavour scores 

or state-of-the-art methods (Carol with SIFT/Polyphen) usually form clusters of seemingly less 

important features with low yet non-zero increase in mean square error. This is expected as it 

has been shown that feature importance measures for random forests are strongly affected by 

the presence of correlation between features23. In the absence of a particular feature, other 

correlated features partially “take over” the role of former, reducing the impact of the shuffling on 

the classification error. Hence, these variables are still individually very important - especially if 

data records contain missing values.      

 

METHODS-ONLY REFERENCES 

16. Robinson, P. N. et al. American journal of human genetics 83, 610–5 (2008). 

17. Köhler, S. et al. American journal of human genetics 85, 457–64 (2009). 

18. Liu, X., Jian, X. & Boerwinkle, E. Human mutation 32, 894–9 (2011). 

19. Lopes, M. C. et al. Human Heredity 73, 47–51 (2012). 

20. Pertea, M., Pertea, G. M. & Salzberg, S. L. BMC bioinformatics 12, 274 (2011). 

21. Siepel, A. et al. Genome research 15, 1034–50 (2005). 

22. Vihinen, M. BMC genomics 13 Suppl 4, S2 (2012). 

23. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. BMC bioinformatics 9, 

307 (2008).  



COMPETING FINANCIAL INTERESTS 

The authors declare no competing financial interests. 

 




