
Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 1

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 15 January 2009

doi: 10.3389/neuro.11.010.2008

Generating stimuli for neuroscience using PsychoPy

Jonathan W. Peirce*

Nottingham Visual Neuroscience, School of Psychology, University of Nottingham, Nottingham, UK

PsychoPy is a software library written in Python, using OpenGL to generate very precise visual

stimuli on standard personal computers. It is designed to allow the construction of as wide

a variety of neuroscience experiments as possible, with the least effort. By writing scripts in

standard Python syntax users can generate an enormous variety of visual and auditory stimuli

and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG

etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written

very quickly, and trying to understand a previously written script is easy, even with minimal code

comments. PsychoPy can also generate movies and image sequences to be used in demos or

simulated neuroscience experiments. This paper describes the range of tools and stimuli that

it provides and the environment in which experiments are conducted.

Keywords: Python, psychophysics, software, neuroscience, vision, fMRI, EEG, MEG

largely stable (it is largely backward-compatible between versions)

and is suffi ciently complete and bug-free that it is used as the

standard means of conducting psychophysical and/or neuroim-

aging experiments in a number of labs worldwide. The software

is still very much under development however; stimuli are still

being added, code is still being optimised and the user interface

is being refi ned constantly. There is a mailing list where users

can report bugs, discuss improvements and get help in general

use of the software.

PYTHON

One of the strengths of PsychoPy is its use of Python. The high-level

functions and libraries available in Python make it an ideal language

in which to develop such software. The platform independence that

PsychoPy enjoys is based very much on the fact that it is based on

pure Python code, using libraries such as wxPython, pyglet and numpy

that have been written to be as platform independent as is technically

possible. The fact that Python now has such a large user base means

that there is a large community of excellent programmers developing

libraries that PsychoPy can make use of. The fact that Python can

be used in such a wide variety of ways (for example, in the author’s

own lab Python is used not only for stimulus presentation but also

for data analysis, for the generation of publication-quality fi gures,

for computational modelling and for various general purpose scripts

to manipulate fi les) means that in many cases this is likely to be the

only programming language that a scientist need learn, with the

obvious benefi ts in time that result. By nature of its clean, readable,

and powerful syntax combined with its free and open-source release

model Python is clearly a very popular language that is continu-

ously growing and developing further. Where Matlab has, in the past,

benefi ted from its large user base and wide variety of applications to

science, Python stands to benefi t even more.

HARDWARE ACCELERATED GRAPHICS

One of the goals of PsychoPy was to generate stimuli in real-time, that

is to update the character of a stimulus on a frame-by-frame basis as

needed without losing temporal precision. For static stimuli this is an

INTRODUCTION

The majority of experiments in modern neuroscience require the

presentation of auditory or visual stimuli to subjects while a meas-

ure is taken of their ability to see, remember or interact with that

stimulus, or of the brain activity that results from its presentation.

As a result, neuroscience needs for tools that allow the accurate

presentation of stimuli and collection of participant responses.

Those tools should be as easy to use as possible to reduce the

time spent constructing experiments, while being able to deliver

as wide a variety of stimuli and experimental designs as possible

to reduce the variety of software that a single scientist needs to

learn to use. Additionally the ideal software package should be

open-source, such that scientists can fully examine the code and

know exactly what is being done “under the hood”, it should be

platform independent and it should, of course, be free.

This article describes PsychoPy, an open-source software library

that allows a very wide range of visual and auditory stimuli and

a great variety of experimental designs to be generated within a

very powerful script-driven framework based on Python. It is built

entirely on open-source libraries and technologies, such that the

user can, if they desire, examine all of the code that contributes

to the stimuli they present. By leveraging the power of Python,

and several existing cross-platform Python libraries, the software

is fully platform independent and is being used in a number of labs

worldwide on Windows, Mac OS X and Linux.

A previous publication (Peirce, 2007) describes the design phi-

losophy and underlying mechanisms of PsychoPy and its relation-

ship to other software packages, such as Vision Egg (Straw, 2008)

and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). This paper

focuses on its use, describing more of the variety of stimuli that

the library can generate and present (images, dot arrays, text and

movies), the environment in which experiments are developed and

the latest developments and additions to the software.

MATERIALS AND METHODS

PsychoPy has been under active development since 2003 and,

at time of writing, had reached version 0.95.2. The code is now

Edited by:

Rolf Kötter, Radboud University

Nijmegen, The Netherlands

Reviewed by:

Andrew D. Straw, California Institute of

Technology, USA

Peter Tass, Forschungszentrum Jülich,

Germany

*Correspondence:

Jonathan Peirce, School of Psychology,

University of Nottingham, University

Park, Nottingham NG7 2RD, UK.

e-mail: jon@peirce.org.uk

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 2

unnecessary benefi t, but for moving stimuli, where the alternative is

to pre-compute a movie sequence it makes for much cleaner experi-

mental code, with fewer delays (some experiments would previously

require several seconds or even minutes before running where they

computed the stimulus movies). The possibility of real-time stimulus

manipulations also allows experiments to alter based on input form

the participant such that, for example, a stimulus might be moved

fl uidly under mouse (or even eye- movement) control, or the next

stimulus can be generated based on the previous response.

In order to achieve good temporal precision, while updating stim-

uli in real-time from an interpreted language like Python or Matlab,

it has been essential to make good use of the hardware accelerated

graphics capabilities of modern computers. Most modern machines

have very powerful graphics processing units that can perform a lot

of the calculations necessary to present stimuli at a precise point in

space and time and to update that stimulus frequently. The OpenGL

specifi cation determines, fairly precisely, what a graphics card should

do given various commands, such that platform independence is

largely maintained (there are certain aspects, such as the synchroni-

sation of drawing with the screen vertical refresh that are graphics

card and/or platform dependent). PsychoPy 0.95 is fully compatible

with the OpenGL 1.5 specifi cation but makes use of further facilities

that were added to OpenGL 2.0 on graphics cards and drivers where

these are available. Nearly all modern graphics cards are capable of

using OpenGL (although they may need updated drivers) and per-

fectly adequate cards from nVidia or ATI, that support the OpenGL

2.0 extensions, can be currently purchased and added to a desktop

computer of any platform for roughly £30.

PLATFORM INDEPENDENCE

Platform independence is a particular goal of PsychoPy. Computer

technologies change rapidly and the relative advantages of differ-

ent platforms can vary equally quickly. Scientists should not need

to learn a whole new set of tools just because they have decided

to switch their main computer platform, and should be able to

share code and experiments with colleagues using other platforms.

Perfect independence is never possible because of hardware differ-

ences between computers. Some such differences are obvious; for

example, Apple Macs have not supported parallel ports directly

for several years so scripts using parallel port communication

cannot work on those platforms. Other differences are subtle and

unnoticed by most users. An example of this is that the OpenGL

specifi cation allows for the frame not to be cleared after a swap of

the “front” and “back” buffers during a screen refresh, but does

not specify whether the new back buffer is maintained from the

previous back buffer (most useful for the continuity of drawing

frames) or retrieved from the previous front buffer (as implied by

the term “swapping” buffers). As a result, the behaviour is free to,

and does, vary between manufacturers.

In the vast majority of cases, however, thanks to the hard work

of the developers of libraries such as pyglet, numpy and wxPython,

a PsychoPy script will run identically on all platforms.

RESULTS

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

PsychoPy was developed as a Python package that could be imported

from scripts needing to present stimuli. For new users of Python

that has certain disadvantages; users need to install Python and

other dependent libraries separately, they need some form of text

editor to write the scripts and they need to know where to fi nd the

text, including error messages, that scripts might output. Although

none of these are diffi cult (and may seem obvious to an experienced

programmer or user of command-line operating systems), they

were impediments to new users, particularly from Windows and

“traditional” Mac platforms. PsychoPy now comes with a built-in

code editor (PsychoPyIDE), complete with code auto-completion,

code folding and help tips. Scripts can be run directly from the

editor and code output is directed to another window in the appli-

cation (see Figure 1). When this output includes error messages

these show up as URL-style links that take the user directly to the

line on which the error occurred.

On Windows, installation is very straightforward using simple

double-clickable installers. On Intel-based Apple Macintosh com-

puters running OS X an application bundle is provided that con-

tains its own copy of Python and all the dependent libraries. This

has a number of advantages. The fi rst is that it installs simply as a

single application that can be dragged into the Applications folder

(or other location) and can be removed equally easily by simply

sending to the trash. As well as being easy to install by this method,

distributing PsychoPy with its own copy of Python has two major

advantages: PsychoPy’s developers know what libraries have been

installed and that they are compatible and the user knows that it

won’t interfere with any existing Python installation that they have

(such as previous installs, or the Apple system Python). For more

experienced Python users, who may wish to install to their own

customised set of libraries, the standard Python-style methods of

installing from source distributions are also available.

On Linux the dependencies can be installed simply from simple

apt-get commands and PsychoPy is then easily installed from its

source distribution.

MODULE STRUCTURE

As with most Python packages, PsychoPy contains a number of sub-

modules, which can be imported relatively independently (some

depend on each other) depending on the task at hand. This is useful

in keeping related functions and classes together in meaningful

units. For instance, the following will import modules useful in

presenting visual and auditory stimuli and collecting responses

(events) from the subject:

from psychopy import visual, core, event

The main modules that can be imported from PsychoPy, and the

main libraries that they depend upon are shown in Figure 2.

PRESENTING STIMULI

A subset of the available visual stimuli is shown as a screenshot

in Figure 3.

Windows

Most experiments begin with creating a window into which visual

stimuli or instructions can be presented. In PsychoPy this can be

achieved in a full screen mode or in a normal window, with the

mouse either shown or hidden. Furthermore, multiple windows can

be created at one time and these may be presented on any physical

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 3

screen if more than one is connected. This makes the presentation

of binocular stimuli straightforward.

PsychoPy windows can also be given information about the

monitor that they are being presented in, such as its physical size

and distance from the participant (this information can be provided

as part of the script or from a dialogue box as part of the develop-

ment environment). Once provided with the necessary information

PsychoPy will then allow the user to specify their stimulus attributes

such as size and location in any of a variety of meaningful units,

such as cm or degrees of visual angle. If the monitor has been colour

calibrated with a spectro-radiometer, a process which can also be

automated from within PsychoPy, then the colour of stimuli can

also be specifi ed in a biologically relevant colour space. For exam-

ple, using the MB-DKL cone-opponent space (Derrington et al.,

1984; MacLeod and Boynton, 1979) allows isoluminant stimuli to

be generated trivially from within scripts.

Windows are double-buffered, meaning that any drawing com-

mands are initially executed to a hidden window (the back buffer)

and are only translated to the screen on the next vertical blank

(VBL) period after the Window.flip() command has been called.

On most systems (a very small number of graphics card do not

support the feature) this will then pause the running of the thread,

such that no further commands are executed until the frame has

been refreshed. This feature of synchronising to the VBL can be used

as a mechanism to control timing during an experiment, since the

period between VBLs is extremely consistent and precise.

PatchStim

The most widely-used stimulus in PsychoPy is the PatchStim, used

to control a visual patch on the screen. Patches can contain any

bitmap-style data, including periodic textures (such as sinusoi-

dal gratings or repetitive lines) or photographic images. These

FIGURE 1 | The integrated development environment (IDE) running

one of the demo scripts. Multiple scripts can be opened at once in

the editor, appearing as tabs. There is a menu from which demos can be

easily loaded for a quick view of how to use various aspects of the program.

Output from the running script is displayed in the panel at the bottom of the

window and scripts can be started and forced to quit directly from

the editor. Although the OS X version is shown here, the editor

runs on all platforms.

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 4

also support alpha masks, which defi ne the transparency of the

stimulus across the patch and can therefore determine the shape,

or “envelope” of the stimulus. These stimuli can be manipulated

in real-time in a wide variety of useful ways; the bitmaps can be

rotated, have their phase shifted, change the number of cycles in

either dimension etc.

FIGURE 2 | The structure of PsychoPy. PsychoPy comprises a number of sub-modules for controlling different aspects of an experimental setup, from stimulus

presentation to analysis of data. In turn these use a number of dependent libraries, that typically have a very good degree of platform-independence.

FIGURE 3 | A sample of PsychoPy components. Within the Window is a

coloured Gabor from PatchStim, some rotated Unicode text from the

TextStim and 500-dot DotStim. The central image is actually a MovieStim.

All the stimuli are dynamic and being updated simultaneously at 60Hz, without

any dropped frames. Also shown is a dialog (gui.DlgFromDict) to receive

information about the current experiment.

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 5

As a result, PatchStim stimuli can be used to present a wide

variety of image-based objects, either those used typically in visual

psychophysics (gratings, Gabors etc…) or those in higher-level psy-

chology and cognitive neuroscience studies (such as photographic

images) or to create simple geometric shapes such as fi xation points

and arrows.

TextStim

Another common experimental requirement is the presentation of

text to subjects, either as instructions or as actual stimuli. PsychoPy

has a stimulus that provides simple access to clear, anti-aliased text

in any true-type font available on the host system (obviously more

can be installed). These stimuli are fully compatible with Unicode,

so that symbols and non-English characters can be included. Text

objects can be coloured in any of the colour spaces and referred to by

any coordinate system for which the window has been calibrated (see

Windows). They can also be rotated arbitrarily and in real-time.

Sound

PsychoPy also provides direct and simple access to methods for

presenting auditory stimuli. Sound objects can be created from fi les

(wav, mpg), from pure tones (the user specifi es the duration and

either frequency or the name of the note and octave on a standard

scale) or can be generated from arbitrary waveforms using the

standard numpy library in Python. Sound objects can be played in

full stereo in asynchronous threads, so as to overlap as necessary

with each other and with visual presentations.

The ability to play arbitrary stereo waveforms as sounds makes

PsychoPy perfectly capable of running full auditory psychophysi-

cal experiments, but the sounds can equally easily be used just to

present feedback tones to subjects carrying out basic experimental

tasks.

DotStim

A common stimulus in visual neuroscience is the random dot pat-

tern (e.g. see Scase et al., 1996), also known as the Random Dot

Kinematogram and this is provided in PsychoPy by the DotStim

object. This allows either an array of dots, or an array of other

PsychoPy stimuli (e.g. PatchStims) to be drawn as a fi eld. The posi-

tion of the dot elements can then be automatically updated by a

variety of rules, for instance where a number of target dots move

in a given direction while the remaining (distracter) dots move

in random directions. This type of stimulus makes heavy use of

OpenGL optimisations and allows a large number of dot elements

(several hundred) to be drawn and updated in realtime without

dropping frames.

MovieStim

PsychoPy can present movies in a variety of formats including

mpeg, DivX, avi and Quicktime, allowing studies using natural

scene stimuli or biological motion displays. As with most other

stimulus types, these can also be transformed in a variety of ways

(e.g. rotated, fl ipped, stretched) in real-time.

COLLECTING RESPONSES

Most experiments also need to receive and store information about

responses from subjects. For PsychoPy, this can be achieved via a

number of simple means; keyboards, mice, joysticks and specialised

hardware such as button boxes. The simplest possible input method

is to examine recent events from the keyboard using the event.

getKeys() and event.waitKeys() functions. These allow the

user to see what keys have been pressed since the last call or to wait

until one has been pressed (and may be restricted to a small number

of allowed keys). The event.Mouse object allows PsychoPy users

to determine where the mouse is at any given moment or whether

a mouse button has been pressed with simple methods such as

getPos(), getWheelRel() (to retrieve the relative movement

of the mouse scroll wheel) and getPressed(). Code Snippet 1

demonstrates how to use these mouse and keyboard facilities to

control a drifting Gabor patch (a sinusoidal grating in a Gaussian-

shaped envelope) in real-time within a PsychoPy window.

INTEGRATING WITH HARDWARE

Many input/output devices can be accessed directly from within

PsychoPy by emulating keyboards or rodents. For example, the fORP

MR-compatible button boxes (Current Designs, Philadelphia, USA)

are capable of outputting signals that emulate key presses on a stand-

ard keyboard (e.g. keys 1–4 can represent buttons with key 5 repre-

senting a trigger pulse from an MRI scanner). Many touch- sensitive

screens simply emulate a mouse press at the location where the screen

was touched, and can therefore be used within PsychoPy as if a mouse

event had occurred. These often provide the simplest methods of

input to an experimental program. On other occasions these are

unsuitable, either because the nature of the information being trans-

mitted does not easily emulate such devices or because those devices

are already in use. For example, what happens if you need button-box

input as well as, and separate from, keyboard input?

PsychoPy also provides simple and complete access to input

and output via serial and parallel ports (or via USB serial/parallel

emulators, on systems where direct hardware ports are unavailable).

An example of the use of serial and parallel port communications

is shown in Code Snippet 2. Typically the parallel port is used to

control and receive simple triggers in switching a current from high

(+5 V) to low (0 V) or vice-versa and particularly useful in inform-

ing other hardware (such as an Electroencephalography device) of

the precise onset of an event in PsychoPy. Serial ports can be used

to pass more complex information, such as text characters or data

in bytes at a fi xed rate and are still heavily used by a large number

of scientifi c devices because of their relative simplicity. For exam-

ple, PsychoPy uses the serial port protocol to communicate with a

PR650 spectrophotometer (Photo Research Inc, Chatsworth, USA)

sending commands to begin measurements and receiving data back

from the device such as the full power spectrum of the currently

presented screen.

Some devices may also make use of calls from binary-compiled

dynamically-loaded libraries (dlls on the Windows platform, dylibs

on OS X). In particular most devices connecting via USB, Firewire

or PCI cards will come with drivers that fall into this category.

Python provides a module called ctypes (as of version 2.5), which

allows seamless calls to any such drivers and dynamic libraries

directly from Python itself.

Through one of these methods, any hardware that can com-

municate with your computer, can also communicate with Python

and PsychoPy.

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 6

from psychopy import visual, core, event # import the PsychoPy libraries

#create a window to draw in

myWin = visual.Window((600.0,600.0), allowGUI=True)

#initialise some stimuli

fixSpot = visual.PatchStim(myWin,

 tex="none", mask="gauss", #no texture and a Gaussian shape

 pos=(0,0), size=(0.05,0.05), #size and location as fraction of window

 rgb=[-1.0,-1.0,-1.0]) #the colour of the fixation (black)

grating = visual.PatchStim(myWin,pos=(0.5,0),

 tex="sin",mask="gauss", #grating texture and a Gaussian shape

 rgb=[1.0,0.5,-1.0], #

 size=(1.0,1.0), sf=(3,0)) #set the size and the grating cycles

myMouse = event.Mouse(win=myWin) #a mouse object related to our window

message = visual.TextStim(myWin,pos=(-0.95,-0.9), #a TextStim to provide info

 alignHoriz='left', height=0.08,#specifying the size of the font

 text='left-drag=SF, right-drag=pos, scroll=ori') #and the actual text

for frameN in range(2000): #for 2000 frames

 #handle key presses each frame

 for key in event.getKeys(): #returns keys pressed this frame

 if key in ['escape','q']:

 core.quit()

 #get mouse events

 mouse_dX,mouse_dY = myMouse.getRel() #get position relative to previous

 mouse1, mouse2, mouse3 = myMouse.getPressed()

 #based on the mouse button and change in position, change the stimulus

 if (mouse1): #if button 1 is down (ie left-click)

 grating.setSF(mouse_dX/200.0, '+')

 elif (mouse3): #else if button 3 is down (ie right-click)

 grating.setPos([mouse_dX/400.0, -mouse_dY/400.0], '+')

 #Handle the mouse wheel(s)

 wheel_dX, wheel_dY = myMouse.getWheelRel()

 #change the grating orientation according to the wheel

 grating.setOri(wheel_dY*5, '+') #2 clicks will give 10deg rotation

 event.clearEvents() #get rid of other, unprocessed events

 #draw our stimuli (every frame)

 fixSpot.draw() #visual stimuli have a simple ‘draw’ function

 grating.setPhase(0.05, '+') #advance grating by 0.05 cycles per frame

 grating.draw()

 message.draw()

 myWin.flip() #update the window

core.quit() #when we’re done (Python loops finish when code indentation ends)

CODE SNIPPET 1 | Presenting stimuli under real-time control. This demo script controls a drifting grating in real-time according to input from the mouse. It

demonstrates the use of the Window, PatchStim, TextStim and Mouse objects and how to get keyboard input from the participant. These objects have associated

methods that allow them to have their attributes changed.

TIMING

Timing is a critical issue for many experiments in neuroscience and

psychology. Many studies require a temporal precision to within a

few milliseconds, or even in the sub-millisecond range. PsychoPy

provides various methods to achieve very precise timing of events

and to synchronise with other devices. This is achieved by means

of synchronising drawing to the VBL of the monitor, by the use of

very precise clocks on the host CPU and by access to rapid com-

munication ports such as the serial and parallel ports.

PsychoPy (like most such software) uses a double-buffered

method of rendering, whereby stimuli are initially drawn into a

back buffer, a virtual screen in the memory of the graphics card.

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 7

At the point when the VBL occurs (signifying the end of one frame

and the beginning of the next) the contents of this back buffer are

fl ipped with the actual screen buffer. When the command Window.

flip() is sent, PsychoPy will halt all processing (or processing just

in this thread if multiple threads are being used) until the graphics

card signals that a frame fl ip has occurred. Since these frame fl ips

occur at a very precise interval they can be used as a very precise

timing mechanism and by executing a command immediately after

the fl ip one can be certain that it is time-locked to the presentation

of that stimulus frame.

The precision of this system can break down when frames are

dropped – if too many commands are attempted (e.g. too many

stimuli are drawn) between frames then the VBL may occur before

the request to fl ip the buffers occurred, in which case the frame will

remain unchanged for twice the normal period. In some cases this

will be unimportant (e.g. if it occurs during an inter-trial interval

it is likely to be irrelevant). At other times it could cause a slip in

the timing of the study, causing a stimulus to be presented longer

than intended. For dynamic stimuli it may change the perceptual

appearance of the stimulus, causing a smoothly-moving stimulus

to stutter in its motion, for instance.

PsychoPy alleviates this hazard by using the graphics card proces-

sor as much as possible for calculations involved in drawing, such as

the transformations needed in rotating, scaling and blending multiple

stimuli. For simple experiments, using just a few standard stimuli,

almost any modern computer is likely to have the processing power to

draw multiple stimuli without dropping frames. For studies needing

large numbers of stimuli updating every frame, the need for faster

computers and graphics cards exerts itself. In particular, the use of

computers with “onboard” graphics processors (such as the GMA

950 graphics processor that comes on many Intel processors) is not

recommended – even the cheapest nVidia and ATI graphics cards

will easily outperform these chips. Also, as complexity increases, so

does the need to write more effi cient experiment scripts. Often this

is simply a case of fi nding ways to reduce the number of commands

executed, for example by manipulating large lists of numbers as

numpy arrays rather than iterating operations in for-loops. Sometimes

it may mean having a better understanding of the speed of opera-

tions that will result from the command – giving a PatchStim a new

texture is time-consuming if the texture is large, whereas changing its

orientation or colour has a relatively small overhead, so preloading

textures into stimuli is a good idea whenever possible.

Although PsychoPy and Python are potentially (subject to a

well-written script) very precise in their reporting and generation of

stimuli, there are a number of hardware limitations in most experi-

mental setups that limit the absolute temporal accuracy of studies.

The most obvious is the temporal resolution of the presentation

device (typically a monitor or projector) but many experiment-

ers are also unaware of the inherent latencies of other hardware

components in their system. In general, these limit the accuracy

rather than precision of the studies, since the latencies are relatively

constant, but are nevertheless worthy of exploration.

Frame rates and monitor technology

The most fundamental limitation to the temporal precision of most

studies is the frame rate of the monitor, and this varies dependent

on the particular monitor technology. Cathode ray tube screens

typically operate at refresh rates ranging 60–200 Hz, dependent

on the monitor and the resolution of the display. For the majority

of the frame period (say 12 ms for an 85-Hz refresh rate) pixels

are being drawn sequentially in lines progressing from the top of

the screen to the bottom. When the beam illuminating the pixels

reaches the bottom of the screen there is a pause of around 1.5 ms

while it returns to top, ready to draw the next frame (this is the VBL

period). The obvious result is that visual stimuli cannot be changed

at a rate greater than the frame rate – when a stimulus is scheduled

for drawing, for example following some user response, it cannot

be drawn until the next refresh of the screen. A less obvious result

is that stimuli are drawn as much as 10 ms apart, even on the same

frame, depending on their screen position.

from psychopy import core, parallel, serial

#initialise ports

serialPort = serial.Serial("COM1", baudrate=115200, bytesize=8, parity='N',

 stopbits=1, timeout=0.0001)

parallel.setPortAddress(0x378) #need to know your parallel port address

#set pin 2 to high and send a command to Cedrus RB730

parallel.setPin(pinNumber=2, state=1) #set pin 2 to high

serialPort.writelines("_d1") #send a command to the serial port

core.wait(0.5)

#set pin 2 to low and read response from Cedrus RB730

parallel.setPin(pinNumber=2, state=0) #set pin 2 to low

nCharsToGet = serialPort.inWaiting()

message = serialPort.read(nCharsToGet)#read the current characters

print message

CODE SNIPPET 2 | The use of serial and parallel ports to control hardware and synchronisation. The demo sends a command to the serial port (in this case

the command would request information from a Cedrus box about its type and version) and reads the response after a 0.5-s pause. During this period pin 2 on

the parallel port is set to high.

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 | 8

LCD panel displays (either projectors or monitors) are typically

limited to a screen refresh rate of 60 Hz and therefore share the

problem of having a limited rate at which stimuli can be changed.

They do not, however, draw the lines to the screen sequentially

and so do not suffer from the problem that parts of the screen

are drawn before others. On the other hand, the response time

of these displays is considerably slower – an LCD switching from

black to white changes rather gradually, over a period of around

20 ms. In cases where the screen is changed very rapidly this can

have profound effects. For instance, if a stimulus is intended to

fl ash black and white on alternating screens, it is unlikely on these

monitors to reach full black and full white and a lower contrast

stimulus will result.

The use of USB devices

Commonly the need for timing accuracy comes from the need to

know how long a participant took to respond to the presentation

of a stimulus, where their response is measured by pressing a but-

ton on a keyboard or response box. Unfortunately these devices

are often USB-based and this introduces another temporal lag of,

typically, 10–20 ms. Again, for a given device and computer system

it is likely to be relatively constant, affecting the absolute accuracy

of the response time measurement more than the precision.

DISCUSSION

PsychoPy is already a very useful tool for running experiments

that require visual and auditory stimuli in a wide variety of envi-

ronments. It is platform-independent, entirely free, simple to use

and extremely versatile. It is also continuously improving in the

variety of stimuli it can present, the accuracy and speed with

which it can present them and in its ease of installation and use.

As an open-source project its continued development benefi ts

from its increasing user base, and that of the wider Python com-

munity. Python is also a language suitable for a wide variety of

other tasks, including complex data analysis and computational

modelling. Data can be shared easily between PsychoPy and other

Python-based packages (e.g. using stored numpy arrays), or can

be exported to other programs using comma-separated or tab-

delimited text fi les.

The variety of stimuli that PsychoPy can produce and its tem-

poral precision in generating these in real-time make it an ideal

environment for many neuroscience endeavours. It was originally

designed for psychophysical studies in vision, but is also an ideal

package for presenting stimuli in more traditional cognitive psy-

chology experiments, including the ability to interface with touch-

screens and, by virtue of its simple interface to parallel and serial

ports, it is already being used by a number of labs for fMRI, MEG,

EEG. PsychoPy is relatively young. Although it has been used as

standard in the author’s lab since 2004 it has been used in other labs

only since 2006. The community around it is growing however; at

the time of writing the package had been downloaded 5000 times

and has an active mailing list with 50 members.

A great deal more information is available from the project’s

website (http://www.psychopy.org), including tutorials, demon-

stration code and reference material for the writing of scripts.

ACKNOWLEDGEMENTS

PsychoPy has been developed with support from a BBSRC project

grant (BB/C50289X/1), a Wellcome Trust Grant and seed funding

grants from The Royal Society and the University of Nottingham.

Many thanks to all those that have provided constructive criticism,

and destructive testing, especially Dr. B.S. Webb.

REFERENCES
Brainard, D. H. (1997). The psychophysics

toolbox. Spat. Vis. 10, 433–436.

Derrington, A. M., Krauskopf, J.,

and Lennie, P. (1984). Chromatic

 mechanisms in lateral geniculate

nucleus of macaque. J. Physiol. 357,

241–265.

MacLeod, D. I., and Boynton, R. M.

(1979). Chromaticity diagram show-

ing cone excitation by stimuli of

equal luminance. J. Opt. Soc. Am. 69,

1183–1186.

Peirce, J. W. (2007). PsychoPy-

Psychophysics software in Python.

J. Neurosci. Methods 162, 8–13.

Pelli, D. G. (1997). The VideoToolbox

software for visual psychophysics:

transforming numbers into movies.

Spat. Vis. 10, 437–442.

Scase, M. O., Braddick, O. J., and

Raymond, J. E. (1996). What is noise

for the motion system? Vision Res. 36,

2579–2586.

Straw, A. D. (2008). Vision egg: an

open-source library for realtime

visual stimulus generation. Front.

Neuroinformatics 2, 4.

Conflict of Interest Statement: The

authors declare that the research was con-

ducted in the absence of any commercial or

fi nancial relationships that could be con-

strued as a potential confl ict of interest.

Received: 09 September 2008; paper pend-

ing published: 27 October 2008; accepted:

19 December 2008; published online: 15

January 2009.

Citation: Peirce JW (2009) Generating

stimuli for neuroscience using PsychoPy.

Front. Neuroinform. (2009) 2:10. doi:

10.3389/neuro.11.010.2008

Copyright © 2009 Peirce. This is an open-

access article subject to an exclusive license

agreement between the authors and the

Frontiers Research Foundation, which

permits unrestricted use, distribution,

and reproduction in any medium, pro-

vided the original authors and source are

credited.

