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Abstract

Background: Gastric cancer is an aggressive disease with a poor 5-year survival and large global burden of disease.
The disease is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular
level. Despite the many prognostic, predictive, and therapeutic biomarkers investigated to date, gastric cancer
continues to be detected at an advanced stage with resultant poor clinical outcomes.

Main body: This is a global review of gastric biomarkers with an emphasis on HER2, E-cadherin, fibroblast growth
factor receptor, mammalian target of rapamycin, and hepatocyte growth factor receptor as well as sections on
microRNAs, long noncoding RNAs, matrix metalloproteinases, PD-L1, TP53, and microsatellite instability.

Conclusion: A deeper understanding of the pathogenesis and biological features of gastric cancer, including the
identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers, hopefully will
provide improved clinical outcomes.
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Background

Gastric cancer (GC) has been globally the fourth most

commonly diagnosed cancer and the second most lethal

malignancy [1, 2]. The data has recently been changing,

with WHO GLOBOCAN now reporting GC as the fifth

most common cancer and third leading cause of cancer

death in both sexes [3]. In 2015, an estimated 24,590

new GC cases and 10,720 GC deaths were diagnosed in

the USA [4]. As most patients present with advanced

unresectable or metastatic disease at the time of diagno-

sis, the overall clinical outcome of GC patients remains

unsatisfactory, with a 5-year survival rate of less than

30 % [4–6]. The incidence of GC remains high in Japan,

but the survival is higher, reported as 52 % [5, 6]. Clini-

copathological staging using the TNM system is the

major tool used by clinicians to predict GC patient

prognosis. However, GC patients of identical TNM stage

often exhibit varying clinical outcomes, suggesting that

there are additional factors that influence long-term

outcomes [7].

GC is a biologically heterogeneous disease that evolves

in the background of various genetic and epigenetic

alterations. Therefore, it is essential to have a more

comprehensive understanding of molecular variables

that affect GC disease pathways in order to develop ap-

propriate approaches for its diagnosis and treatment [6].

GC is assumed to originate from a sequential accumula-

tion of molecular and genetic alterations to stomach

epithelial cells [8], but the mechanism of carcinogenesis

remains complex and poorly understood [9, 10].

Additionally, a number of cellular phenomena, such as

tumour microenvironment, inflammation, oxidative

stress, and hypoxia, act in parallel with various molecu-

lar events to promote initiation, progression, and metas-

tasis of GC [11].

In the traditional Laurén classification, GC is divided

into two types: intestinal and diffuse types [12, 13]. The

intestinal-type adenocarcinomas characteristically form

glands, but with various degrees of differentiation. Intes-

tinal carcinomas are usually diagnosed in older patients,

mostly in the antrum, and are strongly attributed to

chronic H. pylori infection, with resultant atrophic gas-

tritis, and intestinal metaplasia [12, 13]. Diffuse gastric

carcinomas are poorly cohesive, composed of mostly

single, or small, nests of neoplastic cells that diffusely

infiltrate the gastric wall. This type is found most com-

monly in the gastric body and in younger patients.

Although this type is also associated with H. pylori in-

fection, the carcinogenetic sequence of the diffuse type

of GC is not well characterized [13].
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The consortium of The Cancer Genome Atlas (TCGA)

has recently reported comprehensive somatic changes in

GC and suggested four categories: (i) EBV-positive cases;

(ii) microsatellite instability (MSI)-positive cases; (iii)

genomically stable (GS) type (near-diploid type); and (iv)

chromosomal instability (CIN) type (Table 1, Fig. 1). The

EBV-positive tumours have been correlated with

PIK3CA mutations; high levels of DNA hypermethyla-

tion; and amplification of JAK2, PD-L1, and PDCD1LG2.

The MSI tumours display characteristic hypermutation

phenotype and downregulation of MLH1 gene. The GS

type has been associated with diffuse tumours, muta-

tions of RHOA and CDH1, or fusions involving RHO

family GTPase-activating proteins. The CIN tumours

have been associated with marked aneuploidy and focal

amplification of receptor tyrosine kinases, as well as mu-

tations of TP53 [14] (Fig. 2).

A deeper understanding of the pathogenesis and bio-

logical features of GC is necessary to further inform and

enhance early detection and treatment methods. The

discovery of new biomarkers and their application, in

conjunction with traditional cancer diagnosis, staging,

and prognosis, will help to improve early diagnosis and

patient care. The search for cancer biomarkers is carried

out in order to identify tumour cells at early stages and

predict treatment response, ultimately leading to a

favourable therapeutic outcome [15]. Biomarkers are

predominantly of four types, diagnostic, predictive, prog-

nostic, and therapeutic. A diagnostic biomarker is a non-

invasive marker for the detection of early disease. A

prognostic biomarker provides information on the likely

course of disease and thus yields important information

about therapy outcomes and patient survival as well as

provide suggestions for further treatment [15, 16]. In

contrast, a predictive biomarker is defined as a marker

that can be used to identify subpopulations of patients

who are most likely to respond (or not) to a targeted

therapy [17]. An ideal predictive marker should be reli-

able, readily available, and detectable by reasonably

acceptable laboratory techniques [18]. A therapeutic bio-

marker is a potential target for cancer therapy (Fig. 3).

Therapeutic targets are usually target proteins that are

identified as potential biomarkers for cancer but lack ac-

curate clinical evidences or trials to evaluate their pos-

ition within the history of cancer progression [16].

In this manuscript, a global review on the gastric

biomarker literature to date is undertaken, which is ded-

icated exclusively to the discussion of the role of bio-

markers in GC, specifically HER2; E-cadherin; fibroblast

growth factor receptor (FGFR)/human epidermal growth

factor receptor family (EGFR)/mammalian target of

rapamycin (mTOR)/hepatocyte growth factor receptor

(HGFR, MET); PD-L1 expression; TP53; MSI; and emer-

ging biomarkers including microRNAs, long noncoding

RNAs (LncRNAs), and matrix metalloproteinases

(MMPs) (Table 2). An English literature search on MED-

LINE combining the terms “gastric cancer” and “bio-

markers” retrieved 801 manuscripts between the years of

1995 and 2015. The primary manuscripts and their rele-

vant secondary references were reviewed.

HER2
HER2 (encoded by ERBB2, the v-erb-b2 avian erythro-

blastic leukaemia viral oncogene homolog 2) is one of the

four members of the human EGFR family (EGFR or

HER1, HER2, HER3, and HER4) in the receptor tyrosine

kinase (RTK) superfamily [15]. Unlike other HER family

members, HER2 does not contain a ligand-binding site

and signals through hetero-dimerization with other HER

family members, primarily EGFR [19]. HER2 is

expressed by normal and cancerous cells, whose gene

amplification results in protein overexpression, subse-

quent cell proliferation, growth, and cell survival by

triggering downstream signalling via the PI3K-AKT and

Table 1 Features of gastric cancer sub-types defined by TCGA. Based on 295 patients (182 males, 113 females) [14]

Molecular sub-type Anatomic distribution Histologic features Frequency Molecular

CIN • 43.0 % antrum
• 49.1 % fundus
• 64.9 % GEJ/cardia 50.0 % NA

• 26.1 % diffuse
• 60.2 % intestinal
• 52.6 % mixed
• 9.1 % non-specified

• 53.3 % M
• 44.2 % F

• TP53 mutation
• RTK-RAS activation

EBV • 5.3 % antrum
• 13.8 % fundus
• 7.0 % GEJ/cardia

• 7.2 % diffuse
• 7.7 % intestinal
• 15.8 % mixed
• 27.3 % not specified

• 11.5 % M
• 4.4 % F

• PIK3CA mutation
• PD-L1/2 overexpression
• EBV-CIMP
• CDKN2A silencing

MSI • 27.2 % antrum
• 21.6 % fundus
• 8.8 % GEJ/cardia
• 37.5 % NA

• 8.7 % diffuse
• 24.5 % intestinal
• 15.8 % mixed
• 63.6 % not specified

• 15.4 % M
• 31.9 % F

• Hypermutation
• MLH1 silencing
• Gastric CIMP

GS • 24.6 % antrum
• 15.5 % fundus
• 19.3 % GEJ/cardia 12.5 % NA

• 58.0 % diffuse
• 7.7 % intestinal
• 15.8 % mixed

• 19.8 % M
• 19.5 % F

• CDH1 mutations
• RHOA mutations
• CLDN18-ARHGAP fusion
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the MAPK pathways [20, 21]. Although the prevalence,

prognostic, and predictive value of HER2 is less estab-

lished in GC compared to breast cancer, the importance

is becoming evident as studies emerge.

HER2 has become the most important biomarker in

GC. The rate of HER2 overexpression in GC has varied

in the literature, ranging from 2 % [22] to as high as

91 % [23], although most studies fall between 9 and

38 % [21, 24–27]. The rate in the Trastuzumab for

Gastric Cancer (ToGA) trial was 22.1 % [28]. Proposed

reasons for the discrepancies include:

� Choice of study specimen. Some studies have used

tissue microarray (TMA) [27, 29, 30], as opposed to

whole slide for evaluation, and/or biopsy specimens

as opposed to surgical specimens, which could be

subject to sampling error due to tumour

heterogeneity [31].

� Methodology. Different in situ hybridization (ISH)

techniques provide similar results, but interpretation

is easier with silver-enhanced ISH (SISH), which is

an advantage when diagnosing focal amplification in

very small biopsies [32–34].

� Biological. Relates to the intratumoural

heterogeneity of HER2 alterations in GC, which has

been shown to be of prognostic significance and is

the main reason for discordance between IHC and

FISH and between biopsies and resection specimens

[35–49].

� Location. The HER2 overexpression/amplification

rate is higher in tumours from the gastroesophageal

junction than in those located in more distal parts of

the stomach [40]. One study found a rate of HER2

expression in the distal stomach to be 32 % [41].

� Type. Intestinal-type adenocarcinomas are more

commonly HER2 positive than mixed or diffuse-type

neoplasms [32, 38, 42–48].

� Differentiation. HER2 amplification/overexpression

has been associated with well to moderately

differentiated tumours [22, 26, 40, 49].

� Scoring. In contrast to breast cancer, HER2

immunohistochemical expression in GC is more

Fig. 1 Molecular subtypes of gastric cancer. a Gastric cancer cases are divided into subtypes: Epstein–Barr virus (EBV)-positive (red), microsatellite
instability (MSI, blue), genomically stable (GS, green), and chromosomal instability (CIN, light purple) and ordered by mutation rate. Clinical (top)

and molecular data (top and bottom) from 227 tumours profiled with all six platforms are depicted. b A flowchart outlines how tumours were
classified into molecular subtypes. c Differences in clinical and histological characteristics among subtypes with subtypes coloured as in a, b. The
plot of patient age at initial diagnosis shows the median, 25th and 75th percentile values (horizontal bar, bottom and top bounds of the box), and

the highest and lowest values within 1.5 times the interquartile range (top and bottom whiskers, respectively). GE, gastroesophageal (reproduced
with permission from The Cancer Genome Atlas Research Network (NATURE | VOL 513 | 11 SEPTEMBER 2014 [14])
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heterogeneous (focal staining) and may exhibit

incomplete membrane staining. Therefore, an HER2

scoring system specific for GC has been developed

with separate scoring systems for endoscopic

biopsies and surgical resection specimens to ensure

standardization [33].

The role of HER2 overexpression in tumourigenesis is

not completely understood and its prognostic implica-

tion remains unclear [50]. HER2 overexpression seems

to be an early event in gastric carcinogenesis as HER2

expression rises significantly from low-grade to high-

grade dysplasia to adenocarcinoma [41]. Furthermore,

the occurrence of HER2 expression in the early stage

strongly suggests that there is no relationship between

HER2 expression and prognosis [38]. Indeed, some re-

ports show no difference in prognosis when compared

with HER2-negative tumours [22, 25–27, 30, 49, 51–54].

However, some studies do report that HER2 amplifica-

tion is associated with a poor prognosis and aggressive

disease [21, 29, 55–60]. For example, a systematic review

investigating the prognostic value of HER2 overexpres-

sion found that 20 studies (57 %) reported no difference

in overall survival (OS), 2 (6 %) showed significantly lon-

ger OS, and 13 (37 %) significantly worse OS [61]. Inter-

pretation of these controversial results is difficult due to

lack of standardization in defining HER2 overexpression

or amplification [36].

The relationships between HER2 status and other

known pathologic and prognostic characteristics are

more ambiguous. Some studies describe associations

between HER2-positive tumours and nodal disease

[30, 47], tumour size [30], depth of tumour invasion

[47], and stage [47], whereas others fail to show any

association [22, 56, 59]. Some reports have found no

correlation between HER2 positivity and TNM stage

of disease [38, 44, 46, 48]. Another study was unable

to detect significant relationships between clinicopath-

ologic factors and HER2 status with the exception

that HER2-positive tumours demonstrated a lower

prevalence of signet ring cell features [49]. One other

study noted that 100 % of tumour samples with sig-

net ring cell features were HER2 negative [22]. Since

most studies failed to adjust for other confounders, it

is difficult to interpret the reported relationship be-

tween HER2 and other histopathological variables.

HER2 expression has become the biomarker for identi-

fying patients who are likely to show a survival benefit

with trastuzumab [28]. Trastuzumab, an HER2-targeted

agent, has considerable activity in HER2-positive GC but

only benefits patients with HER2-overexpressing/ampli-

fied tumours [50]. The integration of targeted therapies

Fig. 2 Key features of gastric cancer subtypes. This schematic lists some of the salient features associated with each of the four molecular

subtypes of gastric cancer. Distribution of molecular subtypes in tumours obtained from distinct regions of the stomach is represented by inset
charts (reproduced with permission from The Cancer Genome Atlas Research Network (NATURE | VOL 513 | 11 SEPTEMBER 2014 [14])
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in GC has been slower than in some other solid tumours

[62], and trastuzumab is the only targeted agent ap-

proved for the treatment of advanced GC [50]. At the

biomolecular level, the HER2 pathway is responsible for

the repair of DNA damage (particularly, inter-strand

cross-links induced by platinum analogues), so that

HER2-targeted inhibition may synergize with chemo-

therapy and increase apoptotic stress [63]. The ToGA

phase III international study assessed the efficacy in 594

patients with HER2-positive (IHC3+ or FISH+) advanced

Fig. 3 Signalling pathway and targeted therapy in gastric cancer. Percentages signify the overall molecular characteristics in the disease: FGFR2

amplification (9 %), VEGF/VEGFR overexpression (36–40 %), EGFR amplification and overexpression (27–44 %), HER2 amplification and overexpression
(7–34 %), c-MET amplification (10–15 %), kRAS mutation (2–20 %), Raf mutation (0–3 %), PI3K mutation (4–36 %), phospho-Akt expression (29–86 %),

phospho-mTOR expression (60–88 %), PTCH1 overexpression (16%), SMO overexpression (12%), and HER3 mutations (10%, not shown). *No
clinical trials of these agents have yet been reported in gastric cancer. ‡No known numbers or percentages for these genes and pathways.
Abbreviations: EGFR epidermal growth factor receptor, FGFR fibroblast growth factor receptor, GLI glioma-associated oncogene family zinc finger 1,

HDAC histone deacetylase, HER human epidermal growth factor receptor, HGF hepatocyte growth factor, Hh Hedgehog, IGFR insulin-like growth factor
receptor, MMP matrix metalloproteinase, mTOR mammalian target of rapamycin, PDGFR platelet-derived growth factor receptor, Ptch-1 protein patched

homolog 1, Smo smoothened, VEGF vascular endothelial growth factor, VEGFR vascular endothelial growth factor receptor (reproduced with permission
from Wadhwa, R. et al. Nat. Rev. Clin. Oncol. 10, 643–655 (2013) [181])

Table 2 Frequency of co-mutations in gastric cancer [182]

Mutation HER2 CDH1 MET PIK3A P53 MSI

HER2 – 0/116 (0 %) 2/116 (1.7 %) 1/116 (0.9 %) 7/116 (6.0 %) 2/116 (1.7 %)

CDH1 – – 2/116 (1.7 %) 1/116 (0.9 %) 10/116 (8.6 %) 0/116 (0 %)

MET – – – 0/116 (0 %) 6/116 (5.2 %) 0/116 (0 %)

PIK3A – – – – 2/116 (1.7 %) 1/116 (0.9 %)

P53 – – – – – 3/116 (2.6 %)

MSI – – – – – –
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gastric or gastroesophageal junction cancer with a com-

bination of trastuzumab + conventional chemotherapy

as a treatment for GC patients. The trial demonstrated

that advanced CG patients, stratified by HER2 amplifi-

cation/overexpression, had longer median OS when

treated with trastuzumab + chemotherapy versus

chemotherapy alone (13.8 versus 11.1 months) [28].

Targeting the extracellular domain of HER2 is not the

end of the story; new ways of blocking this signalling

pathway are being pursued.

Lapatinib is a dual EGFR/HER2 reversible tyrosine

kinase inhibitor (blocking both HER1 and HER2) that

suppresses the downstream signalling involving MAPK/

Erk1/2 and PI3K/Akt pathways. The efficacy of lapati-

nib in conjunction with paclitaxel was assessed in a

randomized phase III TyTAN trial, in Asian patients

with HER2-positive advanced GC. The patients who

progressed on first-line therapy were randomized to

lapatinib in conjunction with weekly paclitaxel versus

weekly paclitaxel alone. Median OS was 11.0 months

with lapatinib plus paclitaxel versus 8.9 months with

paclitaxel alone (p = 0.10), with no significant difference

in median progression free survival (PFS) (5.4 versus

4.4 months) or time to progression (5.5 versus

4.4 months). Response rate was higher with lapatinib

plus paclitaxel versus paclitaxel alone (odds ratio, 3.85;

p < .001). However, the risk of death or disease progres-

sion was significantly lower in patients with IHC 3+ tu-

mours who were treated with lapatinib, compared with

those with IHC 0/1 or IHC 2+ tumours [64]. Ado-

trastuzumab emtansine (T-DM1) is an antibody-drug

conjugate consisting of an antimicrotubule cytotoxic

agent DM1 linked to trastuzumab. The phase II/III

Gatsby trial evaluated efficacy of ado-trastuzumab

emtansine in the second-line setting for the treatment

of HER2-positive advanced GC. A total of 412 patients

treated with first-line therapy participated in the study.

The ImmunoGen, Inc., has recently disclosed that the

trial did not meet its primary endpoint of OS. The trial

findings have not presented yet [65].

Other HER2-directed therapies such as pertuzumab

and neratinib that have demonstrated efficacy in breast

cancer have not yet been evaluated in randomized clin-

ical trials in patients with HER2-positive GC. Further-

more, dual HER2 blockade, which is an effective

strategy in breast cancer, is being investigated in a

phase II study using the combination of pertuzumab

and trastuzumab in patients with HER2-positive meta-

static GC. HER2 is a promising biomarker for targeted

treatment in GC. Several clinical trials are currently ex-

ploring HER2-directed therapy in patients with GC

using varied designs. The results of these future studies

will be helpful to know the efficacy and tolerance of

HER2-directed therapy in HER2-positive GC.

E-cadherin
CDH1, located on chromosome 16 (q 22.1), encodes the

E-cadherin transmembrane protein [66, 67]. E-cadherin

is a calcium-mediated membrane molecule that plays an

important role in adhesion and differentiation of gastric

epithelial cells, which is a very important protective

mechanism against neoplasm formation [70]. E-cadherin

is one of the most important tumour suppressor genes

in GC, and its inactivation is thought to contribute to

tumour progression via subsequent increases in prolifera-

tion, invasion, and metastasis [15, 66, 68–72]. E-cadherin

dysfunction may occur through several mechanisms, in-

cluding CDH1 mutations, epigenetic silencing by pro-

moter hypermethylation, loss of heterozygosity (LOH),

transcriptional silencing by a variety of transcriptional re-

pressors that target the CDH1 promoter, and microRNAs

that regulate E-cadherin expression [67]. However, only

the presence of E-cadherin structural alterations repre-

sents a poor prognostic factor [72]. E-cadherin somatic al-

terations exist in all clinical settings and histotypes of GC

and are associated with different survival rates [72]. These

alterations are, presently, non-targetable as this would

require restoring E-cadherin expression by gene ther-

apy [15]. Nevertheless, E-cadherin is a potential

predictive marker of response to therapy since its im-

pairment decreases tumour cell sensitivity to conven-

tional and targeted therapies [72, 73]. Screening for

CDH1 mutations at the time of GC diagnosis may

help to predict patient prognosis and is likely to im-

prove management of patients [71].

Multiple germline E-cadherin mutations have been re-

ported in hereditary diffuse gastric cancer (HDGC) [74].

Analysis of families demonstrated an association be-

tween GC development and germline mutations in the

E-cadherin (CDH1) gene. The CDH1 gene mutations

have been scattered across the 16 exons this gene en-

compasses, with approximately 75 % being truncating

and 25 % missense in nature [75, 76]. Moreover, there

have even been large deletions of the E-cadherin gene

identified in a small percentage (4 %) of HDGC families,

likely involving nonallelic homologous recombination in

Alu repeat regions [77]. Furthermore, 70 % of CDH1

mutation-negative HDGC probands display germline

monoallelic CDH1 RNA downregulation (allelic imbal-

ance), reinforcing the role of the CDH1 locus in this

disease [78]. HDGC tumours appear when complete

somatic CDH1 inactivation is acquired, leading to reduced

or absent E-cadherin expression [75, 79]. This occurs

through second-hit mechanisms, pursuing Knudson’s

model of tumour suppressor gene inactivation [80, 81].

CDH1 promoter hypermethylation is the most frequent

second-hit inactivation mechanism in HDGC primary tu-

mours, whereas a second mutation or deletion (LOH/in-

tragenic deletions) is less frequently identified [70, 82–84].
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The cumulative risk estimate for advanced GC by 80 years

of age was estimated to be 67 % for men and 83 % in

women with wide confidence intervals, as these were

based on 11 HDGC families [85].

A study of 42 families diagnosed with HDGC trait

by having at least two members affected had an E-

cadherin mutation identified in 40 % of cases. If the

clinical criteria were less stringent to include only

one GC occurring before 50 years of age, then more

than half the cases had E-cadherin mutations [86].

When large deletions were screened in addition to

point mutations and small frameshift mutations, 46 %

of 160 high-risk families were found to have a germ-

line E-cadherin gene alteration [77]. It is noteworthy

that more than half to up to two thirds of HDGC

families reported have proven negative for the E-

cadherin gene mutation [77, 87]. Allele expression

imbalance of CDH1 was noted in a subset of these

families [78]; however, most of these families likely

have other molecular alterations underlying their can-

cer predisposition that are yet to be discovered [88].

The frequency of abnormal E-cadherin expression

among sporadic DGC varies and has been reported as

7 [89], 38 [66], 46 [90], and 82 % [91]. CDH1 somatic

alterations were found in approximately 30 % of all

patients with GC [71]. No germline mutations of this

gene were detected in apparent sporadic diffuse GC

cases with a mean age of 62 years in Great Britain

[92]. Furthermore, a study of 25 sporadic diffuse GCs

identified 1 case with a germline E-cadherin mutation

and none in 14 intestinal-type GCs [93]. Molecular

variables such as CDH1 alterations may be crucial to

better define the survival of patients with a family

history.

Abnormal E-cadherin expression may be used as a

predictive factor for tumour invasiveness in gastric

adenocarcinoma. One study showed a significant correl-

ation between abnormal E-cadherin expression and

tumour grade and regional lymph node involvement

[66]. Another study showed that E-cadherin methylation

was correlated with size of tumour, tumour stage, and

nodal metastases [94]. However, one study found that E-

cadherin mutation was not correlated with tumour grade

or stage [95]. In keeping with most studies finding a cor-

relation of abnormal E-cadherin expression with adverse

clinicopathologic factors, tumours with CDH1 structural

alterations displayed a significantly poorer survival

rate than tumours negative for CDHI alterations or

tumours with epigenetic CDH1 alterations [71]. For

instance, one study found that patients with GC dis-

playing CDH1 exon 8/9 deletions (structural) have a

worse clinical evolution and a shorter OS [96]. Over-

all, abnormal E-cadherin expression favours a worse

prognosis for GC patients.

FGFR/EGFR/mTOR/MET
Important biomarkers in GC currently being investi-

gated include the FGFR, the hepatocyte growth factor

receptor (HGFR, MET), and mTOR [15].

FGFR family members (FGFR1, FGFR2, FGFR3, and

FGFR4) belong to the RTK superfamily [15]. In a recent

genomic survey of GC using high-resolution single-

nucleotide polymorphism (SNP) arrays, FGFR2 copy

number gain was found in 9 % of tumours and was more

common than EGFR (8 %), HER2 (7 %), or MET (4 %)

copy number gains [97]. FGFR2 has therefore attracted

significant attention as a potential candidate for targeted

therapy in GC [15]. The small-molecule FGFR2 inhibi-

tor, dovitinib (TKI258), has demonstrated growth inhibi-

tory activity in FGFR2-amplified GC cell lines and

xenografts. Ongoing phase II studies will be helpful to

clarify the role of dovitinib in patients with FGFR-

amplified metastatic GC [97].

Phosphatidylinositol-3-kinase (PI3K)/mTOR repre-

sents one common final convergence signalling path-

way originated by the activation of several RTKs.

Oncogenic mutations in PIK3CA (gene encoding the

alpha p110 catalytic subunit) of PI3K have been ob-

served in GC, constitutively activating the PI3KA/

mTOR pathway [15, 98]. Studies in GC have reported a

mutation frequency ranging from 5 to 67 % [99–102].

In particular, EBV-positive tumours have a strong pre-

dilection for PIK3CA mutations [100]. Misregulation has

been associated with increased lymph node metastases

and decreased survival of GC patients [15, 103, 104].

Everolimus is an mTOR inhibitor that has shown potential

benefit in advanced GC in early phase 2 trials [105, 106].

A phase 3 trial compared everolimus with placebo in 656

patients with chemotherapy refractory advanced GC

[107]. Only a trivial improvement in PFS was noted

(median 1.7 versus 1.4 months; p < 0.001). There was

no significant improvement in OS (median 5.4 versus

4.3 months; p = 0.124).

EGFR, another member of the human tyrosine kinase

receptor family, has been shown to be overexpressed by

IHC in 27 % of GCs, whereas gene amplification by

FISH was evident in less than 3 % in one large series

[108]. Another series using FISH found an incidence of

EGFR amplification to be ~5 % [109]. EGFR amplifica-

tion was found to be 8 % using SNP assays [97]. EGFR

overexpression has been associated with the presence of

moderately or poorly differentiated histology, higher

stage, and poor survival [108].

The addition of an anti-EGFR monoclonal antibody

with cytotoxic chemotherapy, however, has failed to

demonstrate improvement in the outcomes of patients

with advanced GC. Unlike HER2 target-directed therapy,

there are no established biomarkers to predict response

to EGFR inhibitors. The predictive value of EGFR
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mutation, increased EGFR copy number, and K-ras mu-

tation status in GC remains controversial. Two random-

ized clinical trials “EXPAND” and “REAL3” evaluated

efficacy of an anti-EGFR monoclonal antibody (panitu-

mumab or cetuximab) in combination with chemother-

apy in patients with advanced gastric and oesophageal

cancer [110, 111]. In the EXPAND trial, 904 patients

with advanced GC were randomized to capecitabine and

cisplatin plus cetuximab or chemotherapy alone. The

median PFS of patients who received chemotherapy plus

cetuximab was 4.4 months compared with 5.6 months

with chemotherapy alone [110]. In the REAL3 trial, 553

patients with advanced gastric and oesophageal cancer

were randomized to chemotherapy plus panitumumab

or chemotherapy alone. Median OS of patients who re-

ceived chemotherapy was 11.3 months compared with

8.8 months if they received chemotherapy plus panitu-

mumab (p = 0.013) [111]. In addition to anti-EGFR

monoclonal antibodies, orally active tyrosine kinase in-

hibitors (TKIs), small molecules that block the binding

site of the EGFR tyrosine kinase, have been evaluated in

patients with chemotherapy refractory advanced gastric

and oesophageal cancer. In a phase II trial of 70 patients,

erlotinib monotherapy resulted in a response rate of 9 %

in patients with gastroesophageal junction cancer but

none in the GC subgroup [112]. At the present time,

anti-EGFR therapies do not add to conventional chemo-

therapy. There is a need for further investigations to

identify subset of patients who will benefit from EGFR

blockade.

MET

MET (encoded by MET) belongs to the HGFR family

[15]. MET is a transmembrane tyrosine kinase receptor

with high affinity for hepatocyte growth factor/scatter

factor (HGF/SF). Auto-phosphorylation of MET acti-

vates several signalling transduction cascades, leading

to cancer cell proliferation, angiogenesis, invasion, and

metastases [113].

MET amplification and/or overexpression of its protein

product has long been implicated in the pathogenesis of

GC, with many reports based on gene copy number, RNA

expression, and/or protein expression, supporting its role

as a poor prognostic factor [114–117]. Nevertheless, the

prevalence of METamplification in GC varies widely in the

literature from 0 [118] to 68 % [113, 115]. This discrepancy

is greatly attributed to the methodology employed to detect

gene amplification/copy number gain and/or protein ex-

pression [15]. MET-positive tumours were more frequently

associated with serosal invasion and other unfavourable

features [118]. In all studies [97, 115–117], the GC patients

with polysomic and/or amplified MET showed poorer

disease-free survival and OS in comparison with the non-

polysomic MET [15]. Another study has reported a

significantly worse prognosis for MET-positive compared

with MET-negative tumours [119]. Although MET amplifi-

cation may play a central role in determining GC progno-

sis, future studies should focus on the possible negative

predictive role for response to chemotherapy or targeted

therapies [113].

Despite the fact that aberrant up-regulation of the

MET/HGF pathway is associated with poor prognosis in

GC, anti-MET therapies have shown limited efficacy in

advanced GC. Onartuzumab is a fully humanized, mono-

valent anti-MET antibody that inhibits HGF binding and

receptor activation. The efficacy of onartuzumab in com-

bination with chemotherapy (mFOLFOX6) in the first-line

setting was examined for metastatic, HER2-negative gas-

troesophageal cancer [120]. In the MET-positive sub-

group, median PFS was 5.95 months for onartuzumab and

6.8 months for placebo (HR 1.38 [0.60–3.20]). Likewise,

the interim results of a phase II study of foretinib, a MET

TKI, showed minimal activity in a MET-unselected patient

cohort [121]. Despite early negative results, several novel

MET inhibitors are now being evaluated in metastatic or

unresectable GC in an attempt to identify patients who re-

spond to MET inhibitors.

PD-L1 expression
Programmed death-1 (PD-1) is a key immune checkpoint

receptor critical for the regulation of T cell function dur-

ing immunity and tolerance. The PD-1 surface receptor

binds to two ligands, PD-L1 and PD-L2, which are

expressed on tumour cells. PD-1-PD-L interactions con-

trol the induction and maintenance of peripheral T cell

tolerance. Tumours use the PD-1 pathway to evade im-

mune surveillance and to prevent the immune system

from rejecting the tumour [122]. The frequency of pro-

grammed death ligand 1 (PD-L1) overexpression, a puta-

tive response biomarker, approaches 40 % in GC [123].

The EBV-positive sub-type of tumours has shown in-

creased expression of PD-L1/2 [14]. Pembrolizumab is an

anti-PD1 monoclonal antibody that has shown efficacy in

advanced PD-1-expressing GC. In an early phase trial, 65

patients who had distinctive stromal or ≥1 % tumour nest

cell PD-L1 staining were treated with pembrolizumab.

The objective response rate was 22 %, and median re-

sponse duration was 24 weeks. The 6-month PFS was

24 % and the 6-month OS was 69 % [124]. The results of

this study have prompted expansion of immune check-

point inhibitors in advanced GCs. Targeting the PD-1

pathway and immune checkpoint blockade appears to be

a promising novel approach for the treatment of GC.

TP53

The TP53 gene encodes a nuclear p53 protein of 393

amino acids, which acts as a potent transcription factor

with a key role in the maintenance of genetic stability
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[125, 126]. The function of TP53 gene is usually altered

through LOH, mutations, and rarely by DNA methyla-

tion [126]. TP53 mutation is one of the most prevalent

genetic alterations in GC and associated with the CIN

sub-type of GC [14, 126]. More than one mutation may

be present in a single tumour resulting in heterogeneity

of the TP53 mutational status [126].

There are conflicting results with respect to the preva-

lence of TP53 mutations and their relationship to histo-

logical type or tumour stage of GC. Some studies

showed that mutations tend to affect mainly intestinal-

type tumours, while others found that the incidence of

mutation is similar in both intestinal and diffuse-type tu-

mours, ranging between 16 and 65 % of the cases stud-

ied. The frequency of TP53 abnormalities in both early

and advanced intestinal type is consistent, similar to that

observed in advanced diffuse type, while in early diffuse-

type TP53 mutations are uncommon [126–130].

The expression of p53 in non-tumour gastric mucosa

with dysplasia was significantly higher than that in the

mucosa without dysplasia. Overexpression of p53 pro-

tein was associated with the size of tumours that may

help in diagnosis and prognostic prediction of GC [131].

However, the prognostic impact of p53 abnormalities on

this neoplasm remains controversial. A significant asso-

ciation between p53 overexpression and the metastatic

spread to lymph nodes or shortened survival has been

described by some studies on GC but not by others

[126]. At this time, p53 is not a reliable prognostic factor

for GC.

Microsatellite instability

Microsatellites are short iterations of 1–6 nucleotide

long units, non-randomly distributed in both prokaryotic

and eukaryotic genomes [12]. Mismatch repair (MMR)

deficiency leads to a tumour phenotype known as micro-

satellite instability (MSI), in which cells accumulate

genetic errors [15]. Several reports have shown the asso-

ciation of GC with MSI [132, 133]. MSI has been re-

ported in 15 to 30 % of GC, mainly due to epigenetic

silencing via hypermethylation of the MLH1 promoter

[134, 135]. MSI-positive GC generally develops later in

life and has a favourable prognosis when compared with

MSI-negative tumours [136, 137]. The methylation of

hMLH1 gene and its loss of expression increase with in-

creasing age of the GC patient [138]. Studies have shown

a strong association of MSI in GC with intestinal type,

which undergoes more genomic instability in compari-

son to the diffuse type [12]. Moreover, MSI GC is more

common in the distal part of the stomach [137, 139].

Interestingly, MSI tumours usually have an overall long-

term prognosis that is favourable even in patients

with advanced disease due to the fact that these tu-

mours have a lower ability to invade serosal layers

and are associated with a lower prevalence of lymph

node metastases [135, 137, 139–141]. There are also

higher survival rates in patients with advanced MSI

GC in comparison to patients with other types of GC

even with the same identical stage of the disease

[142]. Information is scarce as to the prognostic value

of EGFR, HER2, or VEGFA expression in the MSI

subset of GC [135]. The MSI status certainly appears

to be an independently positive prognostic factor, and

future studies will need to determine the impact of

MSI GC in the context of other co-existent molecular

alterations.

Emerging markers

MicroRNA

MicroRNAs (miRNAs) are short fragments of noncoding

RNAs comprising 18 to 24 ribonucleotides that can

regulate the expression of genes by directly binding to

the 3′UTR region of their target gene mRNA and

impairing their translation [143, 144]. miRNAs have

been found to regulate a variety of cellular processes

such as cell proliferation, differentiation, invasion, mi-

gration, and epithelial-mesenchymal transition [143]. A

single miRNA can regulate the expressions of thousands

of genes and participate in the regulation of the whole

cell cycle [145]. In detail, miRNAs negatively regulate

the expression of cancer-related genes by decreasing the

expression of tumour suppressor genes or enhancing the

expression of oncogenes, or as modulators of cancer

stem cells and metastases [146]. Accumulating evidence

suggests that miRNAs play an important role in GC, but

the role of specific miRNAs involved in this disease re-

mains elusive [143].

Serum and plasma miRNAs are more stable and rela-

tively easier to access than tissue samples [147]. The sta-

bility of tumour-associated miRNA in blood allows it to

be a novel noninvasive tumour biomarker for cancer de-

tection [148]. Circulating miRNAs must demonstrate

several hallmark characteristics to be considered as reli-

able biomarkers: (i) stable and able to be quantified in

clinical samples; (ii) present at undetectable or low levels

in samples from individuals without cancer, while being

expressed by cancer cells at moderate or high levels; (iii)

exhibit biological functions mechanistically linked to

malignant tumour progression; and (iv) provide diagnos-

tic or prognostic information [149, 150].

The results on expression of miRNAs are inconsistent,

and it is hard to select a suitable miRNA as a cancer bio-

marker. Furthermore, there is no consensus regarding

whether plasma or serum is preferable for use as a sam-

ple, and there is a limitation to analysing the miRNA ex-

pression results of both plasma and serum [145].

Previous studies have shown that some miRNAs have

been inconsistently reported when being used as a
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cancer biomarker [151, 152]. Possible reasons for these

observed inconsistencies are the diverse experimental

techniques, lack of sufficient relevant clinical data, the

heterogeneous tissue samples, and poor study design

[145, 153].

Numerous miRNAs have been identified as dysregulated

in GC, either tissues or cell lines, many of which have also

been associated with clinicopathologic features and/or

survival. A number of reviews have specifically addressed

the role of miRNAs in GC with comprehensive tables

[154, 155]. However, to date there are no validated thera-

peutic trials showing miRNAs are an effective novel prog-

nostic, predictive, or therapeutic biomarker.

Long noncoding RNAs

Long noncoding RNAs (lncRNAs) are functional RNAs

longer than 200 nucleotides [156]. According to the

proximity to protein-coding genes, lncRNAs can be

classified as sense, antisense, divergent or bidirectional,

intronic, and intergenic [157]. As entities of transcrip-

tional control, generally it is understood that lncRNAs

may perform their functions in at least two ways: (i) as

scaffoldings in ribonucleoprotein complexes, e.g. tran-

scription or chromatin-modifying factors, acting in cis or

in trans on the genome [158], and (ii) as incidental by-

products of a negative type of transcriptional regulation

termed “transcriptional interference” [159]. Unlike

protein-coding genes, the function of these lncRNAs

and their relevance to disease remain unclear [156]. Re-

cently, a new regulatory mechanism has been identified

in which crosstalk between lncRNAs and mRNA occurs

by competing for shared miRNAs response elements. In

this case, lncRNAs may function as competing endogen-

ous RNAs to sponge miRNAs, thereby modulating the

de-repression of miRNA targets and imposing an add-

itional level of post-transcriptional regulation [160].

LncRNAs are still an emerging field. However, accu-

mulating evidence has demonstrated that many lncRNAs

are dysregulated in GC and closely related to tumorigen-

esis, metastases, and prognosis or diagnosis [156]. A

total of 135 lncRNAs have been found to be aberrantly

expressed in GC tissues [11, 161]. These may be poten-

tial prognostic biomarkers for GC and await future stud-

ies to further elucidate their relevance.

Matrix metalloproteinase

The matrix metalloproteinases (MMPs) are a family of

24 zinc-dependent endopeptidases in humans that de-

grade components of the extracellular membrane (ECM)

[162]. MMPs participate in several normal and patho-

logical processes, and their activity is mainly modulated

by the action of the tissue inhibitor of metalloproteinase

(TIMP) [163]. MMPs take part in breaking down the

extracellular matrix in normal physiological processes

[164]. Specifically, it has been reported that both the ex-

pression of some MMP proteins and mRNA may have a

large influence on GC [165, 166]. Studies regarding

regulation of MMPs and TIMPs in GC have suggested

that these molecules could be useful as markers of depth

of invasion, metastases, and peritoneal dissemination

[162]. There are some conflicting results, which are most

likely related to methodological aspects and to the het-

erogeneity of the patient populations [167].

MMPs have been identified as up-regulated in GC, either

tissues or cell lines, and have also been associated with

clinicopathologic features and/or survival including MMP

3 [168], 7 [168–170], 11 [162, 168], 9 [168, 171, 172], 12

[168], 21 [168, 173], MT1 [174–176], 14 [177], 1 [162], 2

[162], and 28 [162].

MMP inhibitors, however, have shown limited clinical

benefit. For example, a randomized, double-blind,

placebo-controlled study evaluated efficacy of orally ad-

ministered MMP, marimastat, in 369 patients with

chemotherapy refractory advanced gastric and gastro-

esophageal cancer. A modest difference in survival was

noted. The median survival was 138 days for placebo

and 160 days for marimastat, with a 2-year survival of 3

and 9 %, respectively. The treatment was complicated by

poor tolerability and was associated with musculoskel-

etal pain and inflammation [178]. Though many studies

have identified the possible role of MMPs in GC, the

clinical correlation is still lacking and many more studies

will need to be carried out.

Conclusions
GC is common according to global estimates of cancer

and is a frequent cause of cancer-related mortality with

a poor survival. At present, although the role of many

genetic alterations discovered in GC seems unclear, they

represent a promising tool for stratifying patients ac-

cording to tumour biological behaviour and likelihood of

response to systemic therapy [15]. Nevertheless, to date,

except for HER2, there are no established evidence-

based biomarkers predictive of tumour response to tar-

geted agents, and the majority of patients do not yet

benefit from molecularly directed therapies.

Most analyses in the literature consider a limited num-

ber of cases. As a result, despite the huge amount of

data, no novel/reliable molecular marker has been intro-

duced in the frame of secondary prevention strategies,

so far [179]. It is therefore important to undertake retro-

spective studies in which tumour samples from patients

that have undergone GC therapy are mined for single or

combinations of biomarkers that can predict favourable/

unfavourable response towards a certain chemothera-

peutic regimen or define the use of multiple therapy

regimens in GC. Independent validation of the most

promising prognostic and predictive biomarkers will
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then be required before they can be routinely employed

in clinical practice [15]. The search for a diagnostic bio-

marker is particularly critical for patient outcomes as

early diagnosis would be instrumental in increasing sur-

vival. Future studies with identification and validation of

diagnostic, prognostic, predictive, and therapeutic bio-

markers will aid in the understanding of GC resulting in

personalized pathway-driven targeted therapy with im-

proved patient outcomes [180].
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