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expression (Jansen and Nap, 2001). Previous gene array studies 
on whole brain from mouse RI strains identifi ed genes that exert 
a large infl uence on other genes, providing initial insights into 
genetic hierarchies (Chesler et al., 2005). This kind of ‘expression 
genetics’ or ‘genetical genomics’ has been applied to other tissues 
as well (Bystrykh et al., 2005; Gatti et al., 2007). By correlating 
physiological phenotypes like adult hippocampal neurogenesis 
with gene expression data from RI strains, QTLs and gene variants 
can be mapped that presumably have central positions in genetic 
networks associated with the trait of interest (Kempermann et al., 
2006). Statistical limitations due to the small numbers of strains 
used, however, meant that the structure of the genetic networks 
themselves remained elusive in these studies, although large 
numbers of potentially interacting partners could be identifi ed. 
The BXD RI panel, derived from C57BL/6J and DBA/2J (Taylor, 
1978; Taylor et al., 1999), has been expanded, by the addition of 
advanced intercross lines (Peirce et al., 2004) to become the larg-
est mammalian RI panel currently available. The present analysis 

INTRODUCTION

Variation in hippocampal structure and function between  different 
mouse strains is enormous (Wimer et al., 1978; van Abeelen and 
van den Heuvel, 1982; Crusio et al., 1987; Kempermann and Gage, 
2002) and a genetic basis for this much of this variation is now 
well established. The contribution of single genes to complex 
behavioral phenotypes, however, is usually small, meaning such 
phenotypes need to be described in terms of networks of interact-
ing genes (Flint and Mott, 2008). Insight into the genetic modula-
tion of these networks can be achieved by measuring transcript 
expression in well characterized isogenic lines of mice that are 
reared in tightly controlled environments. Correlations between 
genetic variation and differences in traits such as locomotion, 
memory, or adult neurogenesis can be quantifi ed and functional 
differences mapped to genomic loci, known as quantitative trait 
loci (QTLs). Traditionally, physiological phenotypes have been 
used for such analyses – although transcript levels can also be 
used as quantitative traits to identify genetic loci infl uencing gene 
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of the hippocampal transcriptome is the fi rst to make use of this 
extended BXD panel. To complement this information, expres-
sion data were also obtained from the two BXD F1 hybrids, 15 
CXB RI strains and 13 strains of the mouse diversity panel. These 
additional strains provide genetic diversity invaluable for the fi ne 
mapping of QTLs.

The GeneNetwork is a database of genotype and phenotype 
data for mapping studies as well as online tools for their analy-
sis. At the time of writing, the GeneNetwork holds data from 14 
mouse genetic panels including microarray expression data from a 
range of tissues as well as many diverse physiological phenotypes. 
The BXD panel is the best represented of these with 33 studies 
covering 19 anatomical regions, over half of which are neural 
tissue. The data presented here have been deposited online as 
part of this resource.

The present study applied expression genetics to the adult murine 
hippocampus and at the same time increased the resolution of the 
database to a level that fi rst conclusions about the architecture of 
hippocampal genetic networks would become possible. To achieve 
this end, an international consortium joined efforts to generate 
hippocampal transcriptome data and has made this information 
available online. This new database is described here together with 
a range of analyses that demonstrate how transcriptome data can 
be used to uncover the coordinated genetic regulation underlying 
the biology of the hippocampus.

MATERIALS AND METHODS

ANIMALS, TISSUE PROCESSING AND ARRAY HYBRIDIZATION

This study used a total of 604 animals from 71 BXD strains (67 
BXD lines plus the two parentals, C57BL/6J and DBA/2J, and the 
two F1 hybrids), 15 CXB strains (13 RI lines plus the two parentals, 
BALB/cByJ and C57BL/6ByJ), and a selection of 13 strains from 
the mouse diversity panel.

The hippocampal formation, excluding most of the subicu-
lum, from two to three animals was dissected and pooled for 
hybridization to a single Affymetrix M430 2.0 array. A total of 201 
arrays were used, and were processed at the W. Harry Feinstone 
Center for Genomic Research. Detailed information about the 
animals used in this study, including strain expression values, 
gender and processing information as well as detailed tables of 
individual array-level information can be found online at the 
GeneNetwork1.

All procedures involving mouse tissue were approved by the 
Institutional Animal Care and Use Committee at the University 
of Tennessee Health Science Center.

Raw microarray data were transformed using the PDNN, 
MAS5 and RMA methods. Transformed values were standardized 
to 2z + 8, thus yielding a data set with a standard deviation of 2 
and an overall mean of 8. This ensures there are no negative val-
ues for further processing, and means that a one point difference 
is approximately equal to a twofold change in RNA levels. The 
PDNN transform consistently yielded the best results (as discussed 
in Results) and thus, unless otherwise specifi ed, all analyses pre-
sented use the PDNN-transformed data.

PROBE SET QUALITY CONTROL

The M430 2.0 probe set annotations in GeneNetwork have been 
manually and automatically curated for 4 years with a special 
focus on transcripts with high expression in the CNS. All probe 
sets mentioned in this manuscript were manually checked against 
the latest mouse genome assembly (mm9) using the UCSC Mouse 
Genome Browser2 and the Entrez Gene repository3 and verifi ed 
to have unique targets consistent with the currently available 
genomic data.

QTL MAPPING

For the analyses presented here, whole genome association mapping 
was carried out using the 69 BXD strains (excluding parentals and 
F1 hybrids). QTL mapping was done in GeneNetwork and has been 
described previously (Chesler et al., 2005).

TRANSCRIPT CORRELATION AND NETWORK GRAPHS

All correlations presented are Pearson’s product-moment. When 
considering threshold values for networks, absolute value correla-
tions have been used; thus a strong correlation may indicate either 
a positive or a negative relationship between probe sets. The net-
work graph (Figure 1) was generated using an implementation of 
the Kamada–Kawai layout algorithm (Kamada and Kawai, 1989) 
provided by the Java package ‘KKLayout’ from the Java Universal 
Network/Graph Framework4. Gene Ontology analysis was done 
using the web-based tool ‘WebGestalt’ (Zhang et al., 2005)5.

ONLINE DATA ACCESS AT THE GENE NETWORK

The gene expression data generated in this study, information 
on sample preparation and detailed methodology, the Published 
Phenotypes database, and a collection of online tools for data 
analysis are all publicly available at GeneNetwork6, an open, freely 
accessible web site that combines genetic and phenotypic databases 
with online tools to analyze the available data.

RESULTS

VARIATION IN HIPPOCAMPAL TRAITS IN THE BXD PANEL

The BXD panel contains a large number of polymorphisms accom-
panied by up to 94-fold differences in hippocampal transcript levels, 
with over 700 probe sets exhibiting a 10-fold or greater range of 
expression and over 4000 with greater than fourfold. This makes 
the BXD panel an attractive platform for investigating the phe-
notypic manifestations of these genes without the issues involved 
in the generation and analysis of knockout animals. While some 
highly polymorphic genes are inherited in a Mendelian manner, 
many are true polygenic complex traits with suffi cient variability 
to allow further analysis. Some examples of such transcripts with 
known relevance to hippocampal function are Marcks (Hussain 
et al., 2006; 1415972_at; fourfold range in expression across the 
BXD panel), Dcx (Corbo et al., 2002 1418141_at; 12-fold), Ncam1 
(Cremer et al., 1997; 1426865_a_at; fi vefold), Nos1 (Kirchner 

1www.genenetwork.org/dbdoc/HC_M2_0606_P.html

2www.genome.ucsc.edu
3www.ncbi.nlm.nih.gov
4www.jung.sourceforge.net
5www.bioinfo.vanderbilt.edu/webgestalt/
6www.genenetwork.org
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et al., 2004; 1422949_at; fi vefold), Grin1 (Niewoehner et al., 2007; 
1450202_at; eightfold) and Grin2b (von Engelhardt et al., 2008; 
1422223_at; fi vefold).

COVARIATION BETWEEN HIPPOCAMPAL TRAITS IN THE BXD PANEL

Transcripts with similar expression patterns are likely involved in com-
mon processes, and such related genes can be easily retrieved from the 
database to aid in the functional annotation of genes of interest. By 
computing the Pearson’s product-moment correlation for any probe 
set against every other probe set in the database, a list of the most 
strongly correlated genes can be obtained. As an example, the probe 
set 1432108_at (Pcgf6), was investigated. This transcript has been 
identifi ed as a dentate gyrus marker by in situ hybridisation (Lein 
et al., 2004; Allen Brain Atlas, Image Series ID: 638729) and is present 
in our data set with a mean expression of 8.96 and a 6.27-fold range 
across the BXD panel. Expression of the probe set 1432108_at corre-
lates at r > |0.75| with 110 other probe sets and the functional anno-
tation of these genes using the DAVID tool7 revealed an  enrichment 

in zinc-fi nger and RING proteins. Such a correlation analysis is not 
limited to traits of the same type, so that repeating the above search 
against the phenotypes database identifi es a number of well-correlating 
entries, including Trait IDs 10378 (hippocampus granule cell number, 
r = −0.67), 10345 (probe trial water maze time spent in swim path 
r = −0.78), 10456 (total hippocampus volume r = −0.65), 10459 (gran-
ule cell layer volume r = −0.587), 10338 (proliferation of BrdU-labeled 
cells in subgranular zone r = −0.65) and 10604 (mean seizure severity 
r = 0.59). Interestingly, Pcgf6 is negatively correlated with granule cell 
number and dentate gyrus volume. Pcgf6, a member of the polycomb 
family of RING zinc fi nger proteins, has been identifi ed as a transcrip-
tional repressor (Akasaka et al., 2002) which suggests a role as a negative 
controller of dentate gyrus granule cell number.

NETWORKS OF CORRELATED TRAITS

Expression correlation can be used to conceptually link genes into 
networks visualizing parts of the transcriptional interactome. The 
distance between transcripts is governed by the correlation, with 
higher correlations drawn closer together, so that groups of simi-
larly expressed genes form visible clusters.7www.david.abcc.ncifcrf.gov

FIGURE 1 | A network graph based on transcripts correlating with the 

hippocampal pyramidal- and granule cell layer volume traits (green 

nodes). Interactions have been fi ltered for an absolute correlation above 0.57 

and are colored following the key shown. The graphing algorithm has 

attempted to draw stronger interactions as shorter lines, with the result that 

transcripts with similar expression patterns tend to cluster together. Two main 

clusters can be discerned; one, very dense, at the bottom of the image, is 

clearly associated with the granule cell layer volume trait and, to a lesser 

extent, the pyramidal cell layer volume trait. A second cluster, to the upper 

left, is hardly connected to pyramidal cell layer volume at all. Such a 

representation reveals the relationship between clusters of transcripts linked 

to the different phenotypes, thus potentially uncovering cell type-specifi c 

genetic pathways. Representation in tables alone would obscure 

such relationships.
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Networks are not limited to expression data, indeed any 
trait may be used – as well as mixtures of different trait types. 
Particularly interesting is the use of phenotypic and gene expres-
sion traits in the same analysis. To illustrate this, the published 
phenotypes ‘pyramidal cell layer volume’ (HippPyrVol; BXD 
Published Phenotypes 10458) and ‘granule cell layer volume’ 
(HippGCVol; BXD Published Phenotypes 10459) (Peirce et al., 
2003) were each correlated to the expression database and tran-
scripts with an absolute correlation of 0.57 or above were used 
to build a network (Figure 1). It is interesting to note that Pcgf6, 
introduced above as a dentate gyrus expression marker, is also 
present in this network, negatively correlated to HippGCVol. 
Because the phenotypes HippGCVol and HippPyrVol are them-
selves correlated (r = 0.60), many transcripts are associated 
with both traits, as evidenced by the larger cluster in the lower 
part of the graph. A smaller cluster is positively correlated with 
only HippGCVol and may be involved in granule cell-specifi c 
 functions – although the genes in this cluster have not yet been 
studied in this context.

GENETIC CONTROL OF HIPPOCAMPAL PHENOTYPES

The key advantage of a panel of recombinant inbred strains is that 
it is a genetically stable resource that can be used by a research 
community for years. Archived experiments, such as those in 
GeneNetwork’s BXD phenotypes database, can be reanalyzed in 
the context of new data and the improved genotype maps (Peirce 
et al., 2004; Shifman et al., 2006). We used our new expression 
data to remap the HipV13a QTL on chromosome 13 that con-
trols the volume of the dentate gyrus (Trait ID 10460 in the BXD 
Published Phenotypes database) (Peirce et al., 2003) and identifi ed 
a signifi cant QTL [P < 0.05; likelihood ratio statistic (LRS) = 19.3] 
on chromosome 13 (47–55 Mb) (Figure 2).

We can exploit the current expression data to go one step fur-
ther and identify transcripts within the locus that may be critical 
in dentate gyrus volume. Tpmt is within the QTL region and has 
an excellent correlation with dentate gyrus volume (Probeset ID 
1419121_at, r = 0.67). Although the peak likelihood interval for 
dentate gyrus volume is centered around 53 Mb and includes the 
genes for Ror2 and Sptlc1, both of which have a large number of 
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FIGURE 2 | The HipVol1a QTL identifi ed by interval mapping the Published 

Phenotypes trait 10460 (dentate gyrus volume) against dense genotype data 

for 69 BXD strains. Plots show interval maps for the whole genome (A) and the 

HipVol1a region on chromosome 13 at 47–55 Mb (B). The candidate gene Tpmt 

(1419121_at) has a strong cis-QTL at the same locus as HipVol1a (C). Blue lines 

show the likelihood ratio statistic (LRS) and secondary lines indicate whether 

C57BL/6J (red) or DBA/2J (green) alleles increase trait values. Yellow bars in 

(B) indicate results of a bootstrap analysis and orange lines show SNP density.
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SNPs within their coding regions (Ror2: 637, and Sptlc1: 239), Ror2 
was only poorly expressed and Sptlc1 showed a rather weak correla-
tion (r = 0.35) with dentate gyrus volume. The Tpmt transcript, in 
contrast, had a strong QTL (LRS = 33.0) at this same locus.

EXPRESSION GENETICS IN THE HIPPOCAMPUS

Besides its implications for refi ning mapping intervals in classi-
cal QTL studies, expression genetics reveals fundamental insights 
into the genetic structure of a given tissue. By whole-genome 
QTL mapping, we have identifi ed a large number of transcripts 
whose expression is modulated by polymorphisms between the 
two parental strains.

Cis regulatory genes or loci are operationally defi ned as those 
whose peak association lies within a 10 Mb interval surrounding its 
own physical location in the genome. Functionally, cis- acting genes 
are considered to be largely auto-regulatory in that they control their 
own expression. Trans-acting QTLs, in contrast, are controlled by 
genes at a different physical location. To get an idea of the increase in 
power obtained from this data set, we counted the number of QTLs 
from data processed using three alternative normalization methods 
(PDNN, RMA, and MAS5). Especially the number of strong cis-QTLs 
is considered a good indicator of the quality and power of the data 
(Carlborg et al., 2005). The results are summarized in Table 1.

For genes whose expression is strongly modulated by polymor-
phisms which are also associated with changes in hippocampal func-
tion, we can use transcriptional QTLs as a starting point for more 
detailed analyses of the genetic bases of hippocampal function in 
health and disease (Figure 3). As an example, we searched the PDNN 
data set for genes associated with hippocampus-related entries in the 
Entrez GeneRIF fi eld. A search for the keyword ‘Alzheimer’ returned 
101 probe sets with a  signifi cant QTL; among the genes targeted 
by these probe sets are Apod, Ncam1, Bcl2 and Bcl2l2. The query 
‘neurodegenerative’ yielded 54 probe sets,  including Cdk5, Nos1, 

Park7 and Polg. Among the 60 QTLs associated with the keyword 

‘cognitive’ were Comt, Drd1a, Prnp, Mapt and Ntrk2. Such results 
will serve as starting points for what we call ‘reverse complex trait 
analysis’, in which a gene associated with a strong cis-acting effect 
can be worked backwards to investigate downstream consequences 
of known variation in gene expression.

PLEIOTROPIC EFFECTS OF TRANS-ACTING REGULATORY LOCI

Trans-QTLs associated with expression of diverse genes can often 
be localized to common loci. Genes at these loci appear to control 
the expression of large numbers of downstream genes, suggest-
ing that they act as ‘master modulatory loci’ (Chesler et al., 2005). 
Comparing transcriptome maps of whole brain and hippocam-
pus, some trans-QTL bands are common between the two tissues, 
whereas others appear to be tissue-specifi c (data not shown). In 
the hippocampus, major bands were identifi ed on chromosomes 
1, 2, 5, 12, 15 and 19 (Figure 4). A particularly strong ‘trans-band’ 
in the hippocampus, which is not as prominent in whole brain, 
lies on distal chromosome 5. This was named Trans5a and can be 
localized to three markers: rs13478539, rs3708411, and rs8265855. 
The inclusive interval extending to the two next fl anking markers is 
around 6 Mb wide (from 132.834686 to 138.965374), including 121 
known genes. Interestingly this interval spans the region homolo-
gous to the region deleted in humans with Williams–Beuren syn-
drome (OMIM 194050). Characterized by the ‘elfi n’ features thought 
to be caused by the (diagnostic) haploinsuffi ciency of the elastin 
gene, Williams syndrome is also associated with cardiac malforma-
tion, social disinhibition, hyperacuity and usually some degree of 
cognitive impairment. Functional and metabolic abnormalities in 
the hippocampal formation affecting cognitive ability have been 
reported (Meyer-Lindenberg et al., 2005), which might help explain 
the defi cits in memory and spatial navigation in this disease.

The 100 probe sets with the strongest trans-QTLs in the Trans5a 
interval, and with expression above 7.0, were analyzed for func-
tional signifi cance. A Gene Ontology analysis revealed genes with 

Table 1 | Counts of QTLs are shown for each of the available transforms; the hippocampal BXD data set described in this report, the INIA whole 

brain expression data set which used 39 BXD strains (the smaller number of strains used in this study refl ected in the lower cis-QTL counts), and 

another hippocampus data set using the LXS RI panel consisting of 75 strains. The two BXD data sets were created using Affymetrix chips and were 

normalized using the position-dependent nearest-neighbor (PDNN), Robust Multi-chip Average (RMA) or, in the case of the BXD Hippocampus data set, 

Affymetrix MAS5 algorithms, whereas the LXS data shown were processed using Illumina Sentrix Mouse-6 v 1.0 BeadArray technology and were normalized 

using the Loess (LOESS), Quantile (QUANT), or Rank Invariant (RankInv) methods. Values are given for the total number of QTLs, the number of cis-QTLs 

(marker within 5 Mb either side of the position of the gene encoding the transcript), or the number of trans-QTLs (marker outside a 10 Mb window 

surrounding the position of the gene encoding the transcript). The small discrepancy observed (cis-QTLs + trans-QTL < total QTL count) is due to those QTLs 

at exactly 5 Mb from the gene, and thus not classed as either cis or trans by this scan. Linkage maps were generated using 1000 permutation tests and a 

genome-wide signifi cance score calculated. For the data shown, only QTLs are shown that were signifi cant after genome-wide permutation testing at 

P ≤ 0.05 (normal typeface) or P ≤ 0.001 (italics).

  total QTLs cis-QTLs trans-QTLs

BXD PDNN 5534/1496 2441/1244 2833/202

Hippocampus (June 2006) RMA 5472/1464 2432/1237 2758/174

 MAS5 5253/1314 2193/1118 2807/158

BXD PDNN 5580/1213 1999/1001 3248/158

Whole brain (January 2006) RMA 5037/977 1072/827 3034/109

LXS LOESS 2528/631 1096/553 1277/48

Hippocampus (August 2007) QUANT 3244/675 1171/576 1871/61

 RankInv (May 2007) 3069/617 1117/531 1775/55
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trans-QTLs in Trans5a to be enriched for the categories ‘intracellular 
signaling cascade’, ‘protein amino acid phosphorylation’, ‘regulation 
of transferase activity’, ‘ATP binding’ and ‘protein tyrosine kinase 
activity’. Correlation of these transcripts with the BXD phenotype 

database yielded, among the 60 strongest associations, phenotypes 
such as water maze learning ability (six traits), seizure severity (fi ve 
traits), hippocampal neurogenesis (two traits) and total hippoc-
ampal granule cell number.

32.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X
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FIGURE 3 | A selection of strong cis-QTLs relating to transcripts of known 

importance in hippocampal function. The expression levels of probe sets 

1452308_a_at (Atp1a2) (A), 1449183_at (Comt) (B), 1455028_at (Mapt) (C), 

1421280_at (Gabra1) (D) and 1435933_at (Scn2a1) (E) are associated with strong 

cis-QTLs indicating that a sequence polymorphism affecting transcript expression 

exists in proximity to the encoding gene. The large variance in genetically-

determined expression makes such genes good starting points for further 

analyses. Linkage maps are shown with marker position on the x-axis 

(chromosomes are drawn in juxtaposition) and the likelihood ratio statistic (LRS) on 

the y-axis. Purple triangles below the major peak indicate the position of the gene 

encoding the transcript. The pale red line delineates the threshold for signifi cance 

as determined by 1000 genome-wide permutation tests. Bar graphs to the right of 

each plot show the ordered expression level in each strain to demonstrate the wide 

range across the BXD panel.
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To suggest genes that might be candidates for the modula-
tory locus, we searched for genes with a cis-QTL in the Trans5a 
interval. The probe sets 1448760_at (Zfp68), 1420095_at (Zipro1), 
1425531_at (Znhit1), 1429152_at (Zkscan1) and 1415901_at (Plod3) 
had above average expression levels and signifi cant cis-QTLs within 
this interval. As expression of most genes controlled by the Trans5a 
locus should correlate well with the expression of the responsible 
gene at the locus itself, we surveyed each of the transcripts  exhibiting 
the trans-QTL for strongly correlating transcripts whose genes are 
among those in the Trans5a interval. The best candidate using this 
approach was Zkscan1 (Probeset ID 1429152_at), a zinc fi nger pro-
tein of the SCAN domain family.

EPISTATIC INTERACTIONS BETWEEN QTLs

Most genes do not act in isolation and therefore will not have 
a Mendelian effect on expression. Such genes will usually not 
exhibit a single strong QTL but will rather be associated with 
several smaller-effect loci relating to genes whose products work 
together to modulate expression of the target gene. Historically, 

the  statistical power required for the identifi cation of these effects 
has not been available. The size of the current data set, however, is 
suffi cient for the discovery of strong epistatic interactions. As an 
example, the probe set 1435411_at (Neurod2) was used as a query 
with the Pair Scan function in GeneNetwork’s mapping module. 
A two-locus interaction plot identifi es a suggestive interaction 
between loci at Chr3@67.9 Mb (Neurod2Epi3) and Chr4@54.1 Mb 
(Neurod2Epi4) (Figure 5). The conventional mapping analyses for 
these two loci are not above background (LRS of 0.939 and 0.002 
respectively) whereas the peak LRS of the interaction is 30.973 
(LRS of the full model is 31.915). This suggests genetic factors 
at the two loci Neurod2Epi3 and Neurod2Epi4 which together 
infl uence the expression of Neurod2. Using the literature correla-
tion function in GeneNetwork, we identifi ed a strong correlation 
(r = 0.76) between Neurod2 and Lxn (latexin) on Chr3@67.55 Mb 
at the Neurod2Epi3 locus. These fi ndings suggest Lxn as a candi-
date component of the Neurod2 pathway, important in granule cell 
differentiation (Schwab et al., 2000), and recent evidence suggests 
an anti-proliferative role of Lxn in hemopoietic cells (Liang et al., 

A

B

FIGURE 4 | (A) A plot of QTLs from transcript expression phenotypes. The x-axis 

shows the global genomic position of the associated marker (chromosomes are 

alternately shaded) and the y-axis shows the position of the gene encoding the 

transcript. (B) A QTL plot, as above, for chromosome 5 only. Here, cis-QTLs (QTL 

position within 10 Mb of gene position) have been removed for clarity. The Trans5A 

trans-band can be clearly seen localized to three adjacent markers.
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2007). A possible candidate for Neurod2Epi4 is Rod1 (regulator of 
differentiation 1; Probeset ID 1455819_at), on Chr4@59.57 Mb, 
which has a correlation with 1435411_at (Neurod2) of r = 0.39. 
Rod1 is a homolog of a yeast gene involved in regulating the onset 
of differentiation (Yamamoto et al., 1999).

DISCUSSION

We have presented here a database of hippocampal expression 
information together with a range of example analyses show-
casing a number of ways in which this resource can be mined. 
QTL analyses have long been valued as a way of identifying the 
molecular correlates of complex traits, and the data described above 
offer an unprecedented source of transcript expression QTLs for 
the detailed molecular study of the mouse hippocampus model. 
The large scale and exceptionally high quality of the data have, in 
addition, made possible more daring investigations of complex 
QTL interactions.

The BXD RI panel is the largest available in a mammalian spe-
cies, and due to the logistics of assembling such a resource, we 
are confi dent that it will remain so until similar studies become 

 available using the 8-way Collaborative Cross (Churchill et al., 
2004), a community project that is under way but will require sev-
eral more years to reach completion. The 69 BXD strains studied 
here also represent one of the largest expression databases of its 
kind, and the addition of comparable data from the CXB and Mouse 
Diversity panels has resulted in a resource that is signifi cantly larger 
than anything else currently available.

The key advantage afforded by the large size of the panel is 
the additional statistical power this gives to the linkage associa-
tions and thus to the strength of the resulting QTLs. This can be 
seen most clearly in Table 1 where the number of QTLs above the 
statistical signifi cance threshold is a dramatic indication of the 
improvement of the hippocampal database over those previously 
available for the mouse model. Many of the QTLs identifi ed are 
particularly strong and resolve to clear peaks that can be localized 
with high precision (Figure 3). A side effect of this QTL quality 
is that one can now identify large numbers of less strong, second-
ary QTLs which were previously lost to background noise, and 
this information opens up a whole new range of possible analy-
ses, such as the identifi cation of epistatic interactions (Figure 5), 
that promise to uncover pathways of genetic control within the 
tissue studied.

Traditionally, QTL mapping starts with a phenotype of inter-
est, measured in a genetic reference population, and aims to map 
this trait to a genomic sequence variant. The advent of larger 
panels and denser marker maps, in conjunction with high qual-
ity gene expression data, now means that expression QTLs are 
statistically robust enough to be considered starting points for 
further study in their own right. This can be used to great effect 
in reverse complex trait analysis, a powerful new approach in 
which segregating genetic variation, as evidenced by a strong 
QTL, is mapped to other potentially interacting genes, and ulti-
mately back to candidate phenotypes. With a known QTL and a 
body of evidence suggesting possible roles for the affected gene, 
phenotypes can be predicted that may be modulated as a result 
of this sequence variation. If this phenotype is of interest, it 
can be directly measured and a traditional ‘forward’ QTL analy-
sis carried out to confi rm the prediction. Such an approach is 
extremely attractive when the enormous cost and time required 
for phenotyping a large panel is considered. The ‘reverse’ com-
ponent of the study is entirely computer based, and no further 
laboratory work is needed beyond that already invested in the 
database resource described here.
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FIGURE 5 | A two-way QTL plot reveals an epistatic interaction between 

loci on chromosomes 3 and 4 affecting the expression of Neurod2 

(1435411_at). Individually, these loci do not signifi cantly correlate with the trait 

analyzed, but together they generate a strong QTL (LRS Full = 31.92).

FIGURE 6 | Model of gene-trait interactions in complex trait analysis. The 

fi gure shows two sources of variation, phenotypic – meaning the quantitative 

differences in trait expression measured across the panel of strains (labeled 

TRAIT) – and the differences in genotype, as measured at a discrete number 

of marker loci in the different strains (GENE). Interactions between these 

sources of variation are the basis of complex trait analysis. QTL, quantitative 

trait locus; reverse CTA, reverse complex trait analysis.
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These different approaches have been summarized in a visual 
model which shows the various relationships between genotype and 
phenotype (Figure 6). Variation exists both at the level of genotype, 
as sequence polymorphism between different strains, and at the 
level of phenotype, in that animals from different genetic back-
grounds exhibit large ranges of expression in phenotypic traits. 
Covariation between any two of these sources of variation falls into 
one of the four categories shown: gene–gene covariation is genetic 
linkage, most often as a result of genomic proximity; trait–trait 
covariation refers to the correlation between phenotypes and/or 
transcript expression, as in Figure 1; mapping variation in trait 
expression to genotype is the essence of QTL analysis, as shown in 
Figures 2 and 3; and reversing this process to identify traits whose 
expression co-varies with a known sequence variant or genomic 
locus is what we have termed reverse complex trait analysis.

The link between expression correlation and functional association 
is indirect and complex, involving many variables at the level of tran-
scriptional and translational control, post-translational modifi cation 
and protein interaction. The availability of genome–scale interaction 
data, however, presents an attractive entry-point for more detailed 
studies of candidate genes. Although the constraints of space have pre-
vented a detailed treatment of individual  candidates in this manuscript, 
ongoing work in our own laboratories is using these data to identify 
potential interaction partners for already known regulatory genes and 
thus to suggest pathways in which these might be working.

The expression data generated by this study have been depos ited 
online as a part of the GeneNetwork, a repository of genotypes, and 
physiological and expression phenotypes which is openly accessible 8.

In addition to the transcriptional data provided by studies such 
as the one presented here, a range of related information is becom-
ing available to support in silico identifi cation of candidate path-
ways. Together with evidence from other sources, a  compelling case 
can often be made for more focused experimental study. Sources of 
gene–gene interaction meta data are now offered by projects such 
as the Semantic Gene Organizer© (Homayouni et al., 2005), built 
into GeneNetwork as the Literature Correlation function which 
uses latent semantic indexing of PubMed abstracts to assign a cor-
relation metric to pairs of genes; and an initiative from the Allen 
Institute for Brain Science in which genes are correlated based 
on the similarity of their spatial in situ expression patterns (Lau 
et al., 2008).

The aim of our new resource is to uncover genetic pathways 
underlying complex hippocampal phenotypes, and the utility of 
the current database will only grow as additional phenotypes are 
measured in the BXD mice and deposited online.

ACKNOWLEDGMENTS

The authors would like to acknowledge the following sources of 
fi nancial support: Volkswagenstiftung grant to G.K., U01AA13499, 
U24AA13513 and U01-AA014425 to L.L., Lookout Foundation 
grant, McDonnell Foundation, and the Picower Foundation to 
F.H.G., NIH 1U01 AA13515 to T.R.S., NIAAA INIA AA013503 
to D.G, NIAAA INIA U01AA013515 to S.G., NIH P20MH062009 
and U01CA105417 to K.F.M., R01 NS049445-01 to R.S.N., NIH 
P20 to G.D.R., MRC grant G0000170 to L.C.S., BSIK 03053 to 
G.S., NIAAA U01AA13499, U24AA13513, NIDA/NIMH/NIAAA 
P20-DA 21131, NCI MMHCC U01CA105417 and NCRR U24 
RR021760 to R.W.W.

REFERENCES
Akasaka, T., Takahashi, N., Suzuki, M., 

Koseki, H., Bodmer, R., and Koga, 

H. (2002). MBLR, a new RING fi n-

ger protein resembling mammalian 

Polycomb gene products, is regulated 

by cell cycle- dependent phosphoryla-

tion. Genes Cells 7, 835–850.

Bystrykh, L., Weersing, E., Dontje, B., 

Sutton, S., Pletcher, M. T., Wiltshire, T., 

Su, A. I., Vellenga, E., Wang, J., Manly, 

K. F., Lu, L., Chesler, E. J., Alberts, 

R., Jansen, R. C., Williams, R. W., 

Cooke, M. P., and de Haan, G. (2005). 

Uncovering regulatory pathways that 

affect hematopoietic stem cell func-

tion using ‘genetical genomics’. Nat. 

Genet. 37, 225–232.

Carlborg, O., De Koning, D. J., Manly, K. 

F., Chesler, E., Williams, R. W., Haley, 

C. S., and (2005). Methodological 

aspects of the genetic dissection of 

gene expression. Bioinformatics 21, 

2383–2393.

Chesler, E. J., Lu, L., Shou, S., Qu, Y., Gu, 

J., Wang, J., Hsu, H. C., Mountz, J. 

D., Baldwin, N. E., Langston, M. A., 

Threadgill, D. W., Manly, K. F., and 

Williams, R. W. (2005). Complex trait 

analysis of gene expression uncovers 

polygenic and pleiotropic networks 

that modulate nervous system func-

tion. Nat. Genet. 37, 233–242.

Churchill, G. A., Airey, D. C., Allayee, H., 

Angel, J. M., Attie, A. D., Beatty, J., 

Beavis, W. D., Belknap, J. K., Bennett, 

B., Berrettini, W., Bleich, A., Bogue, M., 

Broman, K. W., Buck, K. J., Buckler, E., 

Burmeister, M., Chesler, E. J., Cheverud, 

J. M., Clapcote, S., Cook, M. N., Cox, 

R. D., Crabbe, J. C., Crusio, W. E., 

Darvasi, A., Deschepper, C. F., Doerge, 

R. W., Farber, C. R., Forejt, J., Gaile, D., 

Garlow, S. J., Geiger, H., Gershenfeld, H., 

Gordon, T., Gu, J., Gu, W., de Haan, G., 

Hayes, N. L., Heller, C., Himmelbauer, 

H., Hitzemann, R., Hunter, K., Hsu, H. 

C., Iraqi, F. A., Ivandic, B., Jacob, H. J., 

Jansen, R. C., Jepsen, K. J., Johnson, D. 

K., Johnson, T. E., Kempermann, G., 

Kendziorski, C., Kotb, M., Kooy, R. 

F., Llamas, B., Lammert, F., Lassalle, J. 

M., Lowenstein, P. R., Lu, L., Lusis, A., 

Manly, K. F., Marcucio, R., Matthews, 

D., Medrano, J. F., Miller, D. R., 

Mittleman, G., Mock, B. A., Mogil, J. S., 

Montagutelli, X., Morahan, G., Morris, 

D. G., Mott, R., Nadeau, J. H., Nagase, 

H., Nowakowski, R. S., O’Hara, B. F., 

Osadchuk, A. V., Page, G. P., Paigen, 

B., Paigen, K., Palmer, A. A., Pan, H. J., 

Peltonen-Palotie, L., Peirce, J., Pomp, 

D., Pravenec, M., Prows, D. R., Qi, Z., 

Reeves, R. H., Roder, J., Rosen, G. D., 

Schadt, E. E., Schalkwyk, L. C., Seltzer, 

Z., Shimomura, K., Shou, S., Sillanpää, 

M. J., Siracusa, L. D., Snoeck, H. W., 

Spearow, J. L., Svenson, K., Tarantino, 

L. M., Threadgill, D., Toth, L. A., 

Valdar, W., de Villena, F. P., Warden, C., 

Whatley, S., Williams, R. W., Wiltshire, 

T., Yi, N., Zhang, D., Zhang, M., Zou, 

F., and Complex Trait Consortium. 

(2004). The Collaborative Cross, a 

community resource for the genetic 

analysis of complex traits. Nat. Genet. 

36, 1133–1137.

Corbo, J. C., Deuel, T. A., Long, J. M., 

LaPorte, P., Tsai, E., Wynshaw-Boris, A., 

and Walsh, C. A. (2002). Doublecortin 

is required in mice for lamination of 

the hippocampus but not the neocor-

tex. J. Neurosci. 22, 7548–7557.

Cremer, H., Chazal, G., Goridis, C., and 

Represa, A. (1997). NCAM is essential 

for axonal growth and fasciculation in 

the hippocampus. Mol. Cell. Neurosci. 

8, 323–335.

Crusio, W. E., Schwegler, H., and Lipp, H. 

(1987). Radial-maze performance and 

structural variation of the hippocam-

pus in mice: a correlation with mossy 

fibre distribution. Brain Res. 425, 

182–185.

Flint, J., and Mott, R. (2008). Applying 

mouse complex-trait resources to 

behavioural genetics. Nature 456, 

724–727.

Gatti, D., Maki, A., Chesler, E. J., 

Kirova, R., Kosyk, O., Lu, L., Manly, 

K. F., Williams, R. W., Perkins, A., 

Langston, M. A., Threadgill, D. W., 

and Rusyn, I. (2007). Genome-level 

analysis of genetic regulation of liver 

gene expression networks. Hepatology 

46, 548–557.

Homayouni, R., Heinrich, K., Wei, L., 

and Berry, M. W. (2005). Gene clus-

tering by latent semantic indexing of 

MEDLINE abstracts. Bioinformatics 

21, 104–115.

Hussain, R. J. , Stumpo, D. J. , 

Blackshear, P. J., Lenox, R. H., Abel, 

T., and McNamara, R. K. (2006). 

Myristoylated alanine rich C kinase 

substrate (MARCKS) heterozygous 

mutant mice exhibit defi cits in hip-

pocampal mossy fiber-CA3 long-

term potentiation. Hippocampus 16, 

495–503.

8www.genenetwork.org

www.frontiersin.org November 2009 | Volume 3 | Article 55 | 9



Overall et al. Hippocampal transcriptome in RI mice

Jansen, R. C., and Nap, J. (2001). Genetical 

genomics: the added value from segre-

gation. Trends Genet. 17, 388–391.

Kamada, T., and Kawai, S. (1989). An algo-

rithm for drawing general undirected 

graphs. Inf. Process. Lett. 31, 7–15.

Kempermann, G., Chesler, E. J., Lu, L., 

Williams, R. W., and Gage, F. H. (2006). 

Natural variation and genetic covari-

ance in adult hippocampal neurogen-

esis. Proc. Natl. Acad. Sci. U.S.A. 103, 

780–785.

Kempermann, G., and Gage, F. H. (2002). 

Genetic infl uence on phenotypic dif-

ferentiation in adult hippocampal 

neurogenesis. Brain Res. Dev. Brain 

Res. 134, 1–12.

Kirchner, L., Weitzdoerfer, R., Hoeger, H., 

Url, A., Schmidt, P., Engelmann, M., 

Villar, S. R., Fountoulakis, M., Lubec, G., 

and Lubec, B. (2004). Impaired cognitive 

performance in neuronal nitric oxide 

synthase knockout mice is associated 

with hippocampal protein derange-

ments. Nitric Oxide 11, 316–330.

Lau, C., Ng, L., Thompson, C., Pathak, 

S., Kuan, L., Jones, A., and Hawrylycz, 

M. (2008). Exploration and visualiza-

tion of gene expression with neuro-

anatomy in the adult mouse brain. 

BMC Bioinformatics 9, 153.

Lein, E. S., Zhao, X., and Gage, F. H. (2004). 

Defi ning a molecular atlas of the hip-

pocampus using DNA microarrays 

and high-throughput in situ hybridi-

zation. J. Neurosci. 24, 3879–3889.

Liang, Y., Jansen, M., Aronow, B., Geiger, 

H., and Van Zant, G. (2007). The 

quantitative trait gene latexin infl u-

ences the size of the hematopoietic 

stem cell population in mice. Nat. 

Genet. 39, 178–188.

Meyer-Lindenberg, A., Mervis, C. B., 

Sarpal, D., Koch, P., Steele, S., Kohn, 

P., Marenco, S., Morris, C. A., Das, 

S., Kippenhan, S., Mattay, V. S., 

Weinberger, D. R., and Berman, K. 

F. (2005). Functional, structural, and 

metabolic abnormalities of the hip-

pocampal  formation in Williams 

syndrome. J. Clin. Invest. 115, 

1888–1895.

Niewoehner, B., Single, F. N., Hvalby, Ø., 

Jensen, V., Meyer zum Alten Borgloh, 

S., Seeburg, P. H., Rawlins, J. N. P., 

Sprengel, R., and Bannerman, D. M. 

(2007). Impaired spatial working 

memory but spared spatial reference 

memory following functional loss of 

NMDA receptors in the dentate gyrus. 

Eur. J. Neurosci. 25, 837–846.

Peirce, J., Lu, L., Gu, J., Silver, L. M., and 

Williams, R. W. (2004). A new set of 

BXD recombinant inbred lines from 

advanced intercross populations in 

mice. BMC Genet. 5, 7.

Peirce, J. L., Chesler, E. J., Williams, R. 

W., and Lu, L. (2003). Genetic archi-

tecture of the mouse hippocampus: 

identifi cation of gene loci with selec-

tive regional effects. Genes Brain Behav. 

2, 238–252.

Schwab, M. H., Bartholomae, A., 

Heimrich, B., Feldmeyer, D., Druffel-

Augustin, S., Goebbels, S., Naya, F. J., 

Zhao, S., Frotscher, M., Tsai, M., and 

Nave, K. (2000). Neuronal basic helix-

loop-helix proteins (NEX and BETA2/

Neuro D) regulate terminal granule 

cell differentiation in the hippocam-

pus. J. Neurosci. 20, 3714–3724.

Shifman, S., Bell, J. T., Copley, R. R., Taylor, 

M. S., Williams, R. W., Mott, R., and 

Flint, J. (2006). A high- resolution 

 single nucleotide polymorphism 

genetic map of the mouse genome. 

PLoS Biol. 4, e395. doi: 10.1371/jour-

nal.pbio.0040395.

Taylor, B. A. (1978). Recombinant inbred 

strains: use in genetic mapping. In 

Origins of Inbred Mice, H. C. I. Morse, 

ed. (Bethesda, Academic Press), pp. 

423–438.

Taylor, B. A., Wnek, C., Kotlus, B. S., 

Roemer, N., MacTaggart, T., and 

Phillips, S.J. (1999). Genotyping new 

BXD recombinant inbred mouse 

strains and comparison of BXD and 

consensus maps. Mamm. Genome 10, 

335–348.

van Abeelen, J. H., and van den 

Heuvel, C. M. (1982). Behavioural 

responses to novelty in two inbred 

mouse strains after intrahippocampal 

naloxone and morphine. Behav. Brain 

Res. 5, 199–207.

von Engelhardt, J., Doganci, B., Jensen, V., 

Hvalby, Ø., Göngrich, C., Taylor, A., 

Barkus, C. , Sanderson, D. J. , 

Rawlins, J. N. P., Seeburg, P. H., 

Bannerman, D. M., and Monyer, H. 

(2008). Contribution of  hippocampal 

and extra-hippocampal NR2B-

containing NMDA receptors to 

 performance on spatial learning tasks. 

Neuron 60, 846–860.

Wimer, R. E., Wimer, C. C., Vaughn, J. 

E., Barber, R. P., Balvanz, B. A., and 

Chernow, C. R. (1978). The genetic 

organization of neuron number 

in the granule cell layer of the area 

dentata in house mice. Brain Res. 157, 

105–122.

Yamamoto, H., Tsukahara, K., Kanaoka, 

Y., Jinno, S., and Okayama, H. (1999). 

Isolation of a mammalian homologue 

of a fi ssion yeast differentiation regula-

tor. Mol. Cell. Biol. 19, 3829–3841.

Zhang, B., Kirov, S., and Snoddy, J. (2005). 

WebGestalt: an integrated system 

for exploring gene sets in various 

 biological contexts. Nucleic Acids Res. 

33, W741–W748.

Conflict of Interest Statement: The 

authors declare that the research was 

conducted in the absence of any com-

mercial or financial relationships that 

could be construed as a potential confl ict 

of interest.

Received: 01 July 2009; paper pending 

published: 14 August 2009; accepted: 

26 October 2009; published online: 10 

November 2009.

Citation: Overall RW, Kempermann G, 

Peirce J, Lu L, Goldowitz D, Gage FH, 

Goodwin S, Smit AB, Airey DC, Rosen 

GD, Schalkwyk LC, Sutter TR, Nowakowski 

RS, Whatley S and Williams RW (2009) 

Genetics of the hippocampal transcriptome 

in mouse: a systematic survey and online 

neurogenomics resource. Front. Neurosci. 

3:55. doi: 10.3389/neuro.15.003.2009

This article was submitted to Frontiers in 

Neurogenomics, a specialty of Frontiers in 

Neuroscience.

Copyright © 2009 Overall, Kempermann, 

Peirce, Lu, Goldowitz, Gage, Goodwin, 

Smit, Airey, Rosen, Schalkwyk, Sutter, 

Nowakowski, Whatley and Williams. 

This is an open-access article subject to 

an exclusive license agreement between 

the authors and the Frontiers Research 

Foundation, which permits unrestricted 

use, distribution, and reproduction in any 

medium, provided the original authors and 

source are credited.

Frontiers in Neuroscience | Neurogenomics  November 2009 | Volume 3 | Article 55 | 10


