
CMS Conference Report

Available on CMS information server CMS CR 2003/036

September 30, 2003

FEDkit: a design reference for CMS data acquisition inputs

V. Brigljevica, G. Brunoa, E. Canoa,*, S. Cittolina, S. Erhanb, D. Gigia, F. Glegea, R. Gomez-Reino Garridoa, M. Gulminia, 
J. Gutlebera, C. Jacobsa, M. Kozlovszkya, H. Larsena, I. Magrans de Abrila, F. Meijersa, E. Meschia, S. Murraya, A. Oha, 

L. Orsinia, L. Polleta, A. Racza, D. Samyna, P. Scharff-Hansena, C. Schwicka, P. Sphicasa,c, J. Varelaa

aCERN, Geneva, Switzerland
bUniversity of California, Los Angeles, USA

cUniversity of Athens, Athens, Greece
*Presented by Eric Cano <Eric.Cano@cern.ch>

Abstract
CMS has adopted S-LINK64 [1] as the standard interface between the detector front end readout and the central Data Acqui-

sition (DAQ) system. The S-LINK64 is a specification of a FIFO-like interface. This includes mechanical descriptions of connec-
tor and daughter board format and electrical signal definition. The hardware/software package described in this paper (FEDkit)
emulates the central DAQ side of this interface at the data rate required by the final DAQ system. The performance, integration
with the CMS DAQ software framework, and plans for future developments for the DAQ input interface are also presented.

Presented at LECC 2003, Amsterdam, Netherland, September 29-October 3, 2003



1   INTRODUCTION
The data acquisition system of the CMS experiment has to

collect and assemble data from all events accepted by the
Level-1 trigger. An event is a set of ~640 fragments originat-
ing from an equal number of sub-detectors’ Front End Drivers
(FED). The nominal Level-1 trigger rate will be up to
100 kHz, and the event fragments are expected to have a max-
imum mean size of 2kB. All fragments of a given event are
delivered to a single Filter Unit (FU), running the High Level
Trigger (HLT) to select events for permanent storage. Many
FUs will be necessary to reach the required computing power
for the HLT. The CMS DAQ architecture [2] is shown in Fig-
ure 1. 

The interface between the FEDs and the DAQ must handle
the 100 kHz input rate while sending data at the same speed
over the builder networks. Since each sub-detector has its own
FED design, the S-LINK64 specification is used as a standard-
ized output interface for the FEDs [3].

On top of the hardware and link-level specification of the
S-LINK64, a common data format has been defined. The for-
mat encapsulates the sub-detectors’ specific raw data in a com-
mon envelope. The envelope consists of a header and a trailer
that consist of a 64-bit word each. Header and trailer words are
flagged as control words in the S-LINK64 stream. The event
fragment structure is shown in Figure 2. Notable fields are:

Level-1ID (LV1_id), bunch-crossing number (BX_id), identi-
fication of the FED for each fragment (Source_id), beginning
of event flag (BOE), end of event flag (EOE), and 16-bit CRC
protecting the whole fragment, including full header and most
significant 32 bits word of trailer (CRC).

The FEDkit consists of a set of boards that allows readout
of the S-LINK64 part of the FED from a PC. A daughter board
plugged on the FED and another card residing in the PC com-
municate through a Low Voltage Differential Signaling
(LVDS) cable. It is a testing tool for the FED designers.

In the final system, the data from the FEDs will be received
by the Frontend Readout Link board (FRL), a 6U compact-
PCI board, over a short cable using LVDS. The data are then
sent to the surface on optical fibers. By reprogramming
FPGAs, the FEDkit hardware boards where used as initial pro-
totypes for the FRL architecture. The FRL design evolved
from the FEDkit design.

2   FEDKIT HARDWARE
The FEDkit hardware (see Figure 3) consists of the follow-

ing elements:

Figure 3: The FEDkit hardware chain

•   A sender daughter board that plugs on the FED’s S-
LINK64 connector. This board generates the link clock.
Depending on the length of LVDS cable used, the clock
rate can be varied between 60 and 80 MHz.

•   A receiver board, also mounted on an S-LINK64 con-
nector. The receiver board can receive and merge the frag-
ments from up to 2 links. It can also be used as a single-
link receiver.

•   A Generic III board (GIII) [4]. The GIII is a PCI 64-bits,
66 MHz board with an S-LINK64 connector. The GIII,
typically used in a PC, is FPGA-based. The PCI 64/66 bus
allows a theoretical bandwidth of 528MB/s to the host’s
memory. A preliminary version of the PCI-X protocol at
66MHz was successfully tested on the GIII but, due to
FPGA and PCB limitations, 100MHz clock speeds caused
hardware instabilities. The FEDkit is therefore only availa-
ble as a PCI 2.1 board.

•   An LVDS cable. The LVDS cable connects the sender
and receiver daughter boards. It contains 14 twisted pairs
with a drain wire for each pair, plus a global shield. Various
lengths of cable from different manufacturers were tested.
The maximum usable length with no errors occurring dur-

Detector Frontend

Computing Services

Readout
Systems

Filter
Systems

Builder (Control & Data) Networks

Level 1
Trigger

Run
Control

Readout 
Manager

Filter
Manager

Figure 1: The CMS DAQ architecture

Figure 2: The common data format

LVDS cable

PCI 64bits/66MHz 

to host PC

GIII board

FPGA

Receiver board

32kB

FIFO

LVDS

chips

Sender board

Slink64

connectors

to FED

FPGA

LVDS

chips



ing tests was 17 m. In this case, the LVDS chips were
driven at 60 MHz, allowing a maximum throughput of
480 MHz. The results of the cable test are summarized in
Table 1.

•   Optionally, the GIII’s FPGA can also be programmed to
behave as a FED. In this case, the sender board can be
plugged on it. This setup allowed the development of the
FEDkit components without a FED.

The sender daughter board and the GIII are FPGA-based
boards. On the GIII the FPGA contains the PCI interface, the
logic to communicate with the driver program, and the logic to
control the receiver daughter board’s FIFOs. On the sender
daughter board, the FPGA controls S-LINK64 signals from
the FED and sends data to the LVDS chips. It also contains a
32-words FIFO to allow operation of the LVDS chips and the
S-LINK64 interface at different clock speeds.

The receiver daughter board contains one 32 kB FIFO per
LVDS link. The communication between the GIII and the

receiver daughter board is not S-LINK64, as the FPGA on the

GIII directly controls the FIFOs on the receiver daughter
board.

A picture of the FEDkit boards is shown on Figure 4.
The S-LINK64 interface allows flow-control, and the data

stream is stopped in case of congestion. Therefore the FED to
DAQ link will not lose data.

3   SOFTWARE ARCHITECTURE
The communication protocol connecting the host PC with

the FEDkit receiver board was designed with particular atten-
tion to performance. The software/hardware protocol relies on
FIFOs and pre-allocation of memory blocks, allowing the dis-
tribution of free blocks, the DMA of fragment data and the
notification of fragment arrival in parallel. The FIFOs are
either implemented in hardware, embedded in the GIII FPGA,
or in software, using ring lists in the host memory. The blocks
are of fixed size, and the hardware transfers the data in one or
several blocks via DMA, as required by the fragment size. A
schematic representation of the data exchanges between GIII
and host PC is show on Figure 5.

Table 1: LVDS cable test results

vendor length [m] test duration rate[MB/s] / ν [MHz] remark

AMP

2 1 month 800 / 100 no error

7.5 8 hours 800 / 100 no error

2+7.5+7.5 8 hours 528 / 66
no error 
(3 cables connected to 
each other)

Amphenol
15 4.5 hours 528 / 66 no error

20 minutes 256 / 33 errors

3M

5 19 days 640 / 80 no error

10 30 days 480 / 60 no error

15 30 days 320 / 40 no error

Figure 4: An early prototype of the FEDkit: Generic III with single 
link receiver (back), sender board (front), and LVDS cable



Blocks are pre-allocated in host memory by the application
and passed to the FEDkit receiver hardware. They are recycled
after release by the application.

Incoming fragments are first extracted from the S-LINK64
stream using the control words (headers and trailers). As soon
as a header arrives, data are pushed to the memory of the host
PC in pre-allocated blocks. When a trailer is received, the
DMA stops and the FEDkit receiver writes the size of the frag-
ment received to the word-count FIFO (a ring list in the host’s
memory). Blocks are used in FIFO order, and it is the task of
the host computer program to keep track of the order in which
the blocks are passed to deduce which fragment uses which
block(s).

A special mode of operation allows the dump of the line
information (all words transmitted over the S-LINK64, includ-
ing access to the control bit), bypassing the interpretation of
the fragment structure by the hardware. The user can thus see
what is received by the FEDkit in case of problems.

The FEDkit software [5] is currently implemented for
Linux. It is a set of three layers: 

•   A device driver

•   A user-space library

•   Application programs

To optimize performance by avoiding system calls and
memory copies, the device driver has been kept to a minimum.
Besides basic access to the device (open/close, interrupt han-
dling) all the functions of the hardware are accessed through
an OS-bypass (direct mapping of the device in the addressing
space of the process).

The user-space library implements high-level functions to
receive fragments. The FEDkit can be used with a limited set
of functions using defaults parameters. Additional functions
can be used to fine-tune the parameters of the FEDkit.

Fragments are stored in block sets in memory. A set of
functions can screen the user from the details of the fragment
structure at the expense of performance. Direct access to the
block structure is also possible. 

The FEDkit hardware checks the CRC of the received frag-
ment on the fly and flags fragments with CRC errors. This
information is accessible to the programmer using the FEDkit
library.

The hardware supports fragment sizes up to 16MB. If a
fragment is larger, the situation is handled by the hardware and
the fragment is accordingly flagged by the FEDkit library.

Finally, the upper layer (application software or library)
can exist in many forms: stand alone programs, or plug-ins for
larger frameworks.

A program to test the functionality of the FEDkit has been
developed. This program was used to test the LVDS cables as
outlined above. A program dumping the link level data of the
FEDkit to the terminal has also been written. 

The FEDkit has been integrated in the XDAQ [7] frame-
work. XDAQ is a distributed framework used for the CMS
DAQ online software. In XDAQ, the FEDkit is integrated as
an application. Using this framework, it is easy to create appli-
cations that send the fragments over a network (TCP/IP, Myri-
net) for event building.

4   FEDKIT ENVIRONMENT
The FEDkit requires a PC with a 3.3V 64-bits PCI bus. The

only supported operating system is Linux. The FEDkit has
been tested on PentiumIII motherboards with PCI64/66 buses,
Pentium4-Xeon motherboards, and Athlon motherboards.

As stated previously, FEDkit’s current goal is to provide a
standard test environment for connectivity and performance
tests for the FED developers. The FEDkit performance is suffi-
cient to read the FED up to LVDS wire speed (which is over
twice the targeted sustained throughput of the FEDs).

The FEDkit has been provided to the FED development
groups. The setup FEDkit sender+receiver, with an additional
GIII programed as a FED emulator, was successfully tested in
test beam with the XDAQ environment. User feedback proved
useful in making the FEDkit stable in various PCs.

5   PERFORMANCE
The performance of the FEDkit was measured for various

fragment sizes, on different PCs. The best results were
obtained on Xeon PCs. In all cases, the full LVDS wire speed
was achieved with sufficiently large fragment sizes.

The results presented in Figure 6 were obtained with a GIII
FED emulator as the data source. The LVDS wire speed was
480MB/s. This sustained rate with Pentium Xeon is more than

PCI 64bits/66MHz 

to host PC

GIII board

FPGAA

al rd 

Hardware FIFO

For free blocks

Receiver board

32kB32kB
FIFO
3

LVDS
chipsp

Sender board

Slink64
connectors

to FED

FPGAFPGA

LVDS
chips

blocks

DATA

Free block

Software FIFO 

(free blocks addresses)

This FIFO has arbitrary

length

FIFO of blocks in board

W
o

rd
 c

o
u
n
t 
F

IF
O

Event

fragment

Host PC's memory

Interrupt driven feed

Figure 5: Schematic representation of the data flow between the 
FEDkit receiver and the host’s memory



twice the targeted sustained rate of the FEDs (2kB*100 kHz,
or 200 MB/s).

The same measurements allow the determination of the
average overhead per fragment (FEDkit hardware+FEDkit
library) to be 5.3µs on PentiumIII machines and 3.9µs on
Xeon machines. This is the average time per fragment for zero
payload transferred (just header and trailer). The software part
of this overhead is overlapped with the DMA when fragment
size is increased. The hardware overhead (which is never
masked) is 579 ns per fragment and 182 ns per additional
block.

6   FINAL SYSTEM DESIGN: THE FRL
The FEDkit served as a design prototype for the final input

of the data acquisition system: the FRL. The FRL is a compact
PCI (cPCI) board in 6U form factor. It contains a high-speed
PCI-X bus and a bridge to the backplane cPCI bus [6]. The
block diagram is shown on Figure 7.

The part located on PCI-X contains the S-LINK64 receiver
logic, an interface comparable to the FEDkit receiver and a
PCI-X slot. The current design hypothesis is to have an intelli-
gent Network Interface Card (NIC) in the PCI-X slot aligned

with the PCB plane, on a cutout part of the PCB. The set of
FRL plus NIC will fit in a 6U slot of a cPCI enclosure. The
FRL board is shown in Figure 8. 

The protocol between the FRL and NIC will be compara-
ble to the one in the FEDkit: the FRL will send the data
directly to the NIC’s internal memory. The receiver side pro-
gram will run on the intelligent NIC’s processor.

The NIC, which is Myrinet in current designs, will send
data over a fiber going from the underground counting room to
the surface data acquisition building.

The FRL design is based on FPGAs, and this flexibility
would also allow a reprogrammed FRL to generate dummy
data, allowing DAQ system commissioning without FEDs.

A bridge FPGA, that connects the cPCI bus and the PCI-X
bus will also contain a FEDkit-like interface implementing spy
function. The spy function will forward a copy of some
selected event fragments to the host PC driving the cPCI bus
for monitoring purposes. Various selection criteria will be
available. It could also be used to acquire data from a given
FED, bypassing the downstream DAQ architecture. This could
prove useful during detector commissioning.

The design of the sender daughter board plugged on the
FED remains identical to the FEDkit’s. The receiver part of the
FRL is also close to the one of the FEDkit. It can receive and
merge the fragments from up to 2 links. The LVDS cable is
also similar but with a different type of connector, which is
mechanically tougher and with better electrical shielding than
the ones used on the FEDkits. The cable types will remain the
same. 

The normal operation at 60MHz or 80MHz will be used for
10m and 5m cables, respectively. In order to cover possible
problematic cases where the link clock speed is critical, the
senders will be able to drive the LVDS down to 40 MHz. This
is a fallback solution as it will not allow the FED to send data
at 400 MB/s peak speed as required.

Figure 6: FEDkit throughput against fragment size on PentiumIII 
(370DLE) and Pentium4 Xeon (Grand Champion) chipsets

0

100

200

300

400

500

600

0 2048 4096 6144 8192 10240

Fragment size (Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

370DLE-Link-4kBlocks
370DLE-Link-8kBlocks
Grand Champion link 4k
Grand Champion link 8k

Nominal working point : 
200MB/s@2kB

LVDS cable

FRL

cPCI

bus

32kB

FIFO

32kB

FIFO

Bridge
FPGA

Main

FPGA

Spy mode

path

PCI-X

NICFiber to

surface

Sender board

Slink64

connectors

to FED

FPGA

LVDS

chips

Figure 7: FRL block diagram

Figure 8: FRL with a GenericIII sitting in the NIC slot (left)



7   SUMMARY
CMS chose the S-LINK64 specification as the uniform

interface between all the front-end driver (FEDs) and the cen-
tral DAQ system. A set of PCI boards collectively referred to
as FEDkit, implementing an S-LINK64 interface has been
developed.

The FEDkit is based on the Generic III board, and includes
a set of mezzanine boards providing an S-LINK64 to PCI
interface. The front-end drivers (FED) designers can use this
interface as a reference environment to test the integration of
the FEDs with the DAQ.

The PCI interface has been developed to minimize inter-
locking between the software driver and the hardware, hence
optimizing the memory usage and speed. On today's
(Pentium4 generation) PCs, and at the nominal fragment size
(2 kB), the FEDkit achieves around twice the nominal average
throughput (200 MB/s) of the FED. Some debugging facilities
are added to investigate link-level problems.

The FEDkit can be used stand-alone with the associated
library, or inside the data acquisition framework of CMS
(XDAQ). Various sub-detector groups are already using it.

During the development of the FEDkit, a sender board had
to be developed to provide a data source. This sender board
can be used to send pseudo-random data or data from the PC’s
memory to its S-LINK64 port, emulating a FED.

The final version of the FEDkit, the FRL, will be used in
the CMS DAQ to merge S-LINK64 inputs from up to 2 FEDs

and ship the fragment data over a Myrinet link to the event
builder.

8   REFERENCES

[1] S-LINK64 specifications: 
http://hsi.web.cern.ch/HSI/s-link/spec/

[2] CMS: The TriDAS Project
Technical design report Volume II:
Data Acquisition & High-Trigger
http://cmsdoc.cern.ch/cms/TDR/DAQ/daq.html

[3] RUWG Readout Unit Working Group
http://cmsdoc.cern.ch/cms/TRIDAS/horizontal/

[4] GIII FED kit
http://cmsdoc.cern.ch/cms/TRIDAS/html/Documents.html

[5] FEDKIT: Interface from S-LINK64 to PCI64/66
http://cmsdoc.cern.ch/cms/TRIDAS/html/Documents.html

[6] Frontend Readout Link board (FRL)
http://cmsdoc.cern.ch/cms/TRIDAS/html/Documents.html

[7] CMS data acquisition (XDAQ)
http://cmsdoc.cern.ch/cms/TRIDAS/html/Documents.html


