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GENERAL HELICES AND A THEOREM OF LANCRET

MANUEL BARROS

(Communicated by Christopher Croke)

Abstract. We present a theorem of Lancret for general helices in a 3-dimen-
sional real-space-form which gives a relevant difference between hyperbolic and
spherical geometries. Then we study two classical problems for general helices
in the 3-sphere: the problem of solving natural equations and the closed curve
problem.

1. Introduction

A curve of constant slope or general helix in Euclidean space R3 is defined by
the property that the tangent makes a constant angle with a fixed straight line (the
axis of the general helix). A classical result stated by M. A. Lancret in 1802 and
first proved by B. de Saint Venant in 1845 (see [St] for details) is: A necessary and
sufficient condition that a curve be a general helix is that the ratio of curvature to
torsion be constant.

Given two functions of one parameter (potentially curvature and torsion parame-
trized by arclength) one might like to find an arclength parametrized curve for which
the two functions work as the curvature and the torsion. This problem, known as
solving natural equations, is generally achieved by solving a Riccati equation, [St].
However, the natural equations for a general helix can be integrated by quadrature
using the fact that such a curve is a geodesic on a general cylinder (see [St]).

The curvature and the torsion of an arclength parametrized closed curve are
periodic functions of the arclength. However this necessary condition is not a
sufficient condition, as general helices show. N. V. Efimow [Ef] and W. Fenchel [Fe]
stated the so called closed curve problem: Find (explicit) necessary and sufficient
conditions that determine when, given two periodic functions with the same period,
the integral curve is closed. This is an open problem in elementary differential
geometry.

In this short note, we use the concept of Killing vector field along a curve γ
in a 3-dimensional real-space-form M (this concept was introduced by J. Langer
and D. A. Singer when studying elastic curves in real-space-forms, [LS1], [LS2]) to
define the concept of general helix in M . Of course this is the natural extension of
that for general helices in Euclidean space.
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Then we prove the Lancret Theorem for general helices in a space-form, M .
While the original Lancret Theorem is very elementary, the extension to space-
forms is a bit more subtle than one might suppose, as evidenced by the difference
between the spherical and hyperbolic cases. The spherical case (Theorem 3) is
nicely analogous to the Euclidean case (Theorem 2). On the other hand, there are
no nontrivial general helices in the hyperbolic case (Theorem 1).

The more explicit realization of general helices in the sphere (Theorems 4, 5)
makes essential use of the Hopf map Π : S3 −→ S2. It is used to define on S3 a
class of flat surfaces. Indeed, just consider Mβ = Π−1(β), the Hopf cylinder over an
immersed curve β in S2, [Pi]. Then we give a geometric approach to the problem
of solving natural-equations for general helices in 3-sphere. We prove that a fully
immersed curve in S3 is a general helix if and only if it is a geodesic in some Hopf
cylinder in S3.

However, general helices in S3 behave quite differently than those in Euclidean
space. In fact , when we study the closed-curve problem for general helices in S3,
we prove: There exists a rational one-parameter family of closed general helices
living in the Hopf torus shaped on any immersed closed curve in the 2-sphere (see
Corollary 1).

Finally we make some speculations about the interest of general helices. These
curves certainly arise in a broader context: the interplay between geometry and inte-
grable Hamiltonian systems. Embedded in the LIH (localized induction hierarchy)
is a natural geometric evolution on general helices inducing an mKdV (modified
Korteweg-de Vries) curvature evolution equation. The role of general helices here
is probably similar to that of curves of constant torsion or constant natural curva-
ture (see [LP] for details).

The author would like to express his thanks to the referee for valuable comments
and suggestions.

2. General helices

Let γ = γ(t) : I ⊂ R −→ M be an immersed curve in a 3-dimensional real-
space-form M with sectional curvature c. The unit tangent vector field of γ will
be denoted by T and the speed of γ will be v(t) = |γ′(t)|. Also κ > 0 and τ will
denote the curvature and the torsion of γ, respectively. Therefore if {T,N,B} is
the Frenet frame of γ and ∇̄ is the Levi-Civita connection of M , then one can write
the Frenet equations of γ as

∇̄TT = κN,

∇̄TN = −κT + τB,

∇̄TB = −τN.

We consider variations Γ = Γ(t, z) : I × (−ε, ε) −→ M with Γ(t, 0) = γ(t).
Associated with Γ is the variational field V (t) = ∂Γ

∂z (t, 0) along γ. We will use the
notation V = V (t, z), T = T (t, z), v = v(t, z), etc. with the obvious meanings.
Finally we use s to denote the arclength parameter of the t-curves in variation Γ
and write v(s, z), κ2(s, z), τ2(s, z), etc. for the corresponding reparametrizations.
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According to [LS1], a vector field V (s) along γ(s) is a Killing vector field along
γ if

∂v

∂z

∣∣∣∣
z=0

=
∂κ2

∂z

∣∣∣∣
z=0

=
∂τ2

∂z

∣∣∣∣
z=0

= 0.(1)

This is well-defined in the sense that it does not depend on the V -variation of γ
one chooses to compute the derivatives involved in (1). Indeed, just use standard
arguments (see [LS1]) to get

∂v

∂z

∣∣∣∣
z=0

= 〈∇̄TV, T 〉v = 0,(2)

∂κ2

∂z

∣∣∣∣
z=0

= 2κ〈∇̄2
TV,N〉 − 4κ2〈∇̄TV, T 〉+ 2cκ〈V,N〉 = 0,(3)

∂τ2

∂z

∣∣∣∣
z=0

=
2τ

κ
〈∇̄3

TV,B〉 −
2κ′τ
κ2

〈∇̄2
TV + cV,B〉

+
2τ(c + κ2)

κ
〈∇̄TV,B〉 − 2τ2〈∇̄TV, T 〉 = 0,(4)

where 〈, 〉 denotes the Riemannian metric of M and κ′ = ∂κ
∂s (s, 0).

These equations constitute a linear system in V whose solution space is 6-
dimensional. Obviously the restriction to γ of any Killing field of M gives a Killing
vector field along γ. In particular, if M is simply connected, then the dimension
of its isometry group is 6, and then we have the following lemma due to J. Langer
and D. A. Singer (see also [LS2]).

Lemma 1. Let M be a complete, simply connected real-space-form and γ an im-
mersed curve in M . A vector field V on γ is a Killing vector field along γ if and
only if it extends to a Killing field Ṽ on M .

From now on M will be complete and simply connected. Also, without loss of
generality we will assume c = −1, 0,+1.

A curve γ(s) in M will be called a general helix if there exists a Killing vector
field V (s) with constant length along γ and such that the angle between V and γ′

is a non-zero constant along γ. We will say that V is an axis of the general helix
γ. As we will see, this definition is the natural extension of that for general helices
in R3, in which an axis works as a straight line (see for instance [MP]).

Obvious examples of general helices are:
(1) Any curve in M with τ ≡ 0. In this case just take V = B as an axis.
(2) The curves with both κ and τ being nonzero constants (we call them helices).

In this case V (s) = cos θT (s) + sin θB(s) with cot θ = τ2−c
τκ works as an axis.

3. The theorem of Lancret

Let γ(s) be a general helix with axis V (s); without loss of generality we may
assume that | V (s) |= 1. Then

V (s) = cos θT (s) + sin θB(s),(5)

where θ denotes the angle between V (s) and T (s) = γ′(s).
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We use the last formula and the Frenet equations of γ to obtain

∇̄TV = (κ cos θ − τ sin θ)N,(6)

∇̄2
TV = (κ′ cos θ − τ ′ sin θ)N − κ(κ cos θ − τ sin θ)T + τ(κ cos θ − τ sin θ)B.(7)

Next we put (6) and (7) in (3), getting

κ(κ′ cos θ − τ ′ sin θ) = 0.(8)

Since κ is assumed to be positive, (8) implies that κ cos θ − τ sin θ must be a
constant, and consequently we have

τ = bκ+ a,(9)

where b = cot θ.
To determine the constant a, we use the fact that ∇̄2

TV has no N -component to
compute

∇̄3
TV = aκ′ sin θT − aτ ′ sin θB + a(κ2 + τ2) sin θN.(10)

Finally we put all this information in (4) to get

τ sin θ(a(κτ ′ − τκ′) + cκ′) = 0.(11)

Because of the examples, we can consider τ 6= 0, and so we use (9) and (11) to
obtain

κ′(a2 − c) = 0.(12)

As a consequence, κ is constant (which is included in (9)) or a2 = c. According
to the values of c, we have the following cases:

Theorem 1 (The Lancret theorem in the hyperbolic space). A curve γ in H3(−1)
is a general helix if and only if either

(1) τ ≡ 0 and γ is a curve in some hyperbolic plane H2(−1), or
(2) γ is a helix in H3(−1).

In contrast we have the classical theorem of Lancret in Euclidean space and its
spherical version.

Theorem 2 (The Lancret theorem in Euclidean space). A curve in R3 is a gen-
eral helix if and only if there exists a constant b such that τ = bκ.

Theorem 3 (The Lancret theorem in the sphere). A curve γ in S3(1) is a general
helix if and only if either

(1) τ ≡ 0 and γ is a curve in some unit 2-sphere S2(1), or
(2) there exists a constant b such that τ = bκ± 1.

We only need to prove the if parts of Theorems 2 and 3. If κ and τ are constrained
according to any of the above mentioned statements, we define θ to satisfy cot θ = b
and then consider V (s) = cos θT (s) + sin θB(s). It is clear that V has constant
length and θ is the angle between V and T = γ′ along γ. Now it is not difficult to
compute ∇̄TV , ∇̄2

TV and ∇̄3
TV and then to see that V satisfies (2), (3) and (4).

This proves that V (s) is a Killing vector field along γ.
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4. General helices and Hopf cylinders in the 3-sphere

It is well-known that general helices in Euclidean space can be regarded as
geodesics in right cylinders (of course the converse also hold). In this section we
show a similar result for general helices lying fully in the 3-sphere.

We start by recalling a nice description (due to U. Pinkall, [Pi]) of the Hopf
map Π : S3(1) −→ S2(1

2 ) (here Sn(r) denotes the n-sphere of radius r > 0 and

S2(1
2 ) is identified with the one dimensional complex projective space CP 1 with

constant holomorphic sectional curvature 4). We identify S3(1) with the set of
unit quaternions {q ∈ H, qq̄ = 1} and then S2(1

2 ) with the 2-sphere of radius
1
2 in the subspace of H spanned by 1, j and k. Now we denote by q 7→ q̃ the

antiautomorphism of H that fixes 1, j and k but sends i to −i. Then Π(q) = 1
2 q̃q,

(see [Pi] for properties of Π). In particular Π is a Riemannian submersion, and so
we will follow the notation and terminology of [O]. Therefore, given p ∈ S3(1), the
tangent space TpS

3(1) splits into the horizontal plane (which is isometric, via dΠp,
to TΠ(p)S

2(1
2 )) and the vertical line (which is the tangent line to the fiber through

p).
Let ∇̄ and ∇ be the Levi-Civita connections of S3(1) and S2(1

2 ), respectively,
and denote by overbars the horizontal lifts of corresponding objects on the base.
Then we have

∇̄X̄ Ȳ = ¯∇XY − (〈JX, Y 〉 ◦Π)V,(13)

∇̄X̄V = ∇̄V X̄ = iX̄,(14)

∇̄V V = 0,(15)

where V is a unit vertical vector field and J denotes the standard complex structure
on S2(1

2 ). Notice that (15) expresses the geodesic nature of the fibers.

Let β : I ⊂ R −→ S2(1
2 ) be a unit speed curve with Frenet frame {β′, ξ}

and curvature function λ. Consider a horizontal lift β̄ of β with Frenet frame
{β̄′, ξ∗, η∗} and curvatures λ∗ and µ∗. Then we combine (13), (14), (15) with the
Frenet equations of both β and β̄ to prove that λ∗ = λ ◦ Π = λ̄ and ξ∗ = ξ̄. In
particular, ξ∗ lies in the horizontal distribution along β̄. Also it is not difficult to
see that µ∗ = ±1 and η∗ = ±V ; that is, the binormal η∗ of β̄ and the unit tangent
to the fibers through each point of β̄ agree.

By pulling back via Π the curve β, we obtain its total lift Mβ ⊂ S3(1), which is
proved to be a flat surface in S3(1), [Pi]. We call Mβ the Hopf cylinder over β. It
can be parametrized as follows X : I × R −→ S3(1) defined by

X(t, z) = eiz β̄(t) = cos zβ̄(t) + sin zV (t)(16)

Notice that in this parametrization, the t-curves are the horizontal lifts of β
while the z-curves correspond to the fibers. Both families of curves are arclength
parametrized and mutually orthogonal; futhermore, they are geodesics in Mβ.
U. Pinkall also showed that the Hopf cylinder Mβ associated with a closed curve
β of length L enclosing an oriented area A in S2(1

2 ) is isometric to the flat torus

R2/Λ, where Λ is the lattice generated by (2A,L) and (2π, 0). Notice that the
horizontal lifts of β are not closed because of the holonomy.
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The Weingarten map, A, of Mβ in S3(1) is given by

A(Xt) = λ̄Xt + Xz,(17)

A(Xz) = Xt.(18)

Theorem 4. Let β be an immersed curve in S2(1
2 ) and Mβ its Hopf cylinder in

S3(1). Then every geodesic of Mβ is a general helix, lying fully in S3(1).

Proof. Let α(s) be a geodesic of Mβ . Then there exists a constant ϕ (the slope)
such that

T (s) = α′(s) = cosϕXz + sinϕXt.(19)

This equation proves that T makes a constant angle, ϕ, with Xz which is a Killing
vector field of constant magnitude along α, and this completes the proof.

We also have a converse of the last theorem,

Theorem 5. Each general helix lying fully in S3(1) can be regarded as a geodesic
in a certain Hopf cylinder of S3(1)

Proof. Given a general helix, γ, with curvature, κ, and torsion, τ , satisfying τ =
bκ± 1 for some constant b = cot θ, θ being the angle between the axis and γ′, we
define β (up to motions) in S2(1

2 ) from its curvature function to be λ = (1+b2)κ±2b,
and then in Mβ we choose the geodesic α associated with the slope ϕ defined as
cotϕ = ∓b. It is easy to see that γ and α have the same curvatures, and so they
are congruent in S3(1).

Finally we have the following closedness result.

Corollary 1. Let β be an immersed closed curve in S2(1
2 ). There exists a rational

one-parameter family of closed general helices in S3(1), lying in the Hopf torus Mβ

Proof. If L denotes the length of β and A the oriented area it encloses in S2(1
2 ),

then Mβ is isometric to the flat torus obtained from the lattice

Λ = Span{(2A,L), (2π, 0)}.
According to our results, general helices lying in Mβ correspond with geodesics of
Mβ. Let γ be a geodesic of Mβ and, as before, denote its slope by ϕ. Then γ is
closed if and only if there exists so > 0 such that γ(so) = γ(0), but the latter holds
if and only if (so cosϕ, so sinϕ) ∈ Λ. Consequently, there exists a rational number,
q, such that

cotϕ =
2A

L
+ q

2π

L
.(20)
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