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Introduction

In recent years, the potential evolutionary consequences

of fishing have received considerable attention (reviewed

and discussed in Law 1991; Dieckmann & Heino 2007;

Jørgensen et al. 2007; Kuparinen & Merilä 2007; Marshall

& Browman 2007; Fenberg & Roy 2008; Hutchings & Fra-

ser 2008; Naish & Hard 2008; Dunlop et al. 2009a). For

harvested stocks, the requirements for harvest-induced

evolution are typically fulfilled, namely that: (i) fishing is

selective on phenotypic traits, either because the gear in

use is actively targeting fish with certain traits (see Ham-

ley 1975 for a review of gill net selectivity) or because ele-

vated mortality in general favours traits expressed early

rather than late in life; and (ii) there is heritable genetic

variability for several of these traits (Gjedrem 1983;
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Abstract

The interest in fishing-induced life-history evolution has been growing in the

last decade, in part because of the increasing number of studies suggesting evo-

lutionary changes in life-history traits, and the potential ecological and eco-

nomic consequences these changes may have. Among the traits that could

evolve in response to fishing, growth has lately received attention. However,

critical reading of the literature on growth evolution in fish reveals conceptual

confusion about the nature of ‘growth’ itself as an evolving trait, and about the

different ways fishing can affect growth and size-at-age of fish, both on ecologi-

cal and on evolutionary time-scales. It is important to separate the advantages

of being big and the costs of growing to a large size, particularly when studying

life-history evolution. In this review, we explore the selection pressures on

growth and the resultant evolution of growth from a mechanistic viewpoint.

We define important concepts and outline the processes that must be

accounted for before observed phenotypic changes can be ascribed to growth

evolution. When listing traits that could be traded-off with growth rate, we

group the mechanisms into those affecting resource acquisition and those gov-

erning resource allocation. We summarize potential effects of fishing on traits

related to growth and discuss methods for detecting evolution of growth. We

also challenge the prevailing expectation that fishing-induced evolution should

always lead to slower growth.
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Carlson & Seamons 2008). Furthermore, exploitation

rates are often several-fold higher than natural mortality

(Mertz & Myers 1998) so the overall selection might be

strong. Fishing is therefore likely to influence the course

of evolution, but what is not immediately obvious is which

traits will evolve, in which direction and how quickly will

evolution proceed, how important will it be relative to

other forces causing phenotypic change, and, finally, how

we can best manage any potential consequences.

One life-history trait that is expected to evolve in

response to fishing is growth rate. Early literature on fish-

ing-induced evolution of growth was dominated by the

hypothesis that fishing would select against fast-growing,

large fish because fishing mortality typically increases with

body size (eventually exceeding natural mortality in most

exploited stocks), and that growth could consequently

evolve towards slower rates (Rutter 1902; Miller 1957;

Favro et al. 1979; Kristiansen & Svåsand 1998). This

hypothesis is intuitive and has been reiterated many times,

but serious attempts to test or evaluate it were for a long

time restricted to Ricker’s (1981) classic work on the

declining size of Pacific salmon. Within the last decade,

there has been a resurgence of studies on fishing-induced

evolution of growth, both from experiments (Conover &

Munch 2002; Biro & Post 2008) and from examinations of

wild populations (Edeline et al. 2007; Swain et al. 2007).

The work by Conover & Munch (2002) drew considerable

media attention and scientific debate (Hilborn 2006;

Conover & Munch 2007). The same occurred with the

study by Edeline et al. (2007), which was included among

the journal Nature’s research highlights of 2007 (Anony-

mous 2007, see also Conover 2007) and was praised else-

where (Coltman 2008). However, these studies have

revealed that predictions on the direction of evolution of

growth are more complex than was thought when the first

hypotheses were formulated. In particular, many studies

confuse growth rate with size-at-age, or treat growth rate

as the evolving trait without considering other traits and

processes that influence size-at-age. Here we aim to address

the confusion by a concept-oriented review of mechanisms

that affect growth (and consequently size-at-age) through

their impact on the acquisition and allocation of resources.

We further interpret each mechanism in light of fishing-

induced evolution, and expose the difficulties associated

with the measurement of growth rate from field data.

Finally, we consider the achievements of the field as a

whole and where future research is needed.

Definitions and Key Concepts

It is often deceptive to think of growth as a single trait,

when instead it is the outcome of a complex suite of

behavioural, morphological and physiological processes.

These processes relate to both incoming resources and

subsequent partitioning of those resources, and in partic-

ular to how surplus resources are allocated among com-

peting needs. Different components of growth are

therefore subject to various selection pressures, making

evolutionary change in growth inherently difficult to pre-

dict and quantify from data. In this section, we first pro-

vide key definitions, and highlight areas where

misconceptions typically occur. Our approach and defini-

tions are inspired by foraging behaviour (Lima & Dill

1990), a life-cycle perspective to energy allocation (e.g.

Roff 1983; Kozlowski 1992), and energy budgets and

flows within individual organisms (e.g. Kooijman 2010).

Acquisition, allocation, and growth

Key processes involved in energy budgeting within an

individual are resource acquisition, resource allocation,

and growth (Figs 1 and 2). We define resource acquisition

as the processes involved in foraging, ingestion and diges-

tion. Resource acquisition controls the total amount of

resources available to the organism, and these are allo-

cated to various competing needs.

Some of the resources are allocated to running costs of

the organism: mainly its basal metabolism (often quanti-

fied as resting metabolism), digestion and routine activity

(Fig. 2). Basal metabolism represents a set of basic pro-

cesses needed to remain alive and functional (e.g. mainte-

nance, immune defence and cognition). Note that

allocation to, for example, cognition, movement and diges-

tion may increase the organism’s potential for resource

acquisition, so allocation and acquisition are not com-

pletely separable. Of special importance for this review is

the availability of resources after basal metabolism and

Basal metabolism 
Routine behaviour

Growth

Reproduction

Surplus resources
Acquisition

Fig. 1. Simplified representation of the basic logic of resource flow

underlying growth. Acquired resources are allocated to three main

components: (i) the ‘running costs’ of an individual including basal

metabolism and routine behaviour, (ii) somatic growth including struc-

tures and stores, and (iii) reproduction. Before maturation, changes in

surplus resources will translate directly into changes in growth,

whereas a proportion of the surplus resources is allocated towards

reproduction from maturation onwards. A more comprehensive flow-

chart is shown in Fig. 2.
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routine activity have been accounted for, and we term

these surplus resources (Fig. 1). Surplus resources are often

termed ‘surplus energy’ (Ware 1975; Roff 1983) or

‘growth effort’ (Abrams & Rowe 1996); by referring to

‘resources’ we acknowledge that not only is the total

energy important, but the nature of that energy (e.g. its

nutrient composition) has consequences as well (e.g. Pul-

liam 1975; Blount et al. 2000; Grandison et al. 2009).

During the immature phase of the life cycle, surplus

resources will result in somatic growth, which includes the

growth of all tissues in the body except for germ cells; it

is therefore distinguished from reproductive investment,

which allocates a proportion of the surplus resources to

reproduction as the individual becomes sexually mature.

Size is a state, growth is a process

Individual body size is of profound ecological impor-

tance. Larger individuals usually have increased survival,

are more successful at attracting mates, have higher

fecundity, have an enhanced capability to withstand star-

vation, and are better in competition for resources (Peters

1983). However, food requirements are generally higher

for larger animals, and growing big takes time and

resources. There are thus several components in a cost–

benefit budget that jointly determine the evolutionary

advantages and disadvantages of having a particular size.

Behavioural and life-history strategies will therefore often

be size-dependent and change as an animal grows

(McNamara & Houston 1996). From a fisheries perspec-

tive, the size distribution of individuals also has a strong

influence on population dynamics, including recruitment

(Persson et al. 2007) and fisheries yield (Law & Grey

1989; Conover & Munch 2002).

Growth and size are intimately linked and often corre-

lated (for example, fast-growing individuals are often big)

but, obviously, they are not the same. For example, large

individuals may, when they use their resources for repro-

duction, grow more slowly than smaller fish. Thus,

whereas body size characterizes an individual’s state,

growth is the process that leads to that state. For example,

it can be risky to grow fast, but once a certain size is

attained, the payback in terms of survival or reproduction

can be good.

It is tempting to think that selection on growth could

be fully understood by studying selection on size, or vice

versa, but this is not the case. To be able to grow to a

certain size, an individual needs to acquire resources

through foraging, usually at a cost of exposure to preda-

tors, parasites and infections. From an evolutionary per-

spective, it is therefore important to separate between the

advantages of being big and the costs of growing to a

large size. Consequently, there can be selection not only

on body size but also on the growth-related processes that

allow the individual to attain a certain size. Growth and

size are coupled, so selection on one may lead to indirect

selection on the other, and growth and size may also be

correlated with other traits under selection.

Observing growth directly implies measuring changes

in size over time, and growth per unit of time is referred

to as growth rate. The most common measures of growth

rate in fish are length increment or body mass increment

Cognition
Behaviour

Digestion

Habitat

Mating

Gonads

Parental care

Territoriality

Migration
Signalling

Cognition

Immune defence

Behaviour
Digestion

Maintenance

Structural growth
Stores

Allocation to reproduction

Ingestion

Sensing

Acquisition Allocation

ResourcesResources

Allocation to routine metabolism

Growth

Morphology

Fig. 2. Resource acquisition (left) and allocation (right) are both adaptive processes. The amount of acquired resources is affected by many pro-

cesses influencing foraging and ingestion, which after digestion translates into available resources. Resources allocated to routine metabolism,

reproduction and structural growth are generally not available for later use, whereas resources deposited in stores can be utilized later. Changes

in any of the components affecting resource acquisition or in how the acquired resources are allocated may lead to altered growth.
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per time (for other definitions see Dmitriew 2011). These

measures differ in one important aspect: increase in

length is usually irreversible, whereas weight can increase

or decrease as stores are deposited and utilized, or as

gonad mass is built and spawned.

Growth is evolutionarily optimized, not maximized

In the past, growth was often regarded as a trait that

should, under natural selection, evolve towards maxi-

mum rates, within the limits of physiological constraints

(e.g. Ricklefs 1969). However, there may be several ben-

efits of sub-maximal growth, and it was surprisingly

recently that growth became more widely regarded as

being evolutionarily optimized rather than maximized

(in large part due to the review by Arendt 1997; but

see also Case 1978). Two well-documented phenomena

clearly support this conclusion in fish. First, when indi-

viduals are given excess food after a period of food

deprivation, they often grow faster than control groups

that are fed ad libitum. This phenomenon, referred to

as compensatory growth or catch-up growth (reviewed

in Metcalfe & Monaghan 2001; Ali et al. 2003), illus-

trates how growth rate is normally well below the phys-

iological capacity (Sundström et al. 2007). A wide

spectrum of delayed and immediate costs of compensa-

tory growth have been identified (Arendt 1997; Metcalfe

& Monaghan 2001; Arendt & Reznick 2005; Mangel &

Munch 2005), further suggesting that although faster

growth is possible, it implies costs, particularly in terms

of survival. The ability for fast growth may, for example, be

costly in terms of starvation tolerance: a recent study in

European sea bass Dicentrarchus labrax identified a positive

correlation between the rate of mass loss during a starva-

tion period and the growth during a subsequent compensa-

tory period (Dupont-Prinet et al. 2010).

Countergradient variation is another phenomenon that

shows a clear role for local adaptations in growth

(Conover & Present 1990). In the wild, populations expe-

riencing different growth conditions may show compara-

ble growth within a season, even though there might be

considerable differences, for example, in the length of the

growing season or temperature along a latitudinal gradi-

ent. One species where countergradient variation has been

studied is the Atlantic silverside, Menidia menidia, a small

annual fish found along the east coast of North America:

in common garden experiments, individuals from the

northern populations grow faster than their southern

counterparts, indicating a genetic basis for the difference

(Conover & Present 1990). The northern population’s

increased growth rate in the lab compensates for shorter

growing season in the wild, so that when different popu-

lations are sampled in their native environment, the dif-

ferences in size-at-age are smaller than the local

environment would prescribe (Conover & Present 1990).

Countergradient variation has also been observed in a

number of other fish species and other taxa (Conover &

Schultz 1995).

Compensatory growth and countergradient variation

demonstrate that growth is evolutionarily ‘optimized’ at

levels below the physiological capacity. Which trade-offs

cause adaptive differences in growth between individuals,

populations and species? Is it possible to predict how the

mechanisms underlying growth may evolve in response to

fishing? In the remainder of this paper we try to answer

these central questions by splitting growth into several

processes and analyzing each process separately. We

describe selection on growth-related traits in a natural

setting, and how that selection may be modified due to

fishing. In practice we do this mainly by identifying the

underlying trade-offs and evaluating how the costs and

benefits change from the natural setting to one in which

fishing occurs.

Factors Affecting Growth

Even though growth is usually observed as one variable

(the rate of change in size) the process of growth consists

of two main components: acquisition of resources and

subsequent allocation to different needs. Below we pro-

vide a conceptual review of factors affecting observed

growth rate. Although we attempt to break growth down

into component processes, it is important to keep in

mind that there are developmental constraints, shared

mechanisms, delayed effects, variable heritabilities, and

genetic correlations that may influence phenotypic expres-

sion as well as the ability of each trait to evolve. On top

of this, growth is also very sensitive to environmental

conditions, so for any phenotypic effect one needs to bear

in mind that there might be genetic influences as well as

phenotypic plasticity.

Key processes: resource acquisition and allocation

Organisms have a limited amount of resources they can

use, not only for growth, but also for storage, reproduc-

tion and maintenance. That resources are finite can, as

illustrated by Reznick et al. (2000), be depicted as a pie

where allocation decisions are represented as slices, with

the sum of all slices necessarily constrained by the size of

the whole pie. Consequently, increasing the ‘growth-slice’

will decrease the size of some other slice(s), for instance

the amount of resources allocated to reproduction. This

paradigm underlies much of life-history theory (e.g. Roff

1992) and energy allocation modelling (e.g. Roff 1983;

Kozlowski 1992).
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However, the total size of the pie depends on resource

acquisition. If an individual is efficient in gaining

resources, the pie becomes larger (Reznick et al. 2000).

Constraints on acquisition may, however, arise through

avoidance of predation or through food limitation. Here,

we highlight the many traits which could be traded-off

with growth rate. We group basic mechanisms into two

categories: those affecting resource acquisition (the size of

the whole pie) and those governing resource allocation

(the relative size of each slice).

Resource acquisition revolves around the processes of

foraging leading up to ingestion and digestion (Fig. 2).

Foraging involves behavioural and morphological adapta-

tions related to finding and capturing prey, as well as

physiological and anatomical adaptations involved in

sensing and cognition. Many trade-offs have been exten-

sively studied within the field of foraging ecology (e.g.

Stephens et al. 2007), and most of these relate to behav-

iour and risk-taking. In Table 1, we list many of the

trade-offs relating to resource acquisition, and how they

may be perturbed by fishing activities.

To illustrate that there are also less intuitive costs

related to acquisition, consider the example of digestion.

In fish, the entire digestion process typically consumes

some 10% of the energy content of the ingested food

(Tandler & Beamish 1979). However, digestion also

requires oxygen and, as aquatic respiration is costly, this

is often in conflict with other purposes such as escaping

predators (Arnott et al. 2006). This conflict has been

demonstrated in a comprehensive set of experiments on

the Atlantic silverside along the axis of countergradient

variation of growth described above. Northern silverside

populations, which experience short growing seasons,

increase their growth rate by voluntarily ingesting larger

meals (Lankford et al. 2001) and consequently have

higher metabolic rates and consume more oxygen (Arnott

et al. 2006). In common garden experiments, northern

populations are poorer swimmers (Billerbeck et al. 2001),

which gives them poorer escapement responses and they

are consequently eaten more often by predators (Lankford

et al. 2001; Munch & Conover 2003). Physiological mech-

anisms related to digestion thus translate increased

growth rate into higher predation rates. Similar results

have also been obtained from experiments by Suzuki

et al. (2010), who hypothesized that individual medaka

Oryzias latipes being predated upon by an ambush preda-

tor might trade off cautiousness to forage more intensely.

When fishing elevates mortality rates, speeding up growth

rate and reproduction by digesting faster might be

favoured, even if it means being exposed to some extra

predation mortality. Through this mechanism, fishing

might thus increase acquisition rates and, if allocation

does not change, also growth rate. Further trade-offs

related to resource acquisition and how these may

respond to fishing are listed in Table 1.

The allocation of acquired resources is also a dynamic

and multifaceted process. Owing to its direct relevance

for fitness, allocation to reproduction has received

considerable attention, often contrasted with allocation to

growth as the only other recipient of energy (e.g. Roff 1983;

Kozlowski 1992). Growth trajectories are split in two broad

categories depending on the age-schedule of allocation to

growth and reproduction: determinate (a sharp transition

from allocation to growth to allocation to reproduction,

leading to growth curves resembling a hockey-stick) and

indeterminate (more gradual transition from allocation to

growth to allocation to reproduction and more von

Bertalanffy-like growth curves; reviewed in Heino & Kaitala

1996; see also Von Bertalanffy and Pirozynski 1953). In fish,

indeterminate growth is common, giving extra degrees of

freedom to adult life histories.

Although growth and reproduction can receive a large

proportion of resources, they are only two of several

resource-demanding processes in an individual. In a

more complete picture, investment in other components

such as maintenance, immune defence, digestion, mor-

phology, cognition, behaviour, and storage also need to

be considered (Fig. 2). Each of these components

receives energy and resources in an amount that is

likely adaptive in the environment in which the organ-

ism has evolved. By down-regulating any of these com-

ponents, energy and metabolic capacity can be freed for

somatic growth. Examples of components with compet-

ing demands for energy and resources are given in

Table 2.

Developmental constraints and delayed effects of growth

Having outlined how resource acquisition (Table 1) and

resource allocation (Table 2) are malleable processes that

can respond to selection pressures (including those from

fishing), it is necessary to understand that constraints may

act directly on growth rate. In particular, the development

rate of certain body structures may constrain the growth

rates of other structures or induce costs related to rapid

growth. For instance, rapidly growing snails have thinner

shells because the rate of calcium deposition does not keep

up with increased growth rates, and individuals with thin

shells are more vulnerable to predators (Palmer 1981). Sim-

ilarly, rapid growth may result in compromised morphol-

ogy, such as suboptimal body proportions, increased

fluctuating asymmetry, and skeletal deformities (see Arendt

1997). For example, a positive correlation between rapid

growth rates and the degree of coronary lesions was

reported in Atlantic salmon (Saunders et al. 1992). Such

effects may be exacerbated by energy-maximizing diets,
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which may lead to deficiency of essential nutrients

(Pulliam 1975). Another study, on zebra finches Taeniopy-

gia guttata, showed that individual variation in resting

metabolic rate may be a consequence of the growth trajec-

tory during early ontogeny, with high metabolic rates

in adulthood being caused by accelerated growth during

earlier life stages (Criscuolo et al. 2008). These examples

emphasize that not all costs of growth are immediate,

which can make it harder to identify the trade-off in

nature.

Effects of the environment

Growth rate is also influenced by environmental condi-

tions such as temperature or the type and abundance of

food items. The latter may, in turn, be influenced by den-

sity dependence, for example if a large population

depletes its food resource. There is also a potential for

social effects, for example, reduced numbers of old and

large individuals in a population may release an inhibi-

tion of maturation on smaller and younger individuals

(Kolluru & Reznick 1996). Fishing affects many of these

relationships directly, for example by decreasing the num-

ber of fish, which can induce an increase in prey abun-

dance and lead to more resources becoming available.

Furthermore, phenotypic expression may depend on the

environmental conditions through developmental chan-

nelling or phenotypic plasticity. It is therefore difficult to

conclude whether detectable changes in size-at-age during

a period of fishing are due to fishing-induced evolution

or indirect effects of fishing on environmental characteris-

tics. The method of Swain et al. (2007) offers one good

example of how one may work around this problem.

They included proxies for the biotic and abiotic environ-

ment, and estimated their effects on growth trajectories.

In this paper we do not aim to review the environmen-

tal influences of growth, as there is a general awareness of

the phenomenon and it is often corrected for in studies.

We merely want to emphasize that whenever a pheno-

typic trait is quantified, one needs to correct for environ-

mental influences before one can make inferences about

underlying genetic differences, be it between populations

or trends in time-series analyses. Whenever genetic varia-

tion underlies some of the phenotypic variation in a trait,

the trait is heritable, and natural or artificial selection

may mould that trait over time. However, modelling

studies suggest that phenotypic plasticity in growth and

maturation dominate the picture, especially over short

time scales, and that these may mask underlying evolu-

tionary change that takes place at a comparatively slower

pace (see Dunlop et al. 2009b; Enberg et al. 2009). Proba-

bly due to such plastic effects, the analysis by Hilborn &

Minte-Vera (2008) did not reveal any clear patternT
a
b

le
2
.

C
o
n
ti
n
u
ed

.

T
ra

it
g

ro
u

p

Sp
ec

ifi
c

tr
ai

t
M

ec
h
an

is
m

o
r

tr
ad

e-
o
ff

in
n
at

u
re

R
el

at
io

n
to

fi
sh

in
g

Po
te

n
ti
al

fi
sh

in
g
-i
n
d
u
ce

d

ad
ap

ta
ti
o
n

R
el

ev
an

t
lit

er
at

u
re

P
h

e
n

o
lo

g
y

If
va

ri
at

io
n

in
si

ze
is

co
rr

el
at

ed

w
it
h

va
ri
at

io
n

in
p
h
en

o
lo

g
y

(e
.g

.
if

la
rg

e
in

d
iv

id
u
al

s
ar

ri
ve

ea
rl
ie

r
at

th
e

sp
aw

n
in

g

g
ro

u
n
d
s)

,
th

en
se

le
ct

io
n

o
n

si
ze

an
d

p
o
te

n
ti
al

ly
g
ro

w
th

co
u
ld

ar
is

e.
Fo

r
ex

am
p
le

,

la
rg

e
an

d
fa

st
-g

ro
w

in
g

co
h
o

sa
lm

o
n

sm
o
lt
s

m
ig

ra
te

d

ea
rl
ie

r
th

an
th

ei
r

sm
al

le
r

an
d

sl
o
w

er
-g

ro
w

in
g

co
n
sp

ec
ifi

cs

(S
u
n
d
st

rö
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between change in size and fishing mortality in a large

number of marine fish stocks.

Fishing-Induced Evolution of Growth

Up until this point, we have been discussing the processes

and mechanisms involved in growth with the hope of

providing the necessary context for studying how fishing

might affect these processes. We argue that an under-

standing of the fundamentals of resource acquisition and

allocation is crucial to being able to predict the direction

and extent of fishing-induced evolution of growth and to

interpret trends in size-at-age or growth from phenotypic

data. For the remainder of this paper, we direct our

attention to fishing-induced evolution of growth more

specifically, and in particular describe what previous

research on the topic has taught us.

Expectations

Although several studies have suggested that fishing will

result in reduced growth rates (e.g. Miller 1957; Conover

& Munch 2002; Edeline et al. 2007), these predictions

have often been based on the influence of size on sur-

vival. If one considers a larger set of mechanisms, as listed

in Tables 1 and 2, it becomes more difficult to devise

general expectations for how fishing-induced selection

might change growth rates (see also Heino & Godø

2002). As is evident from Tables 1 and 2, there are fish-

ing-induced effects that could lead to higher or lower

acquisition rates, or to allocation of a greater or lesser

share to somatic growth, and there might be selection on

several of these mechanisms simultaneously.

The most fundamental consequence of increased mor-

tality from fishing is reduced expected life-span. Fish that

accelerate their life history through earlier maturation,

increased reproductive investment, or increased resource

acquisition and faster growth are thus likely to be

favoured. For example, Biro et al. (2005) found that juve-

nile trout raised in low-food lakes took high risks to

achieve rapid growth and thereby shortened their dura-

tion of exposure to high predation at small size.

In general, a faster life history (higher acquisition rate

and earlier reproduction) will be favoured if the mortality

risk associated with it is lower than the extra mortality

accumulated with a slower life history (lower acquisition

rate and later reproduction) (Williams 1966). Increased

mortality from fishing may thus lead to the evolution of

faster resource acquisition and altered allocation patterns

to accelerate growth, as suggested by Case (1978). This

prediction is in contrast to the frequently cited expecta-

tion that fishing will cause evolution towards slower

growth. Most likely there will be selection pressures acting

in both directions simultaneously, and depending on rela-

tive strengths, evolution of growth may go in either direc-

tion. Models have indeed supported our hypothesis, with

some predicting evolution of slower growth (Favro et al.

1979), some predicting evolution of faster growth (Enberg

et al. 2009; Jørgensen & Fiksen 2010), and others predict-

ing evolution of either faster or slower growth depending

on the size-selectivity of the fishery (Boukal et al. 2008;

Andersen & Brander 2009; Dunlop et al. 2009b). These

model findings challenge the prevailing notion that fish-

ing will always lead to evolution of slower growth.

Challenges in quantifying growth evolution from field data

Fishing-induced evolution of growth has been well docu-

mented in selection experiments (e.g. Conover & Munch

2002). In observational field studies, the task is more

challenging. In an ideal setting, allelic frequencies at the

loci that determine growth rate would be monitored to

detect whether growth is evolving (as suggested by

Kuparinen & Merilä 2007). Unfortunately, we are still

years away from identifying all the genes that contribute

to the complex suite of processes and mechanisms affect-

ing growth of wild fish. Until then, much of our analysis

of growth evolution in wild populations will have, at best,

to focus on a restricted number or genes (or their prod-

ucts) of which various alleles have been associated with

differential growth rates (e.g. Case et al., 2006), or more

frequently rely on observational phenotypic data, which

can provide only indirect evidence for evolution. How-

ever, rather than giving up in the absence of genetic data,

we believe much can still be learned about fishing-

induced evolution of growth from the analysis of pheno-

typic data. The reality is that phenotypic data are most

readily available, notably time-series data for commercial

species, and we can still obtain valuable insight as long as

the various caveats and challenges are kept in mind.

The first challenge to consider when analyzing pheno-

typic field data is that size at a given age is influenced by

how much resources are diverted to reproduction, if any.

In Fig. 3 we give a simplified schematic of how it is possi-

ble to attain the same distribution of size-at-age through

three different mechanisms: variable growth rate

(Fig. 3A), variable timing of maturation (Fig. 3B), and

variable investment into reproduction (Fig. 3C). The

energetic demands of reproduction are ubiquitous and

have strong effects on growth rate that only rarely can be

ignored. The challenge of understanding the processes

behind changes in size-at-age can be partly overcome by

studying juvenile growth because it is not affected by

reproductive investment (Heino et al. 2008; Swain et al.

2008).
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Secondly, obtaining representative samples of a fish

population to estimate growth rate is difficult. Virtually

all sampling methods are size-selective, which is an obvi-

ous problem for estimating growth rate, although some

biases can be corrected for. The origin of the data makes

an important difference: the fishing fleet intentionally tar-

gets a certain size range of fishes (usually the larger end

of the size spectrum), determined by landing size and

gear regulations, geographical distribution, and market

valuation of differently sized fish (see Pardoe et al. 2009).

Studies based on catch data inherit these biases, and the

nature of those biases may change over time as the popu-

lation or fishing practices change. Scientific surveys are

intended to be less selective and more consistent over

time, as they follow deliberately designed sampling

schemes, aiming also for segments of the population that

are not specifically targeted by fisheries (for example

smaller and younger individuals). Nevertheless, unbiased

sampling over the entire population is virtually

impossible.

Thirdly, purely demographic effects confound the esti-

mation of population parameters. Even unselective fishing

leads to higher mortality, leaving on average younger and

therefore smaller individuals. On top of this, selective

harvesting may lead to differential mortalities within a

cohort, for example when the largest members of a given

age class are harvested and the smaller ones survive, lead-

ing to demographic change in mean trait values over time

even within one cohort (Sinclair et al. 2002; Swain et al.

2007).

Fourthly, as we have emphasized above, growth rate is

generally not a directly observable trait but needs to be

inferred from observations of size-at-age. Repeated indi-

vidual measurements of size-at-age are preferable, for

example from recaptures of tagged individuals or through

back-calculations of growth patterns from scales or oto-

liths (e.g. Edeline et al. 2007; Swain et al. 2007), but such

samples are more laborious and costly to obtain and are

therefore relatively rare.

Last but not least, growth is notoriously plastic, being

influenced by both abiotic factors (e.g. temperature) and

a range of biotic factors such as predator and prey distri-

butions and density dependence. Conceptually, pheno-

typic plasticity can for example be accounted for by

estimating reaction norms describing how growth varies

with environmental factors, similar to what has been pro-

posed to help disentangle phenotypic plasticity and evolu-

tionary change in maturation (Heino et al. 2002;

Dieckmann & Heino 2007). In practice, using a similar

methodology for growth may turn out to be more diffi-

cult because whereas observations of maturation often

carry along with them individual-level information on

growth (a major source of plasticity in maturation),

sources of growth plasticity are many and mostly difficult

to measure even at the level of a population, not to men-

tion that of an individual.

Empirical Evidence of Fishing-Induced Evolution
of Growth: What Have We Learned?

The body of literature relating to fishing-induced evolu-

tion of growth is diverse in both the species studied and

the methodology used (Table 3). Most investigations rely

on the analysis of time-series data from field studies, but

Growth rate Maturation age Reproductive investment

Age Age

A CB

Age

Le
ng
th

Fig. 3. Size at a given age (indicated by the black vertical bars) is influenced not only by growth rate but also by the timing of maturation and

the subsequent investment into reproduction. Black lines show growth trajectories for individuals with different trait values, and open circles indi-

cate timing of first reproduction. (A) Different juvenile growth rates, due to adaptive differences in either resource acquisition or allocation to rou-

tine metabolism, lead to different growth trajectories and sizes at a given age even before maturation. (B) When the maturation schedule can

evolve, individuals with the same juvenile growth rate may have different post-maturation size-at-age depending on their maturation schedule.

(C) Variation in reproductive investment can also cause variation in size-at-age later in life, even among individuals with the same growth rate and

maturation age. In particular, increased reproductive investment will cause a more determinate growth pattern with a sharp transition between

juvenile growth and a more or less fixed adult size (lower growth curve), in contrast to indeterminate growth (top growth curve). In reality, these

three different processes are likely to interact and need to be accounted for before changes in size-at-age are equated to evolution of growth.

Worth highlighting is that all of these different processes could lead to similar patterns in size-at-age (where the growth trajectories cross the

black vertical bar).
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also include experiments performed in laboratory settings

(Conover & Munch 2002) and in semi-natural ponds

(Biro & Post 2008). In our view, growth evolution has

been most rigorously documented in pink salmon (Ricker

1981, 1995) and in the experiments on silversides

(Conover & Munch 2002, Conover et al., 2009). Part of

the reason these two studies were able to clearly

document fishing-induced evolution of growth was

because both species examined had a constant maturation

age; thus, the confounding factors of maturation and

reproductive investment (Fig. 3) could be excluded. How-

ever, at the same time that a constant maturation age

makes the results easily interpretable, it also limits the

generality of the conclusions because most fished species

have more flexible reproductive schedules. In the case of

silversides, declining food consumption rates were indica-

tive of evolving resource acquisition, and changes in

fecundity and egg size indicated that allocation to repro-

duction had evolved as well (Walsh et al. 2006). In addi-

tion, food conversion efficiency in the silversides declined,

suggesting changed allocation also to some of the more

subtle costs such as immune defence or maintenance.

Despite the difficulty of generalization to many com-

mercial species, the case studies on pink salmon and sil-

versides nonetheless make a strong case that fishing has

the capability to induce evolutionary change in resource

acquisition and allocation. In the silverside experiment

where most confounding factors were controlled, the

strength of the evidence approaches proof that fishing can

cause evolution of growth, both in terms of changes in

resource acquisition and allocation.

The influence of reproduction

As we hope is now appreciated, observing change in size-

at-age is not sufficient evidence that growth rate has

evolved, as there are many potential factors that could

cause those changes. In particular, one needs to exhibit

caution when interpreting changes in size-at-age or

growth in a species where age at maturation or reproduc-

tive investment might change in response to fishing. Such

caution seems warranted in the study of Lake Winder-

mere pike by Edeline et al. (2007, 2009) where changes in

von Bertalanffy growth parameters (including asymptotic

length) were seen as evidence for growth evolution. The

von Bertalanffy parameters aggregate size-at-age informa-

tion and do not allow the separation of resource acquisi-

tion from resource allocation. This is a problem because,

as Edeline et al. (2007) point out themselves, gonad

weight decreased over time, especially in smaller young

female pike. This leaves open the possibility that changes

in reproductive investment could be underlying the

reported trend in asymptotic length. Therefore, althoughT
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the Windermere pike study has been lauded as providing

evidence for fishing-induced evolution of growth (Conover

2007; Coltman 2008), the conclusions that can be drawn

are not so straightforward.

Increased reproductive investment is a commonly pre-

dicted response to fishing mortality (Law & Grey 1989;

Rijnsdorp et al. 2005). The most common explanation for

this type of pattern is that those individuals that invest

more in current reproduction (even at the cost of slower

growth) produce higher numbers of offspring over their

lifetime than those that invest less in reproduction. How-

ever, it is important to keep in mind that selection could

act on reproductive investment in other ways. For exam-

ple, in pink salmon (Ricker 1981, 1995) and whitefish

(Handford et al. 1977; see also Hamley 1975) the high

condition factor and high ratio of maximum girth over

body length, respectively, imply that gillnets could select

on reproductive investment either directly, by removing

fish with large gonads, or indirectly, by fishing out indi-

viduals with large energy stores that later would be used

for reproduction. It is thus interesting to observe that in

a fished population of lake whitefish, reproductive invest-

ment increased over the same period as sizes decreased

(Thomas et al. 2009). Thus, simultaneous change towards

lower condition and larger gonads suggests that fecundity

selection acts simultaneously with viability selection

imposed by the fishing gear.

Correlations between traits

Size-selective fishing lead to changes in life-history,

behavioural and morphological traits in the experiments

on silversides (Conover & Munch 2002; Walsh et al.

2006; Chiba et al. 2007), and it will be interesting to see

whether further experiments can reveal to what degree

these concurrent responses are due to genetic correlations

(Naish & Hard 2008) as opposed to being independent

processes of adaptation. In the pond experiments on rain-

bow trout by Biro & Post (2008), growth was correlated

with behavioural traits; because gillnetting harvested the

most active fish, there was selection on feeding behaviour

that also led to selection on other physiological traits

related to growth. These studies suggest that considering

different classes of traits together (e.g. behavioural, mor-

phological, physiological) is necessary to paint the full

picture of how fishing can lead to evolutionary growth

changes in harvested species.

Selective gear, but on which trait?

A surprisingly diverse range of fishing gear has been

shown to exert selection on growth and size-at-age

(Table 3).These gears are both active (trawls, angling with

lures) and passive (gillnets) and can select directly on

girth (trawls, gillnets), feeding motivation (angling with

lures), activity (gillnets), and potentially also on swim-

ming and escape ability (trawls). Indirectly, selection on

morphological traits such as girth may affect the mecha-

nisms of building stores, growing large gonads and

expressing prominent secondary sexual characters. Thus,

the ultimate goal in understanding how gear selection

may lead to changes in growth rate or size-at-age is piec-

ing together a mosaic of the many mechanisms men-

tioned in Tables 1 and 2. This perspective may at first

glance seem discouraging, but in our opinion it can also

inspire new experiments and statistical analyses of avail-

able data, which will move the entire field of fishing-

induced evolution forward.

Accounting for the environment

As phenotypic plasticity can have strong effects on growth

rate, it is important to account for environmental factors.

Studies of fishing-induced evolution often rely on time-

series analysis or at least on consistent comparisons

between separate periods. Unfortunately, appropriate envi-

ronmental data are often unavailable or only available for

part of the time-series. For example, one of the earliest

studies of fishing-induced evolution showed that somatic

growth rate and condition factor of lake whitefish had

decreased, just as one would expect as an evolutionary

response to the highly girth-selective gillnet fishery with a

large mesh size (Handford et al. 1977). However, the data

did not permit Handford to draw strong conclusions about

whether the observed changes were evolutionary or caused

by phenotypic plasticity, as only limited information about

the environment was available. The whitefish population

had concurrently undergone a collapse with delayed recov-

ery, indicating large changes in density dependence and

potentially also other ecological changes (Bell et al. 1977).

Despite the obvious challenges posed by studying a

highly plastic process such as growth, it is encouraging

that several recent studies have been able to account for

important abiotic and biotic environmental factors such

as ambient temperature, eutrophication and conspecific

biomass (e.g. Swain et al. 2007; Thomas & Eckmann

2007; Neuheimer & Taggart 2010). Even after adjusting

for certain environmental factors, these studies suggest

residual trends in size-at-age that are the result of selec-

tion pressures from fishing (Swain et al. 2007; Thomas &

Eckmann 2007; Neuheimer & Taggart 2010).

Conclusions and Future Directions

A promising avenue for future investigations is to build

on the approach taken by Swain et al. (2007, 2008) and
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study selection differentials. The response R of a trait to

selection S (the difference in the trait in the parents of

the next generation compared to the trait distribution in

the same cohort at birth) is R = h2S, where h2 is the heri-

tability that typically takes values around 0.2–0.3 for life-

history traits, at least in gadoids and salmonids (Gjedrem

1983; Carlson & Seamons 2008). Heritabilities in this

range imply that the selection differential S is three to five

times stronger than the evolutionary response R (compar-

ing one generation with the next), and S may therefore

be easier to quantify, including the separation of effects

of fishing from effects of the environment. Another

advantage is that selection differentials can be quantified

by cohort. Individuals belonging to the same cohort often

experience similar environmental conditions, hence com-

parison within a cohort reduces the influence of environ-

mental variation on phenotypically plastic traits.

However, there are two inherent problems when study-

ing phenotypic selection differentials. First, one has to

measure a given trait for fish of different ages. For size this

may be accomplished through back-calculations of size-

at-age from scales, otoliths or other structures (as in Swain

et al. 2007). The second challenge is that the sampling

method should ideally be unselective for all types of fish

sampled. For gears with baits there is likely a correlation

between acquisition and catchability. If growth rate

decreases in the population, one may catch fewer and fewer

fish but the samples (collected with baited gear) could be

dominated by the fastest growing fish along the entire

time-series, meaning that the change in growth could be

underestimated or not detected at all. Most fishing gear,

even the types used in research surveys, are selective on

size, condition, satiation, activity or swimming speed, and

arriving at the correct conclusions may turn out to be sen-

sitive to any deviations from random sampling.

Another promising method is the process-based bioen-

ergetics method that fits process parameters to individual

growth trajectories (Mollet et al. 2010). The data require-

ments are similar to that of Swain et al. (2007), and it

will be interesting to see how the method performs when

used to study temporal change and when applied to other

species.

In summary, studying fishing-induced evolution of

growth rate requires careful consideration of the many

processes involved in resource acquisition and allocation.

As with all aggregated phenomena, a deeper understand-

ing requires that the intertwined sub-processes are teased

apart and studied in more detail. Accounting for all the

components will, at least in field studies, remain impossi-

ble. However, this difficulty should not dissuade us from

trying to identify the main components. One important

point from our review is that one should distinguish

between size, which describes a state, and growth, which

is a multitude of processes leading to a given size. This

includes acknowledging and correcting for plasticity and

environmental effects and simultaneously accounting for

changes in other important life-history traits, particularly

maturation schedule and reproductive investment. For

example, developing methods to apply reaction norms to

traits other than maturation and thereby incorporating

effects of environmental variables on growth will likely

help detect evolutionary changes. By involving other

approaches we can hope to expand the range of suitable

data also for species and stocks where environmental data

are otherwise unavailable, and broaden the scope of stud-

ies of fishing-induced evolution of growth. Examples of

these other approaches include stable isotope analyses

from scales and otoliths or oceanography modelling for

hind-casting environmental conditions and environmental

monitoring of potential prey or predator species. Because

growth integrates many dimensions of environmental

influence with physiological function, it will be exciting

and necessary to see how the phenotypic view of life his-

tory changes compares with genetic data when those

become available.

Many of the mechanisms that can lead to increased

growth rate due to fishing-induced evolution entail a risk-

ier life and could increase natural mortality rates (e.g.

Jørgensen & Fiksen 2010). Growth evolution will affect

both species ecology and fisheries economics but the devil

is in the detail: the consequences will depend on which

traits are adapting and how. While increased individual

growth is sometimes seen as beneficial for the productivity

of a fish stock, the positive effects could be counteracted by

a larger loss through predation and other sources of natural

mortality (Swain 2011). And while slow growth means

smaller fish, these adaptations are likely to help individuals

survive to reproduce and populations persist in an envi-

ronment dominated by fishing. Earlier maturation may

also have a positive influence on stock reproduction,

although this does not necessarily propagate to an increase

in harvestable biomass or catches (Enberg et al. 2009).

Whether productivity and viability will increase or decrease

will thus depend on the evolution of multiple life-history

traits, and no thorough analysis exists yet. Many challenges

of demonstrating and interpreting growth evolution and its

consequences lie ahead, and an increased understanding

requires that multiple biological disciplines together colour

the rich picture of intertwined mechanisms and the com-

plex layers of confounding factors.
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