
Research Article

Feature Enhancement Network for Object Detection in Optical
Remote Sensing Images

Gong Cheng , Chunbo Lang , Maoxiong Wu, Xingxing Xie, Xiwen Yao ,

and Junwei Han

School of Automation, Northwestern Polytechnical University, Xi’an 710129, China

Correspondence should be addressed to Junwei Han; jhan@nwpu.edu.cn

Received 22 February 2021; Accepted 6 June 2021; Published 8 July 2021

Copyright © 2021 Gong Cheng et al. Exclusive Licensee Aerospace Information Research Institute, Chinese Academy of Sciences.
Distributed under a Creative Commons Attribution License (CC BY 4.0).

Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land
resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection
algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio,
indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature
Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention
Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is
introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by
jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and
selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or
absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes
the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our
proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our
proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and
demonstrate its effectiveness compared with the baseline methods.

1. Introduction

Object detection has always been a popular and important
task in computer vision [1]. In recent years, the volume of
remote sensing data is exploding with the development of
earth observation technologies. Faced with the need of auto-
matic and intelligent understanding of remote sensing big
data, multiclass object detection is becoming a key issue in
remote sensing data analysis [2, 3]. More recently, deep
learning methods have achieved promising results on natural
images, which resulted from the powerful ability of exploiting
high-level feature representations, thus offering an opportu-
nity in the interpretation applications of satellite images
including urban planning, land resource management, and
rescue missions.

However, object detection in optical remote sensing
images still remains as a tough challenge due to the particular
characteristics of the data, as shown in Figure 1. Firstly, com-

pared with natural scene images that are usually captured by
the ground-level cameras with horizontal perspectives,
remote sensing images are obtained in the bird’s-eye view
perspective with a wide range of imaging area. Secondly,
remote sensing images vary largely in object scale and aspect
ratios. This is not only due to the difference of the Ground
Sampling Distance (GSD) of aerial and satellite sensors but
also as a result of intraclass variations. Thirdly, the objects
in remote sensing images often present different visual
appearances and optical properties due to diverse imaging
conditions such as viewpoints, illumination, and occlusion
[3, 4]. Last but not least, there exists unbalanced distribution
of foreground objects and complex background information,
especially in intricate landforms and urban scenarios. All of
these issues pose great challenges for current state-of-the-
art natural image detection algorithms.

Aiming at addressing these challenges to some extent, we
propose a novel Feature Enhancement Network (FENet) for
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robust object detection in remote sensing images. Figure 2
shows the overview of our proposed network. On the one
hand, remote sensing images often contain rich spatial and
texture cues as well as complex background environment
information, which is a collection of both useful and useless
information. Therefore, there is a need to guide the network

to focus on the features that are more distinguishable for the
current object detection task. To this end, we design a Dual
Attention Feature Enhancement (DAFE) module to explore
discriminative feature representations in both spatial and
channel dimensions. On the other hand, there usually exist
highly rich ground object categories in remote sensing

Figure 1: Some example images of the DIOR dataset [3] used in our experiments, where the numbers above the bounding boxes indicate the
object classes as follows: 1, airplane; 2, airport; 3, baseball field; 4, basketball court; 5, bridge; 6, chimney; 7, dam; 8, expressway service area; 9,
expressway toll station; 10, golf field; 11, ground track field; 12, harbor; 13, overpass; 14, ship; 15, stadium; 16, storage tank; 17, tennis court;
18, train station; 19, vehicle; 20, wind mill.
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Figure 2: Framework of our proposed Feature Enhancement Network (FENet) for object detection in remote sensing images. Building on the
popular Faster R-CNN with FPN and adopting the backbone of ResNet-101, our FENet mainly consists of a Dual Attention Feature
Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. The DAFE module is used to strengthen the feature
representations of FPN by using the Dual Attention Fusion (DAF) of spatial attention and channel attention. The CFE module is used for
capturing global semantic information for better classification and bounding box regression by using a context encoding loss.
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images and a dataset cannot hold up all the appearances of
the objects of interest, which makes it hard for the object
detector to infer the object categories we are concerned.
However, there are both advantages and disadvantages in
view of this trait. The exposure of the ground objects or spa-
tial patterns of the scenes provides useful context clues [5–7]
on object classification and localization to some extent. For
each object in the training procedure, an object label deter-
mines what category the object belongs to and a ground-
truth box describes where the object locates, in which the
contextual information is not fully utilized. It is noticeable
that the scene-level context information like correlative
objects and surroundings plays a nonnegligible role in object
category and location reasoning. Our inspiration is based on
the observation that the contextual information in remote
sensing images is of great complementation for object classi-
fication and localization. For example, airplanes often appear
in airports rather than lakes or residential areas and cars
would be more likely appear in bridges, overpasses, or
expressway service areas rather than rivers or harbors. This
motivates us to design a Context Feature Enhancement
(CFE) module to leverage global contextual information to
extract more semantic features.

In summary, the main contributions of our work are as
follows. First, we present a Dual Attention Feature Enhance-
ment (DAFE) module to highlight the network to focus on
the distinctive features of the objects of interest and suppress
useless ones by reweighting the spatial and channel feature
responses. Second, we design a Context Feature Enhance-
ment (CFE) module to exploit global context cues and selec-
tively strengthen class-aware features by leveraging image-
level contextual information that indicates the presence or
absence of an object class. Besides, we employ a context
encoding loss to regularize the model training which pro-
motes the object detector to understand the scene better
and narrows the probable object categories in prediction.
Third, our DAFE and CFE modules are generic and thus
can be easily applied to existing object detection methods.
In this work, we propose a new Feature Enhancement Net-
work (FENet) by unifying DAFE and CFE into the famous
object detection framework of Faster R-CNN. Fourth, we
comprehensively evaluate our proposed method on two
large-scale remote sensing image object detection datasets,
namely, DIOR [3] and DOTA [8], and demonstrate its effec-
tiveness compared with the baseline methods.

2. Related Work

2.1. Object Detection in Natural Images. Feature extraction
plays an important role in object detection since it maps
raw input data to high-level feature representations. Tradi-
tional methods like Histogram of Oriented Gradients
(HOG) [9, 10] and Scale Invariant Feature Transform (SIFT)
[11] require careful manual engineering and a large amount
of time when faced with considerable data examples.

On the contrary, deep learning-based methods can learn
powerful feature representations directly and automatically
from the raw input data. Therefore, deep learning architec-
ture releases the heavy burden of traditional feature modeling

and engineering and thus achieves superior results over tra-
ditional feature extraction methods. In recent years, the mile-
stone frameworks of generic object detection can be broadly
organized into two mainstream approaches: two-stage detec-
tion framework and one-stage detection framework [1, 3].

Two-stage methods refer to region proposal generation at
the first stage and the following evaluation of the region pro-
posals. R-CNN [12] generates candidate proposals by selec-
tive search and becomes one of the pioneers in generic
object detection. Fast R-CNN [13] outperforms R-CNN in
both detection speed and accuracy with the idea of sharing
feature extraction network for all region proposals. Then,
an internal region proposal generation framework based on
shared deep CNN arises, which shares the convolutional fea-
ture maps for region proposal generator and object detector.
Typically, Faster R-CNN [14] proposed by Ren et al. designs
a Region Proposal Network (RPN) for region proposal
generation, encapsulating the task of proposal generation
and the detection task in a single network with many shared
convolution layers.

One-stage framework directly predicts class probabilities
and bounding box offsets in a unified manner. For example,
YOLO [15] integrates category classification and bounding
box regression into a unified network, which can reach faster
detection speed but usually trailed detection accuracy, espe-
cially faced with a successive appearance of small object
instances. SSD [16] detects multiscale bounding boxes from
multilevel feature maps with fully convolutional neural net-
works. RetinaNet [17] downweights the loss of numerous
well-classified examples by reshaping the crossentropy loss
and surpasses two-stage methods without compromising
detection speed.

Besides, detecting objects with multiscale CNN layers
also promotes detection accuracy, since it is clear that the
prediction of objects of different scales is suboptimal with
the features from a single layer. An alternative way is to use
feature pyramids [18]. FPN [19] achieves a top-down archi-
tecture to learn features with hierarchical convolution layers
and variant scales, which has shown remarkable improve-
ment as a generic feature extractor in several computer vision
tasks including object detection.

Since remote sensing images can be obtained with a wide
range of ground sample distance, the object size can be varied
from tens to thousands of pixels with dramatic aspect ratios
[3, 20]. Compared with one-stage detection methods, most
two-stage methods build proposal generation network firstly,
which eliminates most of the easy negative examples and
reaches a balanced trade-off in the training procedure. Con-
sequently, we adopt the widely used two-stage detector Faster
R-CNN with FPN [19] as our backbone in this paper for
accurate detection performance.

2.2. Object Detection in Remote Sensing Images. Deep learn-
ing methods for object detection in remote sensing images
have been investigated for years and have achieved promising
results [20–31]. A detailed survey on object detection in opti-
cal remote sensing images can be found in [2, 3].

In recent years, comprehensive studies have been made
to exploit different solutions to the problems of object

3Journal of Remote Sensing



detection in remote sensing images. For example, for the
problem of rotation variations of objects in remote sensing
images, [20] designed a rotation-invariant layer to extract
robust feature representations. References [24, 32] proposed
an effective rotation-invariant and Fisher discriminative
CNN (RIFD-CNN) model to improve detection accuracy.
Reference [25] presented a rotation-insensitive and context-
augmented object detection method. Aiming at multiscale
object detection problem, [26] introduced a crossscale feature
fusion (CSFF) framework. Reference [27] developed an
object detection method for remote sensing images by com-
bining multilevel feature fusion and an improved bounding
box regression scheme. Reference [33] designed a multiscale
object proposal network (MS-OPN) for proposal generation
and an accurate object detection network (AODN) for
detecting objects of interest in remote sensing images with
large-scale variability.

More recently, some literature began to pay attention to
the research of oriented object detection in remote sensing
images [34–44]. For example, [34] presented a region of
interest (RoI) transformer through applying spatial transfor-
mations on RoIs and learning the parameters of transforma-
tion with the supervision of oriented annotations. Reference
[35] proposed to describe an oriented object by gliding the
vertexes of each horizontal bounding box on their corre-
sponding sides, and an obliquity factor based on area ratio
was further introduced to remedy the confusion issue.
R3Det [37] encodes centers and corners information in the
features to get a more accurate location. Reference [41] pre-
sented a dynamic refinement network which enabled neu-
rons to adjust receptive fields according to the shapes and
orientations of target objects and refined the prediction
dynamically in an object-aware manner. Reference [36] pro-
posed a new rotation detector, named SCRDet, for detecting
small, cluttered, and rotated objects in remote sensing
images, which alleviated the influence of angle periodicity
by designing a novel IoU-Smooth L1 Loss. Reference [39]
used image cascade and feature pyramid jointly with multi-
size convolution kernels to extract multiscale strong and
weak semantic features for oriented object detection. Yao
et al. [44] proposed a Single-shot Alignment Network (S2A-
Net) to alleviate the inconsistency between classification
score and localization accuracy, which achieved state-of-
the-art performance on two aerial object datasets. To achieve
better detection speed, [42] used a set of default boxes with
various scales like SSD to predict oriented bounding boxes.
Reference [43] defined a rotatable bounding box to predict
the exact shape of objects for detecting vehicles, ships, and
airplanes, showing superior capability of locating multiangle
objects.

Also, somemethods were proposed for weakly supervised
object detection (WSOD) in remote sensing images [21, 23,
45–48]. For instance, [21] proposed a coupled weakly super-
vised learning framework for aircraft detection. Reference
[45] proposed aWSOD framework based on dynamic curric-
ulum learning to progressively train object detectors by feed-
ing training images with ascending difficulty. Reference [46]
proposed a new progressive contextual instance refinement
(PCIR) method to performWSOD in remote sensing images.

2.3. Attention Mechanism. Feature-based attention has
proved its effectiveness in many computer vision tasks as a
perception-adapted mechanism [49]. For instance, Squeeze-
and-Excitation network (SENet) [50] proposed by Hu et al.
adaptively recalibrates channel relationships by global infor-
mation embedding and fully connected (FC) layers. Reference
[51] computed weights from nonlocal and local pixels/fea-
tures as the spatially refined representations. Reference [52]
achieves domain attention by a series of universal adaptation
layers, following the principle of squeeze and excitation. For
the task of object detection in remote sensing images, [22]
puts forward an inception fusion strategy as well as pixel-
wise and channel-wise attention for small object detection in
aerial images. Reference [26] inserted a SENet block into the
top layer of FPN to model the relationship of different feature
channels. Inspired by Mask R-CNN, [40] proposed a refine
FPN and multilayer attention network for oriented object
detection of remote sensing images.

3. Proposed Method

3.1. Review of Faster R-CNN. Faster R-CNN proposed by
Ren et al. [14] is an efficient two-stage detection algorithm,
which consists of two main branches, namely, RPN and Fast
R-CNN. In the first stage, RPN generates a set of anchor
boxes with predefined scales and aspect ratios at each feature
map location, followed by two sibling fully connected layers,
one for object classification and one for bounding box regres-
sion, respectively. In the second stage, a ROI pooling layer is
employed to obtain fixed-size outputs for each region pro-
posal before classification and bounding box refinement.
The two stages are integrated by several shared convolution
layers and can be trained and tested end to end.

3.2. Overview of Feature Enhancement Network (FENet). The
architecture of our proposed Feature Enhancement Network
(FENet) for object detection in remote sensing images is
illustrated in Figure 2. Building on the popular Faster
R-CNN with FPN and adopting the backbone of ResNet-
101, our FENet mainly consists of a Dual Attention Feature
Enhancement (DAFE) module and a Context Feature
Enhancement (CFE) module. The DAFE module is used to
highlight the FPN to focus on the distinctive features of the
objects of interest and suppress useless ones by using the
Dual Attention Fusion (DAF) to jointly reweight the spatial
and channel feature responses. The CFE module is used to
selectively strengthen class-aware features by leveraging
image-level contextual information that indicates the pres-
ence or absence of the object classes. The feature representa-
tions of the CFE module are concatenated with each ROI
feature to make per-proposal prediction. To this end, we
employ a context encoding loss to regularize the model train-
ing, which could enforce the network to learn the global
semantic information through predicting the presence of
the object classes in the images, thus promoting the object
detector to better understand the images for classification
and bounding box regression.
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3.3. Dual Attention Feature Enhancement (DAFE). The CNN
has shown powerful ability in feature extraction and repre-
sentation with a large number of parameters. Low-level layers
in the CNN architecture contain a large amount of detailed
information such as edges and boundaries. As the network
goes deeper, the high-level feature representations have
diminished location information and specialized in semantic
information. How to obtain and choose more discriminative
features determines the detection performance. To this end, a
Dual Attention Feature Enhancement (DAFE) module is
constructed to prompt the network to focus on the distinctive
features and suppress the redundant ones that are not useful
for the current task by jointly recalibrating the spatial and
channel feature responses, as shown in Figure 3. Specifically,
in the spatial dimension, we use nonlocal building block [51]
to acquire spatial dependencies in the whole feature map. As
for channel dimension, SE block [50], which models the
channel relationship explicitly from inherent feature maps
and so can be directly applied to existing state-of-the-art
CNN architectures, is selected for our implementation. These
two kinds of attentions are carried out in parallel and then
fused for a better capability. Next, we briefly introduce the
nonlocal block [51] and SE block [50].

The nonlocal block was designed to capture long-range
dependencies through nonlocal operation which calculates
the new feature response of each position as a weighted
sum of the original features of all positions [51]. Specifically,
given an input feature x, its output feature z of a nonlocal
block is computed as follows:

zi =Wzyi + xi, ð1Þ

where Wz is the weight matrix that is implemented as 1 × 1
convolution, “+xi “represents a residual connection which
makes it possible to insert a new nonlocal block into any pre-
trained CNNmodel without breaking its initial behavior, and
yi is the output of the nonlocal operation of the same size as x,
which is defined in the following equation:

yi =
1

C xð Þ
〠
∀j

f xi, x j
� �

g x j
� �

, ð2Þ

where CðxÞ is the normalization factor set as CðxÞ =∑∀j

f ðxi, x jÞ. i is the index of an output position of the fea-

tures, and j is the index enumerating all possible positions.
f is a pair-wise function used to calculate a scalar to rep-
resent the relationship between xi and all x j. The function g

is used to compute the embeddings of the input signal at the
position j by using gðx jÞ =Wgx j with Wg being a 1 × 1 con-

volutional operation. In this paper, we use the embedded
Gaussian function as the pair-wise function as defined in
Equation (3) for the computation of the relationship scalar.

f xi, x j
� �

= eθ xið ÞTϕ x jð Þ, ð3Þ

where θðxiÞ =Wθxi and ϕðx jÞ =Wϕx j are two embeddings

computed through the 1 × 1 convolutional filters Wθ and
Wϕ.

The nonlocal module is inserted into the end of the con-
volutional stage of ResNet-101 in our experiments, and we
investigate the results of different combinations of stages by
using the nonlocal block in the experiments.

The SE block can be embedded into any regular CNN
architectures with the operations of embedding global infor-
mation and recalibrating channel-wise dependencies. First, a
global average pooling is applied on the spatial dimensions
and generate a K × 1 × 1 vector z, in which the kth element
of z is defined as

zk =
1

H ×W
〠
H

i=1

〠
W

j=1

xk i, jð Þ, ð4Þ

where K is the depth of the feature map and xkði, jÞ is the
value of the kth channel at position ði, jÞ of the input feature
map.

Then, two FC layers are followed to recalibrate the
channel dependencies and a sigmoid activation function is
employed to learn nonlinear relationships:

Scale = σ W2δ W1zð Þð Þ, ð5Þ

where σð·Þ denotes the ReLU function. Finally, the output
feature map is obtained by the implementation of channel-
wise multiplication.

Similar to the nonlocal module, the SE block is also added
on the end of the convolutional stage to capture channel-wise
responses and highlight discriminative features.

Nevertheless, what is the best arrangement for these two
blocks in the network? Reference [50] also suggests that the
importance of feature channels tends to share a similar
weight when using SE block in low-level features, while in
high-level features, the importance of each channel becomes
more class-specific. To thoroughly investigate this problem,
we deployed these two blocks in different residual stages of
ResNet [53], respectively, and evaluated their performances
by using different combinations, and the results of various
combinations can be found in Section 4. Although there are
small gaps between different results, we observe that the
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Figure 3: The proposed Dual Attention Feature Enhancement
(DAFE) module. In brief, we use nonlocal block and SE block in
parallel to jointly recalibrate the spatial and channel feature
responses, respectively, and then fuse them for a better capability.
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entire framework is not sensitive to the implementation of
the blocks that are used in different layers.

3.4. Context Feature Enhancement (CFE). Finally, we propose
a novel Context Feature Enhancement (CFE) module that
utilizes task-specific features and scene semantics generated
from hierarchical feature layers. Since high-level features
have more semantic information while low-level features
contain specific geometric information such as context and
edges, they are good complementation for each other in
object detection task. In this model, we integrate the multi-
level feature maps to obtain both high-level semantic features
and low-level detailed features, which can guide the object
category classification and location reasoning in a global
manner.

More specifically, we empirically set the downsample rate
of 16 to preserve some localization information. Max pooling
is used for P2 and P3, and nearest upsampling operation is
used for P5, ensuring the consistency of spatial scale. With
the above approach, diverse feature representations from dif-
ferent levels can be aggregated. Then, two additional fully
connected convolutional layers with sigmoid activation func-
tion are added on top of the fusion features to predict the
confidence of object categories in the remote sensing scene,
and the binary crossentropy loss is adopted for training. This
auxiliary branch processes the multilabel classification task
through intermediate feature map, thus providing the basic
classifiers with global and local knowledge of contextual clues
that are correlative to the region of interest. The object
category prediction is typically achieved by computing
softmax probabilities, which is not feasible for the object
classification in such task. As a consequence, we adopt
the sigmoid crossentropy loss to measure the probability
error in which each class is independent and not mutually

exclusive. Specifically, given an input image X ∈ℝ3×H×W ,

the ground-truth label can be denoted as a vector y =

½y0, y1,⋯, yC�
T , where C is the total number of object cat-

egories. yi is set to 1 if objects in image X correspond to
class i, otherwise it is set to 0, where i ∈ f1,⋯, Cg. We
represent the predicted class score vector of image X as

p = ½p0, p1,⋯, pC�
T , and for all the j training images, the

multilabel classification loss is calculated by

LCFE = Σ
j

y j ∗ log
1

1 + exp −pj

� �

0

@

1

A + 1 − y j

� �

∗ log
exp −pj

� �

1 + exp −pj

� �

0

@

1

A

2

4

3

5

:

ð6Þ

What is more, [54] has demonstrated that the multila-
bel classification task based on CNN features retains
coarse localization information of objects without using
any bounding box annotations. Inspired by this, we aggre-
gate the features obtained by CFE module with box pre-
diction head, which provides not only global and local
context information for object category reasoning but also
localization information for bounding box regression. In
our method, the context feature maps are downsampled
to 7 × 7 to match the same resolution as region proposals
after ROI pooling. Then, we concatenate the context fea-
tures with ROI features and apply a 1 × 1 convolution
operation to reduce channel dimensions while powering
the informative representations, which can be seen as a
complementation for region proposal detection task. Let
Lcls denote the object category classification loss and
L reg denote the bounding box regression loss. Finally,

the loss function can be defined as

L =Lcls +Lreg + λLCFE, ð7Þ

where λ is a hyperparameter that controls the factor of
LCFE. In Section 4, we discuss the choice of λ in detail.

Table 1: Object classes of DIOR and DOTA datasets. The short names are adopted for simplicity.

DIOR

C1
Airplane

C2
Airport

C3
Baseball field

C4
Basketball court

C5
Bridge

C6
Chimney

C7
Dam

C8
Expressway service area

C9
Expressway toll station

C10
Golf field

C11
Ground track field

C12
Harbor

C13
Overpass

C14
Ship

C15
Stadium

C16
Storage tank

C17
Tennis court

C18
Train station

C19
Vehicle

C20
Windmill

DOTA

PL
Plane

BD
Baseball diamond

BR
Bridge

GTF
Ground field track

SV
Small vehicle

LV
Large vehicle

SH
Ship

TC
Tennis court

BC
Basketball court

ST
Storage tank

SBF
Soccer-ball field

RA
Roundabout

HA
Harbor

SP
Swimming pool

HC
Helicopter
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To sum up, the DAFE and CFE modules complement
each other well to some extent. The features with poor posi-
tioning ability and poor discrimination can be enhanced by
contextual information, while features with good discrimina-
tion are guaranteed not to be significantly weakened.

4. Experiments

In the following section, we first present the implementation
details of DAFE and CFE and conduct an ablation study on
the newly published datasets DIOR [3] and DOTA [8].

4.1. Datasets and Evaluation Metrics. In this paper, we per-
form our experiments on two large-scale remote sensing
datasets DIOR [3] and DOTA [8]. As for the former, it con-
sists of 23463 optical remote sensing images and covers with
20 categories. 192472 manually labelled instances with axis-
aligned boxes are involved, following similar annotation for-
mat as PASCAL VOC. The images in the DIOR dataset have
the size of 800 × 800 and vary in spatial resolution from 0.5m
to 30m. We take 11725 images from train and validation
splits for training and the rest 11738 images for testing. As
for the latter, it contains 2806 aerial images from various sen-
sors and 15 common object categories. The fully annotated
DOTA images consist of 188282 instances labeled by arbi-
trary quadrilaterals, and the image size of the DOTA dataset
is large: from 800 × 800 to 4000 × 4000 pixels. We use train-
ing and validation sets for training and the rest for testing.
The detection accuracy is obtained by submitting testing
results to DOTA’s evaluation server. All the object categories
of these two datasets are reported in Table 1.

In our results, we follow the mean Average Precision
(mAP) as the evaluation metric for our experiment and the
evaluation of mAP is the same as the metric definition in
PASCAL VOC 2007 object detection challenge.

4.2. Implementation Details. Our experiment is performed
under the framework of PyTorch and based on the Faster
R-CNN with FPN [55]. ResNet-101 is adopted as the back-
bone network. We run 12 epochs on a NVIDIA Titan Xp
GPU with the batch size of 2. The initial learning rate is set
to 0.0025 with a learning rate decay of 0.1 at the end of epoch
8 and epoch 11. The momentum is 0.9, and the weight decay
is set to 0.0005. During the training process, a horizontal flip
data augmentation method is used in the end-to-end proce-

dure with stochastic gradient descent (SGD) optimizer. The
parameter setting of SE block is the same as [50].

For the images in the DIOR dataset, we keep the original
size of 800 × 800 for training and testing. With regard to the
DOTA dataset, we crop the original images in the DOTA
dataset into 1024 × 1024 patches. The stride of cropping is
set to 824; that is, the pixel overlap between two adjacent
patches is 200. As commonly used in object detection,
ResNet-101 network is pretrained on the ImageNet [56]
and fine-tuned on the aforementioned training set.

4.3. Experimental Results. We evaluate our model on the test
set of DIOR and DOTA datasets and compare it with the
state-of-the-art methods. The experiments are implemented
on mmdetection [57] to make a fair comparison, except for
CornerNet [58]. As shown in Table 2, on the DIOR dataset,
our method achieves 68.3% mAP and outperforms the base-
line Faster R-CNNwith FPN by 3.2%, which demonstrates its
effectiveness for object detection in remote sensing images.
Our method shows competitive performance compared to
state-of-the-art methods like Libra R-CNN and CornerNet.
Moreover, CornerNet performs better results in large objects
such as airport, expressway service area, and overpass while it
struggles in small and crowed objects including ships and
vehicles. As for individual class predictions, we notice that
the AP values of the classes of airplane, basketball court, ship,
tennis court, vehicle, and windmill only show little improve-
ment. We analyze the reasons as follows. For the ship and
vehicle categories, although there are many instances avail-
able, they account for a relatively small proportion of the
entire images, leading to the information loss seriously after
being sampled by the backbone network, which brings diffi-
culty to feature extraction and further enhancement, so the
improvement is not obvious. In contrast, for the golf field
and ground track field categories with large object sizes,

Table 3: Comparison of FENet and the state-of-the-art methods on the DOTA test set. FR andMR indicate the Faster R-CNN [14] andMask
R-CNN [59] methods, respectively.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR + FPN [19] 88.70 75.10 52.60 59.20 69.40 78.80 84.50 90.60 81.30 82.60 52.50 62.10 76.60 66.30 60.10 72.00

EFR [62] 88.36 83.90 45.78 67.24 76.80 77.15 85.35 90.77 85.55 75.77 54.64 60.76 71.40 77.90 60.94 73.49

IoU-adaptive
R-CNN [63]

88.62 80.22 53.18 66.97 76.30 72.59 84.07 90.66 80.95 76.24 57.12 66.65 84.08 66.36 56.85 72.72

FMSSD [64] 89.11 81.51 48.22 67.94 69.23 73.56 76.87 90.71 82.67 73.33 52.65 67.52 72.37 80.57 60.15 72.43

ICN [39] 89.97 77.71 53.38 73.26 73.46 65.02 78.22 90.79 79.05 84.81 57.20 62.11 73.45 70.22 58.08 72.45

ASBL-RetinaNet [65] 89.51 74.07 46.91 55.54 73.78 66.87 78.48 90.86 70.09 73.20 46.71 61.34 70.50 72.17 32.84 66.86

FENet (ours) 88.47 80.54 54.65 71.70 78.09 80.65 87.36 90.81 84.53 84.74 53.23 64.14 76.87 69.94 57.66 74.89

Table 4: The running time of the proposed method on different
datasets for a single test image of given size. The running time is
tested on a NVIDIA Titan Xp GPU with the batch size of 1.

Dataset Image size Running time (ms)

DIOR 800 × 800 115

DOTA 1024 × 1024 134
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although the sample numbers of them are relatively small,
they still have big accuracy gains (3.1% AP gain for the golf
field class and 5.4% AP gain for the ground track field class).
Besides, for the classes of airplane, basketball court, tennis
court, and windmill, the experimental results are closely

related to their characteristics. Specifically, the aircraft cate-
gory has large-scale differences, the appearances of tennis
courts and basketball courts are similar and easy to be con-
fused, and the windmill category has shadow interference.
These factors undoubtedly increase the difficulty of

Figure 4: Visualization of the detection results. The detected boxes are shown with different colors according to different classes.
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detection, resulting in less performance improvement com-
pared to the baseline method.

As for the detection results on the DOTA dataset (see
Table 3), our proposed FENet once again achieves the highest
accuracy, namely, 74.89%mAP, which outperforms the base-
line FPN by 2.89%. The reason of the above promising results

is closely related to the proposed DAFE and CFE modules,
which enhance the capability of capturing task-related fea-
tures and balancing global and local information and thus
performing well in most object categories. Furthermore,
Table 4 presents the running time of FENet on different data-
sets for a test image of given size. The running time is tested

Table 5: Comparison of different combinations of spatial and channel attention methods.

Type
Nonlocal SE

mAP
Stage2 Stage3 Stage4 Stage5 Stage2 Stage3 Stage4 Stage5

Spatial

✓ 66.6

✓ 66.7

✓ 66.8

✓ 66.6

✓ ✓ ✓ ✓ 66.8

Channel

✓ 66.6

✓ 66.2

✓ 66.5

✓ 66.8

✓ ✓ ✓ ✓ 66.1

Combination
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 67.0

✓ ✓ 67.7

Figure 5: Visualization result of the DAFE module. The response value of the target region in the corresponding part of feature enhancement
map is larger, indicating the successful acquisition of the task-related features.
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on a NVIDIA Titan Xp GPU with the batch size of 1. It can
be seen that the proposed approach maintains a fast infer-
ence speed while achieving high detection accuracy.

Figure 4 illustrates some test samples and the corre-
sponding detection results on the DIOR dataset. As can be
found, our proposed method is suitable for some small-
sized and medium-sized objects, such as vehicles, ships, and
storage tanks, indicating the contributing guidance provided
by contextual information. More specifically, these objects
usually crowded together and cannot be easily distinguished.
The low-level detailed features can provide some localization
information, while the high-level semantics facilitate the
object reasoning. In addition, the proposed FENet also
achieves robust detection performance in the object catego-
ries with large scale variation compared with the state-of-
the-art methods, such as baseball field, ground track field,
harbor, and stadium. Although the objects in each of these
classes present different visual appearances, they may share
some common contextual clues to some extent, resulting in
relatively stable detection performance.

4.4. Ablation Study. In order to evaluate the effectiveness of
the proposed DAFE and CFE modules, we conduct a series
of experiments on the DIOR dataset in this section. The
impact of different components on detection performance
is presented in Table 5. As can be found from the 3rd to
7th rows, the usage of nonlocal module shows no apparent
difference in either separate stage or combined stages. The
model with the spatial attention mechanism achieved the
highest accuracy in two cases: all stages used and only the
stage 4 used. According to the “channel” row of Table 5,
the results fluctuate very little with diverse groups of stages
that utilize SE blocks. Adding SE block to all the convolu-
tional stages makes 1% improvement. In contrast, applying
SE block to convolutional stage 5 achieves the highest perfor-
mance with 1.7% increment compared to baseline result. It is
worth noting that the table does not show the results of more
combinations of attention blocks at different stages (i.e., dou-
ble stages and triple stages), because it does not lead to signif-
icant performance improvement and sometimes even worse.
One possible reason is that the emphasized features from dif-
ferent levels are not properly refined. As a consequence, the
Context Feature Enhancement module is designed, where
we associate multilevel features to accomplish this goal.

To further investigate how the different combinations of
spatial and channel methods affect the final results, we make
comparisons between the utilization of single stage and mul-
tiple stages in the last two rows of Table 5. It reveals that the
DAFE achieves the best performance of 67.7%mAP when we
use the nonlocal module in stage 4 and SE block in stage 5.
However, the model with nonlocal module and SE block
applied on all the stages only achieves 67.0% mAP. Figure 5
gives several visualization results of DAFE. The first column
is the original images; the second column is the feature
enhancement in the spatial dimension; the third column is
the feature enhancement in the channel dimension; the
fourth column corresponds to the total feature enhancement
of DAFE; the last column is the corresponding detection
result.

Furthermore, we also examine how the choice of λ con-
tributes to the detection results. The ablation study is mainly
conducted from the following aspects:

(1) The individual impact of CFE on baseline. In Table 6,
we compare the diverse values of λ in a wide range
from 1 to 10. The results suggest that the perfor-
mance approximately grows 1% by average when
the contextual information provided by CFE module
is included. While λ takes the value of 5, we obtain
the highest performance, particularly up to 1.5%
improvement compared to baseline

(2) The interaction between CFE and DAFE. From
Table 6, we notice that the overall method shows no
improvement when λ = 1. Then, we change the
choice of λ and find better results at 5 and 10. The
method also shows little improvement when we fur-
ther enlarge the hyperparameter λ. This indicates
that there is imbalance between losses. When λ is
too small, CFE hardly contributes to the network
with contextual information. While λ is too large,
Lcls andL reg can be overwhelmed. We also find that

CFE has significant effect on class 5, 6, 9, 12, 15, and
16 of the DIOR dataset, which are typical objects with
great scale variations. This indicates that CFE can
learn common contextual clues of certain object cat-
egories and guide the network to reason reliable pos-
sibilities. Besides, the experiments also demonstrate
that these two components of the proposed network
are complementary to each other

5. Conclusion

In this paper, we present a novel approach FENet for multi-
class object detection in optical remote sensing images, which
is aimed at addressing the complex background scenario and
sparse object distribution problems. Firstly, the framework
utilizes Dual Attention Feature Enhancement module to
selectively emphasize informative features from multiple res-
olutions, thus guiding the network for robust object detec-
tion. In the next phase, a Context Feature Enhancement
module is introduced to fully leverage the abundant informa-
tion emerged in remote sensing objects. This branch explores
both global and local contextual information like semantics
and textures, which bridges the gap of multiscale feature
maps. The experiments on DIOR and DOTA datasets verify
its effectiveness and show that our proposed method achieves
remarkable performance compared with the state-of-the-art

Table 6: Effect of Context Feature Enhancement by diverse values
of λ. Note that the detection result of baseline method is 65.1%
mAP.

Parameter Baseline + CFE Baseline + DAFE + CFE

λ = 1 66.3 67.5

λ = 5 66.6 68.3

λ = 10 66.3 68.0
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algorithms. For future works, we plan to carry on our work in
oriented bounding box detection and focus on unusual
appearances of objects like exceptional aspect ratios and
scales.

Data Availability

The data of DIOR and DOTA used to support this study are
publicly available. The DIOR data can be downloaded from
the website https://gcheng-nwpu.github.io/datasets while
the DOTA data can be downloaded from the website
https://captain-whu.github.io/DOTA/index.html. The code
is freely available upon request.
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