
362 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Generic and Layered Framework Components for the
Control of a Large Scale Data Acquisition System

Stefan Koestner, Member, IEEE, Dominique Breton, Daniel Charlet, Flavio Fontanelli, Markus Frank,
Clara Gaspar, Guido Haefeli, Richard Jacobsson, Member, IEEE, Beat Jost, Giuseppe Mini, Niko Neufeld,

Ricardo Nogueira, Cedric Potterat, Patrick Robbe, Mario Sannino, and Ioana Videau

Abstract—The complexity of today’s experiments in High En-
ergy Physics results in a large amount of readout channels which
can count up to a million and above. The experiments in general
consist of various subsystems which themselves comprise a large
amount of detectors requiring sophisticated DAQ and readout elec-
tronics. We report here on the structured software layers to control
such a data acquisition system for the case of LHCb which is one
of the four experiments for LHC. Additional focus is given on the
protocols in use as well as the required hardware. An abstraction
layer was implemented to allow access on the different and dis-
tinct hardware types in a coherent and generic manner. The hierar-
chical structure which allows propagating commands down to the
subsystems is explained. Via finite state machines an expert system
with auto-recovery abilities can be modeled.

Index Terms—Embedded controllers, experiment control
system, finite state machines, long distance protocol, SCADA.

I. INTRODUCTION

T
O KEEP development time of the control systems for LHC

at a minimum, CERN made the decision to adopt an in-

dustrial Supervisory Control And Data Acquisition (SCADA)

system and to provide a common Framework to be used by all

experiments at LHC. This Framework developed by the Joint

COntrols Project (JCOP) [1] provides besides others the possi-

bility to model a hierarchical control system using control units

to send and propagate down commands or monitor the sub-tree

below as well as device units acting directly on the hardware.

In LHCb these tools are used to build the Experiment Con-

trol System (ECS) which is the only interface for the operator

to handle the configuration, monitoring, and operation of all

experimental equipment. This reaches from experimental in-

frastructure like magnet, cooling and ventilation over detector

operation like gases, high and low voltages to Data AcQuisition

(DAQ) and trigger which includes readout electronics, timing,

and event filter farm. Operations can be as simple as writing

Manuscript received May 21, 2007; revised October 29, 2007.
S. Koestner, M. Frank, C. Gaspar, R. Jacobsson, B. Jost, N. Neufeld, and

R. Nogueira are with the Centre Europeen de Recherche Nucleaire (CERN),
Geneve 23, 1211 Geneve, Switzerland (e-mail: stefan.koestner@cern.ch).

G. Haefeli and C. Potterat are with the EPFL Lausanne, CH–1015 Lausanne,
Switzerland.

D. Breton, D. Charlet, P. Robbe, and I. Videau are with the Laboratoire de
l’Accelerateur Lineaire, F-91405 Orsay, France.

F. Fontanelli, P. Mini, and M. Sannino are with the INFN Genoa, I-16146
Genoa, Italy.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2007.913471

Fig. 1. Visualization of the scope of the experiment control system as being
used for LHCb.

single registers to hardware or more sophisticated as down-

loading firmware to FPGAs. The relationship between ECS and

the detector is shown in Fig. 1. Using the provided framework

components it is guaranteed that a coherent and homogenous

control system is developed by the users being in charge for

their sub-detectors.

At LHCb there are two main possibilities foreseen to access

custom electronics. In the proximity of the interaction point,

where radiation is high, the radiation tolerant Serial Protocol for

the Experiment Control System (SPECS) [2] is used. SPECS

is a long distance serial protocol connecting a master in the

counting house with its radiation tolerant slaves on the detec-

tors. Electronics boards outside the radiation area, e.g., used

for data acquisition, are accessed via an embedded Credit Card

sized PC (CCPC) [3]. The CCPC has access to the board’s reg-

isters through a glue-card [4] and is connected to the ECS via a

dedicated Ethernet LAN.

Both systems communicate with the ECS using the Dis-

tributed Information Management (DIM) protocol [5], which

is also part of the JCOP Framework. An additional abstraction

layer is put in place to separate the hardware access mechanism

from the control system, allowing for a register name based

interface, which is independent from the actual hardware type

in use.

In this paper we present the hardware layer as well as the

structured software layers needed to transport an event in a co-

herent manner from any hardware register to the control system,

0018-9499/$25.00 © 2008 IEEE

KOESTNER et al.: GENERIC AND LAYERED FRAMEWORK COMPONENTS FOR CONTROL OF A DATA ACQUISITION SYSTEM 363

where its impact can trigger an alert or a completely automatic

recovery—or the other way round—to transport a completely

abstract command down the various layers till it finally writes

to registers at hardware level.

II. THE PVSS SCADA SYSTEM AND THE JCOP FRAMEWORK

Over a period of more than 3 years a working group set up

by the CERN Controls Board has evaluated various industrial

products capable to cope with the requirements of controlling

high energy physics experiments [6]. In 2000 the decision was

made in favor of PVSS [7], [8], which is a commercial software

package for developing SCADA applications from an Austrian

company, ETM AG in Eisenstadt.1

PVSS is a German abbreviation for ‘process visualization and

control system’. It offers a highly modular design with spe-

cific managers (processes) for different tasks developed upon

a client-server architecture. The communication is based on a

standard TCP/IP message interface and is event driven, which

means that it is only active on demand. For the development of

user-specific applications PVSS provides a platform indepen-

dent scripting language.

It is a procedural high level language using the same func-

tion set as ANSI-C together with some additional PVSS in-

ternal functions that become handy especially for string manip-

ulations. It allows for developing GUIs (in version 3.6 the QT

environment is integrated) as well as scripts running in the back-

ground. For more complex tasks an API interface/manager al-

lows to interface to a C++ library for extra functionality.

In High Energy Physics where experiments can have more

than a million of readout channels, scalability is an important

issue. PVSS offers a device oriented, structured namespace to

create and manipulate complex devices. There is no built-in

limit neither for the number of devices nor the number of el-

ements of a device. The data is held in the memory of the event

manager and the real time database from where it is accessible

to all managers. Attributes can be set e.g., for processing and

alerts. An interface to an Oracle database to record archiving

data can be chosen inside PVSS which also eases the accessi-

bility needed later on for trending.

Due to the architecture of communicating processes as visual-

ized in Fig. 2, PVSS can take advantage of multi-CPU systems

which allows for load distribution. Systems may also be dis-

tributed across machines and various autonomous systems may

be connected with each other. This allows also for a hot-standby

redundancy. PVSS is a cross-platform system not just with re-

spect to development but also in the sense of operating truly

mixed systems. Like this, one can profit from the advantages of

different platforms.

To enlarge the functionality of PVSS and to better adapt it

to the needs of the LHC experiments and machine, the JCOP

Framework has been developed. It provides additional interfaces

to commonly used devices including high voltage power sup-

plies and CAN bus. In addition a dedicated Framework inter-

faces to an Oracle based configuration database to define and

operate on recipes. Recipes are a set of parameters (registers) to

1ETM Corporation, Eisenstadt, Austria, [Online]. Available: http://www.
etm.at/english/index.htm.

Fig. 2. Schematics of the modular design of PVSS showing the interconnected
processes which allow to build a distributed control system. The central unit
is the Event-manager. Different projects can communicate with each other via
the Distribution-manager. Communication to the hardware happens through the
Driver-managers.

be uploaded before data taking is started or any specific action

on the experiment is requested. The JCOP Framework provides

also some Application Programming Interface (API) managers

for communication protocols like DIM.

The ECS of LHCb will be implemented as a hierarchical con-

trol system with a single run control as top node. The JCOP

Framework allows for modeling of such hierarchical structures

by providing an interface to the SMI++ framework [9] which

allows to define rules for finite state machines. The main aim of

the JCOP Framework is that users will end up with a coherent

and homogenous view of the control system for the entire ex-

periment.

III. THE SPECS PROTOCOL AND EMBEDDED CREDIT CARD

SIZED PCS FOR ACCESSING CUSTOM ELECTRONICS

The SPECS is an evolution of the ATLAS SPAC (Serial Pro-

tocol for the Atlas Calorimeter) designed for the configuration

of remote electronics elements. An intermediate, mezzanine

board is used to translate the SPECS long-distance protocol,

used for transmitting data between the counting room and the

radiation area (about 100 m), into the short-distance protocol (a

few meters), used by the front end electronics. It is a 10 Mbit/s

serial link with two signals in each direction (clock and data).

SPECS is a single master multi-slave bus (with up to 32 slaves)

as sketched in Fig. 3.

The SPECS master board hosts 4 SPECS masters and is im-

plemented on a standard 32-bit 33 MHz PCI board, which can

be plugged into a PC. The core of the system is implemented

on the Altera CYCLONE FPGA. The slave is designed as a

portable VERILOG code and is integrated in an ACTEL APA

150 flash FPGA. This technology guarantees immunity against

single event latch-ups (SEL) and was tested for radiation hard-

ness up to an integrated dose of 40 krad [10] which corresponds

to the lifetime of the experiment including generous safety mar-

gins. Irradiation tests were performed using Krypton ions with

an energy of 73 MeV/A. Hardness to single event upsets (SEU)

can be achieved by appropriate redundancy of registers due to

triple voting and the use of one hot state only. It is not foreseen

to refresh the firmware remotely in regular intervals.

364 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 3. The SPECS protocol: Two possible implementations demonstrating the master and slave architecture.

Fig. 4. An example of a SPECS frame: The SPECS protocol is implemented similar to the I2C protocol but without acknowledgements to increase the data
throughput. Checksums are added to the header and trailer to detect corrupted data.

The SPECS slave is hosted on a mezzanine board. The whole

board provides beside others a local and long distance I2C bus,

a JTAG chain, a 16 bit parallel bus, a decoder for the channel B

of the TTCrx [11] signal, a DCU [12] chip with 6 ADC channels

of 12 bit resolution together with one temperature channel and a

PROM which will allow the ECS system to obtain some informa-

tion about the front end element housing the mezzanine card.

The protocol used for SPECS is similar to the I2 C protocol

with start and stop conditions implemented as a specific tran-

sition of the data line when the clock line is at a high level.

An example of a complete frame is sketched in Fig. 4. The

10 MHz clock is just active when data is transferred. A max-

imal SPECS frame length of 256 data words was chosen. To

ease debugging by oscilloscope the data words are separated by

missing clock cycles. Each word consists of 9 bits where the

9th bit tags the last data word of the frame. By avoiding the ac-

knowledgements from the slaves much higher data rates can be

achieved. The SPECS cannot correct for errors but if an error

is detected the slave can send an interrupt after which the data

is sent again. Two error detection schemes are implemented de-

pending whether the error occurs in the data or the address. Four

bits of redundancy follow the header of the frame, which con-

tains the address of the slave and other parameters. In addition

one byte of redundancy is sent at the end of the frame which

allows the detection of a data error. If an error is detected, the

slave ignores the whole message, and sends an error interrupt to

the master straight away.

On the counting house side, where radiation damage is not an

issue, embedded credit card sized PCs are attached to the FPGA

based DAQ and trigger boards. These embedded PCs provide

the necessary local intelligence and allow to access the various

components of a board. Each micro controller has an isolated

access path over a local area 10/100 Ethernet network to the

Experiment Control System. This design contributes to the ro-

bustness of the entire system. In opposite to the usage of a pro-

prietary bus, such as Fastbus or VME, where the cards are in-

terconnected inside the crate, it cannot happen that a failure of a

defect card or crate controller could affect other cards. In addi-

tion this design helps to decentralize intelligence and thus avoid

bottle necks.

For local board control the SM520PCX from the Swiss com-

pany DigitalLogic AG2 was chosen, which is a complete em-

2Digital Logic AG, Luterbach, Switzerland, [Online]. Available: http://www.
digitallogic.ch

KOESTNER et al.: GENERIC AND LAYERED FRAMEWORK COMPONENTS FOR CONTROL OF A DATA ACQUISITION SYSTEM 365

Fig. 5. Embedded Credit card sized PC. Top view of the SM520PCX.

bedded PC, based on the i486 compatible AMD ELAN 520

micro controller running at 133 MHz as shown in Fig. 5. It com-

prises all necessary hardware for diskless operation on a plug-in

board of 85 x 66 mm .

As operating system Linux has been chosen as it can be oper-

ated easily via remote connection, it can be booted via network

and the kernel can be customized, such that unnecessary func-

tionality can be removed to save valuable resources. On top of a

slightly modified kernel the Scientific Linux [13] distribution of

Fermilab and CERN is running. Except for the device driver no

special software or cross-compilers are needed, which allows to

run development tools under a faster and more powerful server

sharing the file-system with the embedded PCs via NFS. Soft-

ware distributions and bug-fixes are managed centrally based on

simple and automatic update mechanisms.

In the case of LHCb three interfaces are sufficient to access all

components on a board. These are I2 C, JTAG and a parallel bus.

To provide an access to these interfaces on board, the embedded

PCs are directly attached to a glue-card which is built around a

PLX PCI9030 PCI bridge, JTAG and I2C controllers. A small

FPGA is used to map the control registers of these controllers

into the address space of the local bus. The glue-card contains

a JTAG and an I2C hub to provide 3 independent JTAG chains

and 4 independent I2C buses respectively. The PLX provides in

addition support for interrupts and several General Purpose I/O

(GPIO) lines. The glue-card also includes a bus switch which

electrically isolates the glue-card from the carrier boards, when

the PC is rebooted. A remote download of the firmware is pos-

sible via the fast JTAG chains. When reading from memories

attached to the local bus from PCI, transfer performances better

than 20 MB/s were achieved.

IV. COMMUNICATION LAYER AND ABSTRACTION OF

HARDWARE REGISTER ACCESS

A. Distributed Information Management—DIM

For communication between the embedded micro controllers

or the SPECS master cards with the Experiment Control System

the DIM protocol was chosen. DIM is a portable lightweight

publish/subscribe system based on TCP/IP. It requires a DIM

Name Server (DNS node) to which all DIM servers publish

Fig. 6. DIM protocol. A PVSS API manager acts as a DIM client and connects
the ECS to servers running on the hardware components. The database manager
holds an image of the hardware in form of well structured PVSS datapoints.

their available services. DIM clients can later on request ser-

vices from the DNS node. The DNS node hands over all neces-

sary information about where to find this service to the client,

e.g., IP address, so that a direct peer to peer connection can be

established between server and client. Commands can be sent

from client to server and services are sent from server to client.

The advantage of this design is its portability, as clients can be

installed on any machine by just specifying the DNS node. It

also contributes to robustness as crashed servers can easily re-

publish their services on the DNS node.

Generic DIM servers have been written to run on the micro-

controllers of the embedded PCs and the host PCs of the SPECS

master cards from where they have access to all the low level

libraries containing the drivers to communicate with the hard-

ware components. Thus they can perform all necessary actions

on the various different boards e.g., write and read operations on

registers and memory blocks, FPGA programming, monitoring

of registers, etc. The JCOP Framework provides a special API

manager (PVSS00dim) which can act as a DIM client. A special

set of functions can associate datapoints, which is the internal

representation of the SCADA system, to a DIM command or

connects them to subscribed services. The servers are started au-

tomatically and publish their services on the DNS node running

on a support PC who keeps their coordinates and from where

they can be requested by the PVSS clients. Services can be sub-

scribed to either on change or on a time basis. The communica-

tion process between the hardware and ECS via DIM is demon-

strated in Fig. 6 which is an extension of Fig. 2.

Framework components including a graphical user interface

and basic functions to write to and read from the various reg-

isters are provided for SPECS and CCPC. The basic mecha-

nism is that the whole representations of a register (bus type,

address, register width, data, etc.) are written to specific data-

points associated to a hardware type. These datapoints are con-

nected to the DIM API manager in such a way that as soon as

the data is written to the datapoint elements a DIM command is

launched sending the information to the server. On the server

side a callback function is called. From within this callback

366 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 7. A datapoint structure representing a real hardware device inside the
ECS. The datapoints are always up to date with the real hardware—depending
on the refresh rate.

function the hardware is accessed and an associated service is

launched sending the hardware information back to the client

where it is written to a datapoint element. A change on this ele-

ment can again call a PVSS callback function or raise an alert.

B. Abstraction Layer—FwHw Tool

An interface which requires the complete register informa-

tion to be passed as parameters is cumbersome and error prone,

in addition it implies that software developers must have a pro-

found knowledge about the hardware. Inserting an intermediate

abstraction layer based on register names allows also to model

and mirror the hardware inside the ECS in an intuitive manner.

As already mentioned the key-element to store data inside

PVSS is a datapoint. It is distinguished between datapoint types,

which define the internal structure, and datapoints which can be

seen as instantiations of a datapoint type. As PVSS has a non-flat

namespace complex structures can be created. Each register can

be seen now as such a datapoint containing a well defined set

of datapoint elements connected to the DIM API manager, as

shown in Fig. 7. These registers can now be grouped according

to the components they belong to. The components are further

grouped to finally form a complete electronic device. Each in-

stantiation of such a structured datapoint type finally represents

a hardware device in reality, e.g., electronic board.

Once registers are created they can be subscribed. This means

that all the information about a register which is stored under

the datapoint element ‘settings’, as shown in Fig. 7, is sent to

the server. On the server side a connected list is created which

can be searched for by register names holding all the infor-

mation in the according structure. At the same time two DIM

services are launched (write and read) and one command for

each register following a well defined naming convention distin-

guishing between SPECS and CCPC. From now on communi-

cation between server and client is established. A parameter can

be written into the registers datapoint element ‘operation’ which

launches a DIM command, interpreted at the server side either as

write or read command according to the parameter value passed.

On the server side the register information is retrieved and action

follows according to bus type specification. After the hardware

access a DIM service is invoked to send the data and information

on the success to the client, where it is stored either in the data-

point elements ‘readings’ (the actual data) and ’readingsStatus’

or ‘writingsStatus’. To decrease traffic a write/read command

can be launched which sends the data to the hardware and im-

mediately reads it back.

Sometimes registers consist of various parameters consisting

just of a few bits. In order to not overwrite important information

a masked write operation is introduced which allows to write

just a defined number of bits without touching the rest of the

register. DIM services are normally updated at regular intervals

to refresh the register values inside the ECS. By looking imme-

diately at server side if the values have changed, the service can

be suppressed and thus unnecessary traffic on the local area net-

work can be avoided.

In the design described above all the diversity and complexity

of the various hardwareand bus typesare hidden inside the server.

Separationof theaccessmechanismonthehardwareandthemod-

eling of the components in the control system allow the reuse

of various components on different hardware types even using

different protocols, e.g., a special front end chip can be used as

SPECS as well as CCPC device. In the end each board is repre-

sented as an instantiation of a datapoint type, which reflects the

entire state of all controllable resources on the board. PVSS al-

lows also associating event triggered functions with data points.

Whenever the content of a data point element (= register value)

changes, a function may be called in a PVSS script or API man-

ager to perform a set of actions associated with the change.

In order to facilitate the modeling of hardware as PVSS dat-

apoints a tool was introduced, FwHw. This tool offers a graph-

ical user interface, as shown in Fig. 8, which allows assigning

crucial information, like bus address or register length, to the

various register types. The tool automatically creates the well

defined datapoint structure connected to the DIM API manager

and sends as well instructions to the server. Once the registers

are created and subscribed a set of framework functions allows

for interaction in an abstract way by just passing the register

name as parameter.

In addition the tool allows for defining recipes. Recipes are a

set of predefined register settings which can be retrieved from

the configuration database and uploaded to the readout boards.

Different settings can be applied for different run conditions.

Each board has several hundreds of registers and memory blocks

to write, so that optimization of write and read accesses is cru-

cial for the start up configuration of the experiment, when all

the register settings are retrieved directly from the configura-

tion database.

KOESTNER et al.: GENERIC AND LAYERED FRAMEWORK COMPONENTS FOR CONTROL OF A DATA ACQUISITION SYSTEM 367

Fig. 8. Screenshot of the FwHw tool used for modeling electronic devices as
PVSS datapoints.

V. A HIERARCHICAL CONTROL SYSTEM USING FINITE STATE

MACHINES

In order to be able to build up a hierarchical control system

each electronic device is modeled as a Finite State Machine rep-

resented by a device unit. States have to be defined which are

intuitively representing the actual state of the board. States can

be reached from another state by well defined transition paths

as shown in Fig. 9 for a FSM used inside the DAQ domain.

Each domain however may have different states and transition

schemes. In LHCb it is distinguished between 4 domains: De-

tector Control System (DCS), High Voltage (HV), DAQ, and

DAQ Infrastructure (DAI). A device unit is always the leave of a

hierarchical tree and is directly attached to a datapoint, which is

mirroring all the register values and memory blocks. In a script,

which is translated to SMI++, it can be defined how the device

unit shall react once a defined datapoint element has changed.

Thus state transitions can be triggered if some important reg-

ister values are changing. Also the other way round, actions can

be performed on the datapoint upon receiving commands from

a control unit. In this way a command can cause direct action

on the hardware as writing to the datapoint elements (registers)

will trigger immediately a DIM command to be sent down to

the hardware server.

Control units can act on a number of device units (children)

at once and thus allow for a better grouping and structuring

of the hierarchical tree. If the state of any child changes rules

can be defined according to which the control unit may transit

to another state. Control units can also act on other control

units finally building up the hierarchical tree with the Run Con-

trol as top node from where the commands are sent and propa-

gate down the tree to finally reach the device units, as shown

in Fig. 10. Like commands propagate downwards the hierar-

chical tree, statuses are propagating upwards the hierarchical

Fig. 9. Finite State Machines. A transition scheme as defined for the DAQ do-
main.

tree leading to an integrated view of the whole experiment at

the top node.

In this way an error occurring on the hardware can first move

the corresponding device unit into state error. This state is then

transported upwards by the control units according to the rules

defined there and finally reaches the Run Control at the top

where the run may be paused till the error is recovered. How-

ever, an auto-recovery scenario may be thought of immediately

at device unit level. Once the transition has reached the state

ERROR scripts can be invoked which check the hardware for

standard errors followed by routines to fix them. Upon success

the state returns back to NOT READY.

For DAQ boards the main operations are to download the

firmware to the FPGAs, which is allowed from state NOT

READY, and the configuration of the registers. The main

configuration of the board, basically downloading recipes from

the configuration database, happens in the transition from state

NOT READY to READY. The content of the recipes can differ

according to the run type, which can be specified as a parameter

when launching the command for configuration. Little action

is required from state READY to RUNNING. The state UN-

KNOWN is reachable from all states and defines the state when

control is lost e.g., a communication problem occurred.

In conjunction with the error recovery provided by SMI++

full use will be made of the powerful alarm handling tools pro-

vided by PVSSII. In addition the system allows for partitioning,

which is the capability of monitoring and/or controlling a part

of the system independently and concurrently with the others in

order to be able to make tests, or perform calibration runs on a

subsystem. The complexity of such a subsystem is demonstrated

by Fig. 11 which shows the sub-tree of the Inner Tracking De-

tectors. A brief tutorial and some more information about how

to build a FSM tree using the Framework components as well

as how to use the communication and abstraction layers can be

found in [14]. A more general description of the entire ECS of

the LHCb detector can be found in [15].

VI. CONCLUSION

LHCb has chosen to use embedded processors with an

isolated access path for board control in the counting house

area and the long distance serial link protocol, SPECS, for

368 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 10. Demonstration of a hierarchical tree using control units for an intuive grouping and device units as the leaves acting on the hardware.
Operator access (e.g., sending commands or viewing the status) can be granted already at device unit level, any control unit or at the top from
the Run Control. Partitioning of the system is possible.

Fig. 11. Schematics of a hierarchical tree of a complete sub-detector. In this case the Inner Tracker.

accessing hardware inside the radiation area. Both choices

have proved to be robust and have been extensively tested

on various occasions. A well structured ensemble of software

layers has been developed which disentangles the hardware

layer from the control system. The entire experiment is modeled

as a hierarchical tree using finite state machines which allows

to operate the whole experiment in an intuitive way, even

by non experts.

REFERENCES

[1] “ERN Joint Controls Project, JCOP.” [Online]. Available: http://
cern.ch/itco/Projects-Services/JCOP/welcome.html, http://cern.ch/it-
cobe/Projects/Framework/welcome.html

[2] D. Breton, D. Charlet, P. Robbe, and I. Videau, “PECS—A Serial Pro-
tocol for the Experiment Control System of LHCb,” Oct. 2005.

[3] F. Fontanelli, G. Mini, M. Sannino, Z. Guzik, R. Jacobsson, B. Jost,
and N. Neufeld, “Embedded controllers for local board control,” IEEE

Trans. Nucl. Sci., vol. 53, Jun. 2006.
[4] F. Fontanelli, B. Jost, G. Mini, N. Neufeld, R. Abdel-Rahman, K. Rolli,

and M. Sannino, “CCPC gluecard application and user’s guide,” LHCb

2003-098/LPHE 2005-010, Jun. 2003.
[5] C. Gaspar, M. Dönszelmann, and Ph. Charpentiere, “DIM, a

portable, light weight package for information publishing, data
transfer and inter-procss communication,” presented at the Int.
Conf. Computing in High Energy and Nuclear Physics, Padova,
Italy, Feb. 1–11, 2000.

[6] A. Daneels and W. Salter, Selection and Evaluation of Commercial
SCADA Systems for the Controls of the CERN LHC Experiments.
Geneva, Switzerland [Online]. Available: http://www.elettra.trieste.it/
ICALEPCS99/proceedings/papers/ta2o01.pdf

[7] PVSS II [Online]. Available: http://www.pvss.com

KOESTNER et al.: GENERIC AND LAYERED FRAMEWORK COMPONENTS FOR CONTROL OF A DATA ACQUISITION SYSTEM 369

[8] P. C. Burkimsher, JCOP Experience with a commercial SCADA

product, PVSS. Geneva, Switzerland: CERN [Online]. Available:
http://cern.ch/itcobe/Services/Pvss/ScadaLab/ConferencesPresenta-
tionsEtc/2003Icalepcs/JCOPExperienceWithACommercialScadaPro-
ductFinal.pdf

[9] B. Franek and C. Gaspar:, “SMI++—An object oriented Framework
for designing distributed control systems,” IEEE Trans. Nucl. Sci., vol.
47, pp. 86–90, Apr. 2000.

[10] D. Charlet and F. Machefert, “Calorimeter and SPECS Component Ir-
radiation at PSI,” Jun. 2005, LHCb-note, LHCb-2005-046.

[11] J. Christiansen, A. Marchioro, P. Moreira, and T. Toifl, TTCrx
Reference Manual [Online]. Available: http://ttc.web.cern.ch/TTC/
TTCrx_manual3.10.pdf

[12] G. Magazzu, A. Marchioro, and P. Moreira, DCU User Guide [Online].
Available: http://cmstrackercontrol.web.cern.ch/CMSTrackerControl/
documents/Magazzu/DCU2_User_Manual v2.pdf CERN

[13] Scientific Linux [Online]. Available: http://www.scientificlinux.org
[14] S. Koestner, PVSS/TELL1 Framework Components [Online]. Avail-

able: http://lhcb-online.web.cern.ch/lhcb-online/ecs/PVSS TELL1/
[15] C. Gaspar, B. Franek, R. Jacobsson, B. Jost, S. Morlini, N.

Neufeld, and P. Vannerem, “An integrated experiment control
system, architecture and benefits: The LHCb approach,” IEEE

Trans. Nucl. Sci. vol. 51, no. 3, Jun. 2004 [Online]. Available:
http://lhcb-online.web.cern.ch/lhcb-online/ecs/pdf/RT 2003.pdf, 513

