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Abstract

While 95% of pituitary adenomas arise sporadically without a known inheritable 

predisposing mutation, in about 5% of the cases they can arise in a familial setting, either 

isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is 

caused, in 15–30% of all kindreds, by inactivating mutations in the AIP gene, encoding 

a co-chaperone with a vast array of interacting partners and causing most commonly 

growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis 

have not been fully understood, they are likely to involve several pathways, including the 

cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling 

or altered interaction with phosphodiesterases. The cAMP pathway is also affected by 
other conditions predisposing to pituitary tumours, including X-linked acrogigantism 

caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-

coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα 

stimulatory protein, cause McCune–Albright syndrome, while inactivating mutations in 

the regulatory type 1α subunit of protein kinase A represent the most frequent genetic 

cause of Carney complex, a syndromic condition with multi-organ manifestations 

also involving the pituitary gland. In this review, we discuss the genetic and molecular 

aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic 

mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine 

neoplasia type 1 and 4, Carney complex, McCune–Albright syndrome, DICER1 syndrome 

and mutations in the SDHx genes underlying the association of familial paragangliomas 

and phaeochromocytomas with pituitary adenomas.

Introduction

The human pituitary gland consists of an anterior lobe, 

which derives from the oral ectoderm, and a posterior 

lobe, which originates from the neuroectoderm. The 

anterior pituitary contains five types of endocrine 

cells, including the somatotroph (producing growth 

hormone (GH)), lactotroph (producing prolactin (PRL)), 

gonadotroph (producing the gonadotropins, LH and FSH), 

corticotroph (producing adrenocorticotrophin (ACTH)) 

and the thyrotroph (producing thyrotropin (TSH)) cells. 

The anterior pituitary also contains a non-endocrine cell 
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population represented by the folliculostellate cells, which 

have a sustentacular function to the hormone-producing 

cells (Devnath & Inoue 2008).

Pituitary adenomas (PAs) are usually benign tumours 

arising from the endocrine cells of the anterior pituitary. 

These tumours are quite common and they are found 

in approximately 15–20% of the general population 

in radiological or autopsy studies (Ezzat  et  al. 2004, 

Daly  et  al. 2009), and they represent the third most 

common intracranial neoplasm after meningiomas 

and gliomas (Aflorei & Korbonits 2014). However, most 

of these tumours have no clinical relevance and often 

represent incidental findings (Freda et al. 2011). Clinically 

relevant pituitary tumours are rarer, occurring in about 

0.1% of the general population (Daly et al. 2006a, Fontana 

& Gaillard 2009, Cannavo  et  al. 2010, Fernandez  et  al. 

2010, Raappana  et  al. 2010, Gruppetta  et  al. 2013, 

Agustsson  et  al. 2015). Although histologically benign, 

PAs can cause significant morbidity due to hormone 

excess, hypopituitarism and tumour mass effects on the 

surrounding structures, such as the optic pathway, the 

cavernous sinuses and the brain. The most common PAs 

are represented by prolactinomas (45–65%), followed by 

non-functioning PAs (NFPAs) (15–37%), somatotroph 

(9–15%), corticotroph (2–6%) and thyrotroph PAs (0–1%).

Pituitary tumours are believed to be monoclonal 

in origin (Herman  et  al. 1990). The exact molecular 

pathogenesis is still not clear; however, several 

mechanisms have been described, including, among 

others, dysregulation of cell cycle regulators (Jacks  et al. 

1992, Kiyokawa et al. 1996) or alterations of growth factors 

(Zhou  et  al. 2014). Somatic mutations can also occur, 

including activating GNAS mutations (found in 10–50% 

of somatotroph PAs (Peverelli  et  al. 2014)) or somatic 

mutations in the USP8 gene causing activation of the EGF 

signalling pathway (found in 20–60% of corticotroph PAs) 

(Ma et al. 2015, Reincke et al. 2015, Ballmann et al. 2018).

While most PAs arise sporadically, about 5% occur 

in a familial setting (Daly  et al. 2006b). Familial PAs are 

often distinct from their sporadic counterpart, as they 

can present an aggressive behaviour, are frequently 

resistant to treatment and they often arise at an earlier 

age. Familial PAs can develop as part of a syndromic 

condition, such as multiple endocrine neoplasia type 1 

(MEN1), multiple endocrine neoplasia type 4 (MEN4), 

Carney complex (CNC), McCune–Albright syndrome 

(MAS), phaeochromocytoma/paraganglioma with PA 

(3PAs) and DICER1 syndrome. However, as seen in the 

case of familial isolated PA (FIPA), PAs can develop in the 

absence of other clinical manifestations, as is the case for 

patients harbouring mutations in the aryl hydrocarbon 

receptor-interacting protein (AIP) gene and in patients 

with X-linked acrogigantism (XLAG), a rare condition 

of early-onset pituitary gigantism due to duplications 

involving the GPR101 gene. Nevertheless, in the majority 

of cases of FIPA, the causative genetic mutations still 

remain to be identified.

Owing to either incomplete penetrance or to de novo 

mutations, variants in genes associated with FIPA or 

syndromic conditions can also be identified in patients 

with sporadic PAs, especially in those with early-onset 

disease. The recognition of these patients is particularly 

important, as it can allow to identify unaffected carriers 

who will benefit from regular clinical screening which 

could result in early diagnosis and possibly improved 

treatment outcomes (Hernandez-Ramirez et al. 2015).

In this review, we aim to discuss the genetic causes 

of familial and sporadic pituitary tumours, focusing on 

germline and somatic mosaic mutations causing FIPA 

and syndromic conditions predisposing to pituitary 

tumours, including MEN1, MEN4, CNC, MAS, 3PAs 

and DICER1 syndrome (summarised in Table  1). As the 

clinical features of these conditions have been extensively 

reviewed elsewhere (Vasilev  et  al. 2011, Beckers  et  al. 

2013, Caimari & Korbonits 2016, Marques & Korbonits 

2017), here we will aim to focus on the genetic aspects 

and the mechanisms linking monogenic mutations with 

PA pathogenesis.

Familial isolated pituitary adenoma

FIPA is an inherited condition characterised by the 

occurrence of PAs in two or more members of the 

same family with no other associated manifestations 

(Beckers et al. 2013). It is estimated to account for about 

2% of all PAs (Daly et al. 2006b). In a recent study looking 

systematically at the prevalence of familial PAs among 

patients with functioning pituitary tumours, FIPA was 

identified in 10/262 patients (3.8%) (Marques et al. 2017). 

FIPA is a highly clinically heterogeneous condition and 

can include families where affected family members 

have the same PA subtype (homogeneous FIPA) or 

families with different PAs (heterogeneous FIPA). Most 

homogeneous FIPA kindreds present with prolactinomas 

or somatotroph PAs, followed by NFPAs and, rarely, 

corticotroph PAs, while in heterogeneous FIPA families, 

all possible combinations of different PA subtypes can 

be observed, with the association of somatotroph 

PAs and prolactinomas being the most common.  

Downloaded from Bioscientifica.com at 08/27/2022 05:01:33PM
via free access

https://doi.org/10.1530/JOE-18-0446
https://joe.bioscientifica.com


https://doi.org/10.1530/JOE-18-0446
https://joe.bioscientifica.com © 2019 Society for Endocrinology

Published by Bioscientifica Ltd.
Printed in Great Britain

R23S Pepe et al. Germline and mosaic 
mutations in pituitary tumours

240:2Journal of 
Endocrinology

Ta
bl

e 
1 

G
e

rm
li
n

e
 a

n
d

 m
o

sa
ic

 m
u

ta
ti

o
n

s 
ca

u
si

n
g

 p
it

u
it

a
ry

 t
u

m
o

u
rs

.

S
y

n
d

ro
m

e
 

G
e

n
e

 (
in

h
e

ri
ta

n
ce

 

p
a

tt
e

rn
)

G
e

rm
li

n
e

 o
r 

m
o

s
a

ic
 

L
o

c
a

ti
o

n
 

P
e

n
e

tr
a

n
c

e
 f

o
r 

p
it

u
it

a
ry

 d
is

e
a

s
e

M
a

in
 c

li
n

ic
a

l 
c

h
a

ra
c

te
ri

s
ti

c
s

 

F
IP

A
A

IP
 (

A
D

)
G

e
rm

li
n

e
1

1
q

1
3

.2
1

5
–3

0
%

Y
o

u
n

g
-o

n
se

t 
(t

y
p

ic
a

ll
y
 i
n

 t
h

e
 s

e
co

n
d

 d
e

ca
d

e
) 

so
m

a
to

tr
o

p
h

 o
r 

m
ix

e
d

 s
o

m
a

to
tr

o
p

h
–

la
ct

o
tr

o
p

h
 P

A
s 

a
n

d
 p

ro
la

ct
in

o
m

a
s.

 
R

e
sp

o
n

si
b

le
 f

o
r 

1
5

–3
0

%
 o

f 
F
IP

A
 k

in
d

re
d

s 
a

n
d

 
u

p
 t

o
 2

0
%

 o
f 

y
o

u
n

g
-o

n
se

t 
P

A
s 

(t
y
p

ic
a

ll
y
 

ca
u

si
n

g
 g

ig
a

n
ti

sm
 o

r 
e

a
rl

y
-o

n
se

t 
a

cr
o

m
e

g
a

ly
)

G
P

R
1

0
1

 (
X

-l
in

k
e

d
)

G
e

rm
li
n

e
 o

r 
so

m
a

ti
c 

m
o

sa
ic

 i
n

 m
a

le
s 

w
it

h
 

sp
o

ra
d

ic
 d

is
e

a
se

X
q

2
6

.3
1

0
0

%
Ea

rl
y-

on
se

t (
<4

 y
ea

rs
) g

ig
an

tis
m

M
E

N
1

M
E
N

1
 (

A
D

)
G

e
rm

li
n

e
1

1
q

1
3

.1
3

0
–4

0
%

H
y
p

e
rp

a
ra

th
y
ro

id
is

m
, 
P

A
s 

(m
o

st
ly

 
p

ro
la

ct
in

o
m

a
s 

a
n

d
 N

F
P

A
s)

, 
G

E
P

 N
E

T
s,

 o
th

e
r 

n
e

o
p

la
sm

s
M

E
N

4
C

D
K

N
1

B
 (

A
D

)
G

e
rm

li
n

e
1

2
p

1
3

.1
U

n
k

n
o

w
n

M
E

N
1

-l
ik

e
 p

h
e

n
o

ty
p

e
C

a
rn

e
y
 c

o
m

p
le

x
P

R
K

A
R

1
A

 (
A

D
)

G
e

rm
li
n

e
1

7
q

2
4

.2
1

0
%

 (
sy

m
p

to
m

a
ti

c 
a

cr
o

m
e

g
a

ly
)

S
k

in
 p

ig
m

e
n

te
d

 l
e

si
o

n
s,

 c
a

rd
ia

c 
a

n
d

 c
u

ta
n

e
o

u
s 

m
y
x

o
m

a
s,

 m
u

lt
ip

le
 n

o
n

-e
n

d
o

cr
in

e
 a

n
d

 
e

n
d

o
cr

in
e

 n
e

o
p

la
sm

s 
in

cl
u

d
in

g
 p

it
u

it
a

ry
 

h
y
p

e
rp

la
si

a
 a

n
d

 P
A

s 
(m

o
st

ly
 s

o
m

a
to

tr
o

p
h

 a
n

d
 

la
ct

o
tr

o
p

h
 o

r 
m

ix
e

d
, 
ve

ry
 r

a
re

ly
 c

o
rt

ic
o

tr
o

p
h

 
P

A
s)

U
n

kn
o

w
n

 g
en

e
G

e
rm

li
n

e
2

p
1

6
U

n
k

n
o

w
n

S
a

m
e

 a
s 

fo
r 

P
R

K
A

R
1

A
P

R
K

A
C

B
G

e
rm

li
n

e
1

p
3

1
.1

U
n

k
n

o
w

n
D

e
sc

ri
b

e
d

 i
n

 o
n

e
 c

a
se

 w
it

h
 C

N
C

 p
h

e
n

o
ty

p
e

 
( F

o
rl

in
o

 e
t a

l. 
2

0
1

4
)

M
cC

u
n

e
–A

lb
ri

g
h

t 
sy

n
d

ro
m

e
G

N
A

S 
(n

o
t 

in
h

e
ri

ta
b

le
)

S
o

m
a

ti
c 

m
o

sa
ic

2
0

q
1

3
.3

2
2

0
%

Ca
fé

-a
u-

la
it 

sp
ot

s,
 p

ol
yo

st
ot

ic
 fi

br
ou

s 
dy

sp
la

si
a,

 
p

re
co

ci
o

u
s 

p
u

b
e

rt
y
, 
G

H
 e

x
ce

ss
 i
n

 a
b

o
u

t 
2

0
%

 
o

f 
p

a
ti

e
n

ts
P

h
a

e
o

ch
ro

m
o

cy
to

m
a

/p
a

ra
g

a
n

g
li
o

m
a

 
w

it
h

 p
it

u
it

a
ry

 a
d

e
n

o
m

a
SD

H
A

 (
A

D
)

G
e

rm
li
n

e
5

p
1

5
.3

3
<

1
%

F
a

m
il
ia

l 
P

P
G

L

SD
H

B
 (

A
D

)
G

e
rm

li
n

e
1

p
3

6
.1

3
<

1
%

F
a

m
il
ia

l 
P

P
G

L
SD

H
C

 (
A

D
)

G
e

rm
li
n

e
1

q
2

3
.3

<
1

%
F
a

m
il
ia

l 
P

P
G

L
SD

H
D

 (
A

D
)

G
e

rm
li
n

e
1

1
q

2
3

.1
<

1
%

F
a

m
il
ia

l 
P

P
G

L
M

A
X
 (

A
D

)
G

e
rm

li
n

e
1

4
q

2
3

.3
U

n
k

n
o

w
n

F
a

m
il
ia

l 
P

P
G

L
D

IC
E

R
1

 s
y
n

d
ro

m
e

 
D

IC
E
R

1
 (

A
D

) 
G

e
rm

li
n

e
 o

r 
so

m
a

ti
c 

m
o

sa
ic

1
4

q
3

2
.1

3
 

<
1

%
 

E
a

rl
y
-o

n
se

t 
p

it
u

it
a

ry
 b

la
st

o
m

a
s 

(A
C

T
H

-
se

cr
e

ti
n

g
) 

A
D

, 
a

u
to

so
m

a
l 
d

o
m

in
a

n
t;

 C
N

C
, 
C

a
rn

e
y
 c

o
m

p
le

x
; 

F
IP

A
, 
fa

m
il
ia

l 
is

o
la

te
d

 p
it

u
it

a
ry

 a
d

e
n

o
m

a
; 

G
E

P
 N

E
T

, 
g

a
st

ro
e

n
te

ro
p

a
n

cr
e

a
ti

c 
n

e
u

ro
e

n
d

o
cr

in
e

 t
u

m
o

u
r;

 G
P

C
R

, 
G

 p
ro

te
in

-c
o

u
p

le
d

 r
e

ce
p

to
r;

 M
E

N
1

, 

m
u

lt
ip

le
 e

n
d

o
cr

in
e

 n
e

o
p

la
si

a
 t

y
p

e
 1

; 
M

E
N

4
, 
m

u
lt

ip
le

 e
n

d
o

cr
in

e
 n

e
o

p
la

si
a

 t
y
p

e
 4

; 
N

F
P

A
, 
n

o
n

-f
u

n
ct

io
n

in
g

 p
it

u
it

a
ry

 a
d

e
n

o
m

a
; 

P
A

, 
p

it
u

it
a

ry
 a

d
e

n
o

m
a

; 
P

P
G

L
, 
p

h
a

e
o

ch
ro

m
o

cy
to

m
a

 a
n

d
 p

a
ra

g
a

n
g

li
o

m
a

.

Downloaded from Bioscientifica.com at 08/27/2022 05:01:33PM
via free access

https://doi.org/10.1530/JOE-18-0446
https://joe.bioscientifica.com


https://doi.org/10.1530/JOE-18-0446
https://joe.bioscientifica.com © 2019 Society for Endocrinology

Published by Bioscientifica Ltd.
Printed in Great Britain

R24Germline and mosaic 
mutations in pituitary tumours

S Pepe et al. 240:2Journal of 
Endocrinology

Most FIPA cases have no known genetic cause, while AIP 

mutations can be identified in 15–30% of FIPA families 

(Vierimaa  et  al. 2006, Daly  et  al. 2007, Leontiou  et  al. 

2008, Hernandez-Ramirez et al. 2015). Owing to the low 

penetrance of the disease, AIP mutations can also be 

identified in subjects with early-onset PAs, and typically 

among those with gigantism and early-onset acromegaly 

(Tichomirowa et al. 2011, Cuny et al. 2013, Hernandez-

Ramirez et al. 2015). Very rarely, duplications of Xq26.3 

involving the GPR101 gene have been identified in 

families with XLAG (Trivellin  et al. 2014, Gordon  et al. 

2016). To this date, most of the reported XLAG patients 

presented as isolated cases due to de novo germline or 

somatic mosaic mutations, and only three cases of 

familial XLAG have been so far described (Trivellin et al. 

2014, Gordon et al. 2016).

Aryl hydrocarbon receptor-interacting protein

The AIP gene maps to chromosome 11q13.2, consists of 

six exons and encodes a 330 amino acid protein. The AIP 

protein is characterised by an N-terminal immunophilin-

like domain and a C-terminal tetratricopeptide (TPR) 

domain containing three TPR motifs a C-terminal alpha 

helix. The TPR domain of AIP is considered important 

to mediate the binding between AIP and its numerous 

interacting partners, in line with the role of AIP as a 

co-chaperone (Morgan et al. 2012). The best characterised 

function of AIP is to form, together with the heat shock 

protein 90 (HSP90), a protein complex which regulates 

the nuclear translocation of the aryl hydrocarbon receptor 

(Ma & Whitlock 1997). However, AIP has several other 

interacting partners, including other members of the heat 

shock protein family, growth factor receptors, nuclear 

receptors and viral proteins (Trivellin & Korbonits 2011).

Despite AIP being ubiquitously expressed, no other 

manifestations other than PAs have been consistently 

associated with mutations in the AIP gene. Interestingly, 

in the normal human pituitary gland, AIP is exclusively 

found in somatotroph and lactotroph cells, while its 

expression has been described in all PA subtypes and is 

particularly abundant in NFPAs (Leontiou  et  al. 2008). 

The mechanisms underlying the pituitary-specific pro-

tumorigenic effects of AIP mutations remain to be 

elucidated, but are likely to involve different pathways. 

The pro-tumorigenic effects of AIP mutations depend on 

the loss of its tumour suppressor function. AIP mutations 

in fact result, in most cases, in the premature truncation 

of the coding sequence (nonsense and frameshift 

mutation) or in highly unstable proteins with reduced 

half-life (missense mutations or segmental duplications) 

(Hernandez-Ramirez  et  al. 2016, Salvatori  et  al. 2017). 

Moreover, loss of heterozygosity (LOH) at the AIP locus 

is often found in AIP-related PAs (Gadelha  et  al. 1999, 

Vierimaa  et  al. 2006), confirming that the tumorigenic 

process depends on the loss of AIP. Several lines of 

evidence suggest a link between AIP and the cyclic AMP 

(cAMP)-dependent protein kinase A (PKA) pathway, 

which plays a central role in regulating GH expression 

and proliferation of somatotroph cells (Formosa & 

Vassallo 2014). The binding of GHRH to its receptor on 

the somatotroph cell determines the activation of a G 

stimulatory protein with consequent increase in cAMP 

levels and activation of PKA. The phosphorylation of 

the cAMP response element-binding protein (CREB) 

and the CREB-binding protein is responsible for the 

activation of the GH promoter mediated by PIT1, a 

transcription factor involved with pituitary development 

and pituitary hormone expression (Cohen  et  al. 1999). 

The cAMP-dependent PKA pathway and the effects of 

AIP on this pathway are summarised in Fig. 1. In GH3 

mammosomatotroph cells, overexpression of AIP inhibits 

the cAMP response to forskolin, an adenylate cyclase 

activator, while AIP knockdown leads to enhanced cAMP 

production (Formosa et al. 2013). The exact mechanisms 

linking AIP with the cAMP-dependent PKA pathway 

remain to be fully elucidated. In human AIP mutation-

positive PAs, the expression of the G inhibitory protein 

Gαi-2 was found to be reduced compared to AIP mutation-

negative tumours (Tuominen  et  al. 2015), and the 

expression of AIP was found to be positively associated 

with that of Gαi-2 also in sporadic AIP mutation-negative 

PAs (Ritvonen et al. 2017). Moreover, while knockdown 

of Gαi-2 and Gαi-3 led to a significant increase in cAMP in 

AIP WT cells, this effect was not observed in AIP-knockout 

cell lines (Tuominen et al. 2015), suggesting that the loss 

of AIP can affect G inhibitory protein function. However, 

other mechanisms could also link AIP and the cAMP 

signalling pathway. For instance, AIP has been found 

to interact with both the catalytic (PRKACA) and the 

regulatory (PRKAR1A) subunits of PKA (Schernthaner-

Reiter  et  al. 2018). An interaction between AIP and 

PRKACA was demonstrated in the presence of HSP90, 

and cytoplasmic co-localisation of AIP and PRAKACA was 

observed (Hernandez-Ramirez et al. 2018, Schernthaner-

Reiter et al. 2018), suggesting that the AIP/HSP90 complex 

could regulate PKA localisation and potentially affect the 

interaction between the catalytic and regulatory subunits 

of PKA. Moreover, AIP has been shown to interact with 

members of the type 4 phosphodiesterases family,  
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such as PDE4A5 (Bolger et al. 2003) – enzymes involved 

in the degradation of cAMP. Interestingly, the expression 

of PDE4A4 (human homologue of PDE4A5) and PDE4A8 

was found to be significantly reduced in AIP mutation-

positive somatotroph adenomas (Bizzi  et  al. 2018), 

suggesting that reduced expression of PDE4 enzymes 

might contribute to the enhanced cAMP signalling 

observed as a consequence of the loss of AIP.

AIP mutation-positive PAs are often resistant to 

treatment with somatostatin analogues (SSAs), despite 

expressing somatostatin receptors at levels comparable 

to sporadic AIP mutation-negative PAs (Chahal  et  al. 

2012). Moreover, SSA resistance has also been observed 

in sporadic tumours with reduced AIP protein 

expression independently of the expression of the 

somatostatin receptor subtype 2 (SSTR2) (Kasuki  et  al. 

2012, Iacovazzo  et  al. 2016a, Ozkaya  et  al. 2018). Thus, 

mechanisms other than altered somatostatin receptor 

expression are likely to be involved in determining 

resistance to SSAs in patients harbouring an AIP mutation. 

Reduced Gαi protein expression observed in AIP-related 

PAs could potentially underlie their resistance to SSAs, as 

Gαi signalling is involved in mediating the anti-secretory 

effect of SSAs (Theodoropoulou & Stalla 2013). Moreover, 

AIP knockdown was found to reduce the mRNA expression 

of ZAC1, a putative tumour suppressor gene involved in 

the anti-proliferative and anti-secretory effects of SSAs 

(Chahal  et  al. 2012). Notably, a positive correlation was 

described between ZAC1 protein expression and IGF-1 

normalisation and tumour shrinkage in a group of 45 

patients with acromegaly (Theodoropoulou  et  al. 2009). 

While the mechanisms linking AIP and ZAC1 remain 

Figure 1
The cAMP-dependent protein kinase A pathway in the somatotroph cell and genes involved in its regulation. Under normal conditions, GHRH released by 

the GHRH neurons in the arcuate nucleus (ARC) of the hypothalamus determines activation of the adenylate cyclase (AC) through its G stimulatory 

protein-coupled receptor (GHRH receptor, GHRH-R) in the somatotroph cell. The increased cAMP production causes the regulatory subunits (R) of protein 

kinase A (PKA) to dissociate from the catalytic subunits (C), which can translocate to the nucleus and phosphorylate its targets, including CREB. 

Phosphorylated CREB can bind to the promoter of PIT1. These events are required to promote the expression of GH and somatotroph cell proliferation. 

Loss of AIP has been shown to increase cAMP production via various possible mechanisms, including reduced expression of the G inhibitory protein Gαi-2 

(which exerts an inhibitory effect on AC and is also involved in mediating the inhibitory effects of somatostatin (SS) on GH secretion via somatostatin 
receptors (SSTR)), AIP interaction with phosphodiesterases type 4 (PDE4), as well as its interaction with members of the PKA complex. This pathway is also 

affected by other genetic conditions, including Carney complex (CNC) due, in most cases, to inactivating mutations in the regulatory type 1α subunit of 

PKA, and McCune–Albright syndrome (MAS), caused by post-zygotic activating mutations of the G stimulatory protein Gsα. While GPR101 is not expressed 

in adult human somatotroph cells, the duplication of GPR101 causing X-linked acrogigantism (XLAG) could affect the cAMP-dependent PKA pathway, as 
GPR101 is a Gsα-coupled constitutively active receptor and is significantly overexpressed in the tumours of affected patients. Potentially, GPR101 could 
also play a role in regulating GHRH secretion in the arcuate nucleus, where GPR101 is physiologically expressed at high levels. 3V, third ventricle.
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to be elucidated, the downregulation of ZAC1 observed 

following knockdown of AIP suggests that this could be 

one of the mechanisms underlying the SSA resistance 

often observed in AIP-related PAs.

While AIP-related PAs are often invasive and clinically 

aggressive, this is rarely observed in other monogenic 

conditions predisposing to PAs through dysregulation of 

the cAMP-PKA pathway, such as CNC or MAS. Considering 

the vast repertoire of AIP-interacting proteins, cAMP-

independent mechanisms could contribute to the clinical 

phenotype of AIP-related PAs. AIP has been recently shown 

to interact with proteins involved in the organisation of 

the cytoskeleton (Hernandez-Ramirez  et  al. 2018), such 

as members of the tubulin family, and specifically TUBB 

and TUBB2A (Hernandez-Ramirez et al. 2018). Moreover, 

two isotypes of beta tubulin, TUBB1 and TUBB2B, were 

found to be significantly downregulated at the mRNA 

level in AIP-related PAs compared with the normal 

human pituitary gland (Hernandez-Ramirez  et al. 2018). 

A direct interaction was also demonstrated between AIP 

and NME1 (Hernandez-Ramirez  et  al. 2018), a protein 

with anti-metastatic properties involved in the regulation 

of cell migration and motility (Murakami  et  al. 2008). 

Interestingly, NME1 knockdown was found to disrupt 

E-cadherin-mediated cell adhesion in human hepatoma 

and colon cancer cell lines, suggesting a critical role 

for NME1 in the control of intercellular adhesions and 

cell migration (Boissan  et  al. 2010). In one study, an 

inverse relationship between NME1 expression and PA 

invasiveness was demonstrated (Pan  et  al. 2005). AIP-

related somatotroph PAs are typically sparsely granulated 

(Hernandez-Ramirez et al. 2015) – a tumour subtype which 

is characterised by decreased E-cadherin expression and 

increased invasiveness (Nishioka  et  al. 2003, Sano  et  al. 

2004) – suggesting that the loss of AIP could contribute, 

through the alteration of the cytoskeleton organisation, 

to the invasive and aggressive phenotype often observed 

in AIP-related PAs.

Aip-deficient mouse models generally recapitulate the 

human phenotype (Raitila et al. 2010, Gillam et al. 2017). 

While constitutional Aip-knockout animals die in utero 

and display severe cardiovascular defects (Lin et al. 2007), 

Aip+/− mice are viable and develop pituitary tumours with 

full penetrance by the age of 15  months (Raitila  et  al. 

2010), although in the same mouse model, only pituitary 

hyperplasia without occurrence of PAs was observed in 3- 

and 12-month-old animals (Lecoq et al. 2016b). Aip+/− mice 

develop PAs at a higher rate compared to WT mice, where 

incidental pituitary tumours, mostly prolactinomas, are 

also frequently observed. The majority of the tumours 

found in Aip+/− mice produce GH, although prolactinomas 

and mixed somatotroph–lactotroph adenomas were also 

seen (Raitila  et  al. 2010). LOH of the WT Aip allele was 

observed in two available tumour samples, confirming 

the findings in human tumours. Moreover, Aip+/− mice 

had higher circulating IGF-1 levels, and their pituitary 

tumours showed increased cell proliferation, evaluated 

via immunohistochemistry for Ki-67, compared to PAs 

observed in WT mice (Raitila et al. 2010). More recently, 

another mouse model where Aip was deleted specifically in 

the somatotroph cells has been characterised (Gillam et al. 

2017). Aip-knockout animals were found to be bigger than 

WT controls both in terms of body length and weight 

beginning at 12 weeks of age (Gillam et al. 2017). Visceral 

organs, including heart, liver and kidney, were found to 

be larger compared to those in WT mice, and both GH 

and IGF-1 levels were significantly increased by 18 weeks 

of age. Macroscopic tumours, evaluated by MRI, were 

visible in 80% of mutant mice by the age of 20  weeks. 

Histological examination showed somatotroph cell 

adenomas which were preceded by pituitary hyperplasia 

observed starting from the age of 18 weeks (Gillam et al. 

2017). Interestingly, markedly reduced expression of the 

cyclin-dependent kinase inhibitor p27 was observed in 

the adenomatous tissue, suggesting that dysregulation of 

cell cycle regulators, similarly to what has been observed 

for sporadic human PAs (Bamberger  et  al. 1999), could 

contribute to the neoplastic transformation.

The disease penetrance in AIP mutation carriers is 

typically low. Studies on large families show a penetrance 

of 15–30% (Vierimaa  et  al. 2006, Naves  et  al. 2007, 

Chahal  et  al. 2011, Williams  et  al. 2014), suggesting 

that environmental or additional genetic factors could 

participate in determining the risk of developing AIP-

related PAs. PAs in AIP mutation carriers arise at a 

younger age compared to their sporadic counterpart, 

presenting clinically in most cases between the second 

and third decades of life, are often macroadenomas 

and are frequently larger and more invasive compared 

to AIP mutation-negative PAs (Daly  et  al. 2007, 2010, 

Igreja  et  al. 2010, Hernandez-Ramirez  et  al. 2015). In 

some (Leontiou  et al. 2008, Daly  et al. 2010), albeit not 

all, studies (Hernandez-Ramirez  et  al. 2015), a male 

preponderance has been described. This finding could 

be potentially explained by an ascertainment bias due 

to the prevalent inclusion of patients with gigantism, a 

condition that is more common in males (Rostomyan et al. 

2015). Owing to the young onset of the disease, about 

30% of AIP-related PAs manifest clinically with gigantism, 

a manifestation of GH excess starting at an early age,  
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before the closure of the growth plates (Leontiou  et  al. 

2008, Daly et al. 2010). Apoplexy is relatively frequent in 

AIP-related PAs (about 8–10% of all cases) and can represent 

the presenting feature of the disease (Xekouki et al. 2013). 

Poor responsiveness to SSAs is common in AIP-related 

somatotroph adenomas (Leontiou et al. 2008, Daly et al. 

2010) and an increased prevalence of AIP mutations has 

been described among sporadic patients with acromegaly 

who are resistant to SSAs (Oriola et al. 2013).

The vast majority (80%) of AIP-related PAs are 

represented by somatotroph adenomas, followed by mixed 

somatotroph–lactotroph and more rarely prolactinomas 

(Stiles & Korbonits 2011), while non-functioning pituitary 

adenomas (NFPAs) are rare, accounting for less than 10% 

of cases (Daly  et  al. 2010, Igreja  et  al. 2010), although 

many of these tumours are silent somatotroph/lactotroph 

adenomas, as they can be found to express GH or 

prolactin (Daly et al. 2010, Villa et al. 2011). Corticotroph 

and thyrotroph PAs have been very rarely described in AIP 

mutation carriers (Daly et al. 2010, Cazabat et al. 2012).

Over 100 different mutations have been identified in 

the AIP gene (Daly et al. 2010, Hernandez-Ramirez et al. 

2015), including nonsense, missense, frameshift, splicing 

and promoter mutations, deletions, insertions and 

segmental duplications. About 70% of these mutations 

lead to the loss of the C-terminal end of AIP, due to 

either nonsense or frameshift mutations resulting in 

premature stop codons (Hernandez-Ramirez et al. 2015). 

A minority of mutations is represented by large deletions 

(<10%) (Georgitsi  et  al. 2008), highlighting the need to 

employ dedicated techniques, such as multiplex ligation-

dependent probe amplification, in order to correctly 

identify these mutations.

X-linked acrogigantism

XLAG is a condition of early-onset pituitary gigantism 

due to the germline or somatic mosaic duplication of the 

GPR101 gene (Trivellin et al. 2014, Iacovazzo et al. 2016b, 

Iacovazzo & Korbonits 2018). XLAG patients present 

with marked GH excess, in most cases with associated 

hyperprolactinaemia, caused by mixed somatotroph–

lactotroph adenomas associated, in some patients, with 

pituitary hyperplasia. In a minority of patients, the disease 

is due to pituitary hyperplasia in the absence of a PA. XLAG 

is very rare, with only 33 confirmed cases described so far 

in the medical literature (Trivellin et al. 2014, Beckers et al. 

2015, 2017, Gordon  et  al. 2016, Iacovazzo  et  al. 2016b, 

Rodd et al. 2016). XLAG accounted for approximately 10 

and 8% of cases in two large independent series of patients 

with pituitary gigantism, respectively (Rostomyan  et  al. 

2015, Iacovazzo et al. 2016b). Different from other forms of 

gigantism, including those linked with AIP mutations and 

those without a known genetic predisposing factor, where 

most affected patients are males, XLAG is characterised 

by a female preponderance, and 24/33 reported XLAG 

patients are females carrying germline duplications, 

while somatic mosaic mutations have been identified 

in the only four reported cases of male patients with 

sporadic disease (Daly et al. 2016b, Iacovazzo et al. 2016b, 

Rodd et al. 2016). In three independent families, mother-

to-son transmission has been described, in all cases with 

full penetrance (Trivellin et al. 2014, Gordon et al. 2016). 

As no other clinical manifestations have been described in 

these kindreds, XLAG is considered as a rare cause of FIPA.

The GPR101 gene (Xq26.3) encodes a G-protein-

coupled receptor whose ligand is unknown. In mice, 

Gpr101 mRNA was identified primarily in the central 

nervous system, and particularly in the hypothalamus and 

amygdala (Bates et al. 2006). In humans, GPR101 was found 

to be highly expressed at the mRNA level in the nucleus 

accumbens, as well as in the medulla and the occipital lobe 

(Trivellin et al. 2016a). Interestingly, Gpr101 was found to 

be expressed in about half of the neuronal cells expressing 

the anorexigenic neuropeptide pro-opiomelanocortin in 

mice (Nilaweera et al. 2007). In the same study, starvation 

was found to increase GPR101 expression in the posterior 

hypothalamus, while decreased expression was seen in 

obese mice carrying the ob gene mutation, suggesting a 

possible role for GPR101 in regulating appetite and energy 

metabolism. While GPR101 was found to be significantly 

overexpressed in the pituitary tumours of XLAG patients, 

it was not expressed in sporadic somatotroph PAs or in the 

adult human pituitary gland (Trivellin et al. 2014). On the 

contrary, GPR101 protein expression was described using 

immunohistochemistry in the foetal human pituitary 

and in pituitary samples obtained from adolescents, 

suggesting that its expression, at least in the pituitary 

gland, could be age dependent and induced during 

development and adolescence (Trivellin et al. 2016a). The 

expression pattern of GPR101 in the pituitary gland also 

seems to be species specific. In the pituitary of the rhesus 

monkey, for example, GPR101 was uniquely expressed, at 

the protein level, in gonadotroph cells, while in the rat 

pituitary gland, GPR101 was found to be expressed only 

in a subpopulation of somatotroph cells (Trivellin  et  al. 

2016a).

The mechanisms underlying the pathogenesis of 

XLAG remain to be determined. GPR101 is coupled with 

the G stimulatory protein, and is constitutively active,  
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as shown by the increased production of cAMP following its  

overexpression in HEK293 and GH3 cells (Bates et al. 2006, 

Trivellin  et al. 2014). Thus, the activation of the cAMP-

PKA pathway induced by the overexpression of GPR101 

could potentially underlie the development of pituitary 

hyperplasia and PAs in XLAG patients. Interestingly, 

elevated circulating GHRH levels have been described 

in some, although not all, XLAG patients, suggesting 

that GPR101 could also have a role in the regulation of 

GHRH secretion (Glasker et al. 2011, Beckers et al. 2015, 

Daly  et  al. 2016a, Iacovazzo  et  al. 2016b). Notably, the 

GHRH receptor was found to be abundantly expressed in 

XLAG patients' hyperplastic and tumour pituitary samples 

(Trivellin  et  al. 2014), and this could possibly relate to 

increased hypothalamic secretion of GHRH, as GHRH 

was shown, at least in vitro, to induce the expression 

of its own receptor (Horikawa  et  al. 1996). GHRH 

administration was found to concomitantly stimulate 

the release of both GH and prolactin in XLAG patients, 

both in vivo (Moran  et al. 1990) and in vitro (Daly  et al. 

2016a), and this effect was abolished by concomitant 

treatment with a GHRH receptor antagonist in cells 

cultured from the PA of an XLAG patient (Daly  et  al. 

2016a). The implication of GPR101 in the hypothalamic 

regulation of GHRH secretion is further supported by the 

finding that GPR101 was found to be expressed at higher 

levels in the arcuate nucleus where, among others, GHRH 

neurons are localised (Bates et al. 2006). Potentially, the 

duplication of GPR101 could affect pituitary somatotroph 

cells both directly, as a result of its constitutive activity 

and activation of the cAMP-PKA pathway, and indirectly 

through increased GHRH secretion by the hypothalamus 

(Fig. 1). In this latter scenario, GPR101 could be involved 

in the hypothalamic regulation of the GHRH–GH axis, 

similarly to the action of GPR54, a G protein-coupled 

receptor expressed in the GnRH neurons which mediates 

the stimulatory effects of kisspeptin on GnRH release 

(Franssen & Tena-Sempere 2018).

The clinical features of XLAG patients are strikingly 

uniform. The disease is characterised by early onset of 

accelerated growth, in most cases observed during the 

first 2 years of life, and in all patients before the age of 

4 (Beckers  et  al. 2015, Iacovazzo  et  al. 2016b). XLAG 

patients present markedly elevated GH levels resulting 

in significantly increased IGF-1 and height SDS, which 

are higher compared to patients with gigantism due 

to AIP mutations or to genetically undetermined cases 

(Rostomyan  et  al. 2015, Iacovazzo  et  al. 2016b). Other 

frequently observed features at diagnosis include acral 

enlargement, coarse facial features, increased appetite and, 

less frequently, acanthosis nigricans, sleep apnoea/snoring 

and hyperhidrosis (Beckers  et  al. 2015, Iacovazzo  et  al. 

2016b). The histopathological features of XLAG-related PAs 

are also peculiar: these tumours present a typical sinusoidal 

and lobular architecture with frequent calcifications and 

follicle-like structures (Iacovazzo et al. 2016b).

Most XLAG patients harbour microduplications of 

Xq26.3 (in average spanning a region of about 500 kb) 

involving the GPR101 gene as well as three other 

neighbouring genes (Trivellin et al. 2014). However, one 

patient with a typical clinical phenotype was found 

to carry a complex genomic rearrangement with two 

duplicated regions separated by a normal copy number 

segment (Iacovazzo  et  al. 2016b). The distal duplication 

in this patient has allowed to narrow down the genomic 

region shared by all patients to an area encompassing 

solely (in its entirety) the GPR101 gene, confirming its 

pathogenic role (Iacovazzo et al. 2016b).

A missense variant in the GPR101 gene (c.924C>G 

p.E308D; minor allele frequency in the GnomAD database 

0.0036) was initially described in about 4% of a series of 

patients with acromegaly and was found to modestly 

increase cell proliferation and GH release when expressed 

in GH3 cells (Trivellin  et  al. 2014). However, further 

studies have failed to show an increased prevalence of 

this variant in patients with acromegaly (Ferrau  et  al. 

2016, Iacovazzo  et  al. 2016b), suggesting it might not 

play a role in the pathogenesis of somatotroph PAs. A 

further variant (c.1098C>A p.D366E) was described in one 

patient with sporadic acromegaly (Kamenicky et al. 2015). 

Although no in vitro studies are available, this variant 

was not identified in a series of almost 400 patients 

with acromegaly (Iacovazzo et al. 2016b). Other GPR101 

missense variants have been detected in patients with 

other PA subtypes, although their impact on the function 

of GPR101 remains to be determined (Lecoq et al. 2016a, 

Trivellin et al. 2016b). No pathogenic GPR101 mutations 

or copy number variations were identified in patients with 

congenital isolated GH deficiency (Castinetti et al. 2016).

Syndromic pituitary tumours

Multiple endocrine neoplasia type 1

MEN1 is a tumour predisposition syndrome inherited 

with an autosomal dominant pattern occurring with a 

prevalence between 1:10,000 and 1:100,000 (Pardi  et al. 

2015). Affected individuals develop mainly parathyroid 

hyperplasia or parathyroid adenomas – causing primary 
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hyperparathyroidism (in over 90% of patients by the age 

of 50  years) – gastroenteropancreatic neuroendocrine 

tumours (NETs, in approximately 60% of patients) 

and PAs (30–40% of cases). Other endocrine and non-

endocrine tumours may also occur in this syndrome, 

such as bronchial and thymic NETs, facial angiofibromas, 

lipomas, collagenomas, adrenal cortical adenomas, 

meningiomas, ependymomas, breast cancer and, rarely, 

phaeochromocytomas (Marini et al. 2006, Dreijerink et al. 

2014, Thakker 2014, Maxwell et al. 2016). A diagnosis of 

MEN1 can be established in (i) an individual carrying a 

pathogenic MEN1 mutation, (ii) a patient with two or 

more main MEN1 manifestations or (iii) a patient with 

one MEN1-associated manifestation and a first-degree 

relative affected with MEN1 (Thakker et al. 2012). In 90% 

of cases, MEN1 is due to germline heterozygous mutations 

in the MEN1 gene. Most MEN1 patients have a positive 

family history for MEN1-associated manifestations, while 

de novo mutations occur in approximately 10% of the 

patients (Chandrasekharappa  et  al. 1997, Bassett  et  al. 

1998). The MEN1 gene is located on the long arm of 

chromosome 11 (11q13) and acts as a tumour suppressor 

gene: heterozygous inactivating mutations in this gene 

predispose to the occurrence of tumours and in about 90% 

of MEN1-related tumours LOH at 11q13 can be identified 

(Larsson et al. 1988, Dong et al. 1997).

MEN1 encodes a protein named menin, a scaffold 

protein located mostly in the nucleus, involved in several 

cellular processes, including transcriptional regulation, 

genome stability, cell division and proliferation (Thakker 

2014). The first identified direct partner of menin was 

JunD, a component of the AP1 transcription factor 

complex (Agarwal  et  al. 1999) which acts as a negative 

regulator of RAS-dependent cell proliferation and protects 

cells from p53-dependent senescence and apoptosis 

(Pfarr et al. 1994, Weitzman et al. 2000). It has been reported 

that menin represses JunD-activated transcription via 

recruitment of histone deacetylases through association 

with the corepressor mDin3A, suggesting a role of menin 

as a repressor at the transcriptional level (Kim  et  al. 

2003). Interestingly, patients carrying mutations in the 

JunD-interacting domain of menin present a higher 

mortality risk (Thevenon  et  al. 2013). It has also been 

shown that menin serves as a molecular adaptor to allow 

the interaction between the mixed lineage leukaemia 

(MLL) protein and the transcriptional coactivator lens 

epithelium-derived growth factor, which is needed for 

the association of the MLL complex with chromatin 

and the expression of MLL target genes (Yokoyama & 

Cleary 2008). Menin recruits MLL to the promoters of the 

cyclin-dependent kinase inhibitor 1B (CDKN1B) and 1C 

(CDKN1C) (Milne et al. 2005, Wu & Hua 2011), promoting 

the transcription of these genes coding, respectively, for 

p27 and p57. The predominant expression of these genes, 

which control cell cycle progression at the G1 phase, in 

endocrine tissues might explain the selectivity of MEN1 

tumorigenesis for endocrine organs. Moreover, cyclin-

dependent kinase 4 (CDK4) has also been described as a 

target of MEN1 (Gillam et al. 2015). CDK4 regulates the 

cell cycle during G1/S transition, and its activation may 

be related to tumorigenesis in pituitary and pancreatic 

tissues (Gillam et al. 2015), as shown by the evidence that 

mice with heterozygous deletion of the Men1 gene and 

concomitant knockout of Cdk4 do not develop pituitary 

or pancreatic tumours (Gillam et al. 2015).

Murine Men1 heterozygous knockout models develop 

a phenotype similar to that of MEN1 patients, with 

hyperplasia and tumours mainly of the parathyroids, 

pancreatic islets and anterior pituitary (Crabtree  et  al. 

2001). Constitutional homozygous Men1-knockout mice 

die at an early embryonic stage (Crabtree et al. 2001), while 

conditional tissue-specific disruption of menin leads to 

pancreatic and pituitary tumorigenesis (Biondi et al. 2004).

To date, more than 1500 MEN1 mutations have 

been described (Lemos & Thakker 2008, Concolino et al. 

2016). Most of these are represented by frameshift, 

missense and nonsense mutations (Lemos & Thakker 

2008, Concolino  et  al. 2016), and they are distributed 

throughout the whole gene. A clear genotype–phenotype 

correlation has not been demonstrated (Kouvaraki  et al. 

2002, Verges et al. 2002, Horiuchi et al. 2013, de Laat et al. 

2015). Approximately 30–40% of MEN1 patients develop 

PAs (Verges et al. 2002, Trouillas et al. 2008, de Laat et al. 

2015), which can represent the first manifestation of the 

disease in about 15–30% of all patients. PAs are more 

commonly diagnosed in female patients. Lactotroph PAs 

are the most common PA subtype in MEN1 (40–60%), 

followed by NFPAs (15–40%), somatotroph PAs (5–10%) 

and, rarely, corticotroph or thyrotroph adenomas 

(Verges  et  al. 2002, Trouillas  et  al. 2008, de Laat  et  al. 

2015). PAs in MEN1 are frequently macroadenomas, and 

they arise at a younger age compared to sporadic PAs and 

can be multiple.

Considering that PAs can represent the first disease 

manifestation and the rate of de novo mutations, 

screening for MEN1 should be considered in patients with 

childhood-onset pituitary macroadenomas, especially 

prolactinomas, as a relatively high frequency (6%) of 

MEN1 mutations has been shown in paediatric PA patients 

(Cuny et al. 2013).
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Multiple endocrine neoplasia type 4

A small percentage of patients showing MEN1 clinical 

features do not harbour mutations in the MEN1 gene. 

The characterisation of the phenotype (named MENX) 

of a rat strain harbouring a spontaneous Cdkn1b 

mutation prompted studies in patients with an MEN1-

like phenotype. CDKN1B mutations have been identified 

in rare cases of such patients without identifiable MEN1 

mutations, and this condition has been named MEN4 

(Pellegata et al. 2006). To date, 19 cases have been reported 

(reviewed in Alrezk  et  al. 2017): most of these patients 

developed primary hyperparathyroidism, either isolated 

or associated with NETs, mostly gastroenteropancreatic. 

Seven of the reported patients developed PAs, including 

four with a somatotroph PA, one with an NFPA, one with 

a corticotroph PA and one with a prolactinoma. One 

of the patients with a somatotroph tumour presented 

with gigantism due to a somatotroph macroadenoma 

diagnosed at the age of 5 years (Sambugaro et al. 2015). 

It should be noted that, in the case of two AIP mutation-

negative FIPA kindreds harbouring two distinct CDKN1B 

variants (Tichomirowa et al. 2012), for one of the identified 

variants segregation with the PA phenotype could not be 

assessed, while for the second, only one of the two affected 

family members carried the variant, therefore making it 

an unlikely cause for their familial PA.

CDKN1B is located on chromosome 12q13 and 

encodes for p27, a tumour suppressor gene involved in cell 

cycle regulation (Chu et al. 2008). p27 is a member of the 

cyclin-dependent kinase inhibitors family and negatively 

regulates the cyclin E/cyclin-dependent kinase 2 complex 

preventing transition from the G1 to the S phase of 

the cell cycle (Sheaff  et  al. 1997). Interestingly, Cdkn1b-

knockout mice develop hyperplasia of the intermediate 

lobe of the pituitary gland, and about 50% these 

animals develop pituitary tumours originating from the 

intermediate lobe (Nakayama  et al. 1996). Development 

of pituitary tumours was also observed in Cdkn1b+/− 

animals challenged with either irradiation or carcinogens, 

although no deletions or mutations of the WT allele 

were detected in these tumours, suggesting that p27 

does not conform to the two-hit inactivation hypothesis 

and that tumorigenesis depends on haploinsufficiency 

rather that complete loss of the gene product (Fero et al. 

1998). Reduced p27 protein expression was detected in all 

human PA subtypes (Bamberger et al. 1999), and especially 

in corticotroph PAs and pituitary carcinomas (Lidhar et al. 

1999). Interestingly, p27 expression was significantly 

reduced in PAs compared to the normal pituitary cells of 

the same subtype (Lidhar  et  al. 1999). The mechanisms 

underlying downregulation of p27 in human PAs remain 

to be determined; in a study including 48 PA patients, no 

differences were observed among the various PA subtypes 

and the normal pituitary in terms of expression of 

CDKN1B transcriptional regulators and specific miRNAs 

(Martins et al. 2016).

The CDKN1B mutations described so far include 

frameshift, nonsense, missense as well as 5′ UTR mutations 

leading to reduced p27 expression (Pellegata et al. 2006, 

Georgitsi et al. 2007, Agarwal et al. 2009, Molatore et al. 

2010, Costa-Guda  et  al. 2011, Belar  et  al. 2012, 

Tichomirowa et al. 2012, Occhi et al. 2013, Tonelli et al. 

2014, Elston et al. 2015, Sambugaro et al. 2015, Borsari et al. 

2017). Considering the rarity of MEN4, penetrance or 

potential genotype–phenotype correlations remain to be 

established.

Carney complex

CNC is a rare multiple neoplasia syndrome inherited with 

an autosomal dominant manner. CNC is characterised 

by the presence of pigmented lesions of the skin, 

cardiac and cutaneous myxomas and multiple non-

endocrine and endocrine neoplasms, including pituitary 

hyperplasia and PAs (Carney  et  al. 1985). The most 

common endocrine manifestation observed in CNC 

patients is ACTH-independent Cushing’s syndrome due 

to primary pigmented nodular adrenocortical disease 

(Stratakis et al. 1993, Bertherat et al. 2009, Rothenbuhler 

& Stratakis 2010, Courcoutsakis  et  al. 2013). This 

condition is observed in about 25% of CNC patients 

and occurs more often in females (Stratakis  et al. 1993). 

Other endocrine manifestations observed in CNC include 

testicular tumours, especially large-cell calcifying Sertoli 

cell tumours, observed in about one-third of affected 

males at presentation, thyroid nodules (mostly follicular 

adenomas) which occur in up to 75% of CNC patients 

and, occasionally, also differentiated thyroid cancer 

(both papillary and follicular). About two-thirds of CNC 

patients show elevation of GH or IGF-1, often with 

associated hyperprolactinaemia, although symptomatic 

acromegaly occurs only in about 10% of CNC patients, 

usually by the third decade of life (Bertherat et al. 2009, 

Correa et al. 2015). Most CNC patients with acromegaly 

present with pituitary hyperplasia, typically affecting 

the mammosomatotroph cells, expressing both GH 

and prolactin (Stergiopoulos  et  al. 2004) which can be 

accompanied, in some patients, by one or multiple areas of 

adenomatous transformation. Most PAs observed in CNC 
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are represented by somatotroph or mixed somatotroph–

lactotroph microadenomas (Stergiopoulos  et  al. 2004, 

Stratakis  et  al. 2004), although large macroadenomas 

have also been described. While most cases of Cushing’s 

syndrome in CNC patients are ACTH independent, two 

cases of ACTH-dependent Cushing’s disease have been 

described in patients with CNC harbouring a PRKAR1A 

mutation (Hernandez-Ramirez  et  al. 2017b, Kiefer  et  al. 

2017). In both cases, LOH at the PRKAR1A locus has 

been described in the pituitary tumour, supporting a 

pathogenic role for the PRKAR1A mutation in causing 

Cushing’s disease in these patients.

The genetic background of CNC is heterogeneous. 

About 70% of cases are due to heterozygous inactivating 

mutations in the PRKAR1A gene (17q24.2), coding for the 

regulatory subunit type 1 alpha of PKA. PKA is a cAMP-

dependent protein kinase implicated in several cellular 

processes including hormone release, transcriptional 

regulation, cell cycle progression, cell proliferation and 

apoptosis (Bossis & Stratakis 2004). The PKA enzyme 

complex is a tetramer formed of two catalytic and 

two regulatory components. In the presence of cAMP, 

the enzymatic complex dissociates releasing the two 

catalytically active subunits (McKnight et al. 1988) (Fig. 1). 

To date, four regulatory subunits (R1α, R1β, R2α and R2β) 

and three catalytic subunits (Cα, Cβ and Cγ) have been 

identified and, depending on the tissue availability of 

each subunits, several combinational PKA configurations 

exist (Skalhegg & Tasken 2000). Two major enzymatic 

complexes have been identified, named PKA type I and II. 

Type I PKA contains either R1α or R1β regulatory subunits 

and is considered the main subtype that mediates response 

to cAMP in mammalian cells (Gamm  et  al. 1996). Loss-

of-function PRKAR1A mutations lead to increased cAMP-

dependent PKA activity which drives tumour formation 

in tissues affected by CNC (Casey et al. 2000, Salpea et al. 

2014). Interestingly, PRKAR1A does not seem to behave 

like a ‘classical’ tumour suppressor gene (Bossis & Stratakis 

2004). First, while LOH at the 17q24 locus has been shown 

in many CNC-related tumours (Kirschner  et  al. 2000a), 

in some cases LOH was not detected (Groussin  et  al. 

2002), suggesting that haploinsufficiency might be 

sufficient for tumour development. Moreover, PRKAR1A 

seems to behave like an oncogene in selected tissues. For 

instance, increased expression was described in several 

human malignancies, including renal and breast cancer 

(Fossberg  et  al. 1978, Handschin & Eppenberger 1979). 

Overexpression of PRKAR1A was also shown to promote 

growth advantages in different cell lines, including 

Chinese hamster ovary cells and in breast epithelial 

cell lines (Tortora  et  al. 1994a,b). Thus, PRKAR1A could 

function as both an oncogene and tumour suppressor 

gene in a cell context-dependent way.

Homozygous deletion of Prkar1a is lethal in mice during 

embryogenesis (Amieux et al. 2002), while Prkar1a+/− mice 

were found to develop CNC-related tumours, including 

Schwannomas and thyroid neoplasms, although no PAs 

were observed in these animals (Kirschner  et  al. 2005). 

In contrast, mice with pituitary-specific homozygous 

deletion of Prkar1a under the GHRH receptor promoter 

developed pituitary tumours of the Pit1 lineage expressing 

GH, prolactin and TSH, and had higher circulating levels 

of GH compared to WT mice (Yin et al. 2008).

To date, more than 125 PRKAR1A mutations have 

been described (Correa  et  al. 2015), most of which are 

represented by nonsense and frameshift mutations. In the 

majority of cases, the predicted mutant protein products 

are not identified as a result of nonsense mRNA-mediated 

decay (Kirschner  et  al. 2000a,b). Large deletions can be 

found in about 20% of the cases where PRKAR1A mutations 

cannot be detected by Sanger sequencing, and are often 

associated with a more severe phenotype (Horvath et al. 

2008, Salpea et al. 2014). About 70% of CNCs arise in a 

familial setting, while 30% present sporadically, due to de 

novo mutations (Correa et al. 2015).

A second genetic locus at 2p16 has been associated 

with CNC; however, the responsible gene is not yet known 

(Stratakis 2016). There are no phenotypic differences 

between CNC patients with mutations at either locus. 

A single case of a CNC patient harbouring a triplication 

of the catalytic beta subunit of PKA (PRKACB) has been 

described (Forlino  et  al. 2014). This patient presented 

at the age of 19  years with acromegaly, spotty skin 

hyperpigmentation and multiple myxomas. Interestingly, 

PKA activity measured in the patient’s lymphocytes was 

found to be increased to levels comparable to those seen 

in two PRKAR1A mutated patients (Forlino  et  al. 2014), 

suggesting that overexpression of the Cβ catalytic subunit 

can affect PKA activity in a way similar to that observed in 

case of PRKAR1A mutations.

McCune–Albright syndrome

Somatic activating mutations in the GNAS gene (20q13.32), 

encoding the cAMP pathway associated G protein Gsα, 

represent the only recurrent mutation found in somatotroph 

adenomas (Valimaki  et  al. 2015, Ronchi  et  al. 2016) 

and can be identified at a rate of 10–50% (Peverelli  et al. 

2014). These missense mutations are known to occur at 

only one of two residues, Arg201 (more commonly) or, 
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rarely, Gln227, which represent critical sites for GTPase 

activity. Mutations at these sites cause loss of the GTPase 

activity with consequent permanent activation of the 

adenylate cyclase and constitutive activation of the cAMP-

dependent PKA pathway (Fig. 1). This results in increased 

cell proliferation in cAMP-responsive tissue, including 

the pituitary gland. As such, GNAS is considered a proto-

oncogene, activated by these point mutations into the gsp 

oncogene. When these mutations occur at an early post-

zygotic stage, the resulting somatic mosaicism underlies a 

syndromic condition known as MAS. MAS is a rare disorder 

with an estimated prevalence between 1:100,000 and a 

1:1,000,000 (Boyce & Collins 1993) and is defined by the 

occurrence of polyostotic fibrous dysplasia, café-au-lait 

skin macules and endocrinopathies, including precocious 

puberty (especially in females), hyperthyroidism, testicular 

lesions (Leydig and/or Sertoli cell hyperplasia), growth 

hormone excess or, more rarely, neonatal hypercortisolism. 

The clinical manifestations of MAS are extremely variable 

and depend on the degree of mosaicism. The probability 

of detecting a GNAS mutation by standard PCR is high in 

affected tissues, while it can be very low in leukocyte-derived 

DNA, especially in subjects with only one manifestation 

of MAS (Lumbroso et al. 2004), although the use of next-

generation sequencing can increase the mutation detection 

rates (Narumi  et  al. 2013). The GNAS gene is paternally 

imprinted in several tissues, including the pituitary gland, 

and most somatotroph adenomas have been found to 

occur in patients harbouring the mutation on the maternal 

allele (Hayward et al. 2001, Mantovani et al. 2004).

Pituitary involvement in MAS manifests with GH 

excess which can be present in about 20% of patients 

(Salenave  et  al. 2014). This is in most cases associated 

with hyperprolactinaemia. PAs can be found in 30–50% 

of affected patients, with the other patients most likely 

having pituitary hyperplasia without an adenoma 

(Galland et al. 2006). The age at onset is variable with a 

mean age of 24 years (Salenave et al. 2014). While cases 

of young onset disease have been described, the final 

stature in MAS patients is often normal, and this might be 

explained by the high prevalence of associated precocious 

puberty and increased levels of sex steroids.

Phaeochromocytoma/paraganglioma with  
pituitary adenoma

Germline heterozygous mutations in genes encoding 

succinate dehydrogenase subunits (SDHx) and the SDH 

complex assembly factor 2 protein (SDHAF2) have been 

described in patients with hereditary phaeochromocytoma 

and paraganglioma (PPGL) (Baysal et al. 2000, Niemann & 

Muller 2000, Astuti et al. 2001, Hao et al. 2009, Bayley et al. 

2010, Burnichon et al. 2010).

The first description of PPGL coexisting with a PA 

dates back to 1952 (Iversen 1952), but only recently a 

causative link between genes predisposing to PPGL and 

PAs has been established, following the description of 

a patient carrying an SDHD mutation having bilateral 

phaeochromocytomas and concomitant acromegaly due 

to a somatotroph PA. This patient’s pituitary tumour 

showed loss of heterozygosity at the SDHD locus and 

reduced protein expression of both SDHD and SDHB 

(Xekouki  et  al. 2012). Other reports (Benn  et  al. 2006, 

Dwight et al. 2013, Varsavsky et al. 2013, Gill et al. 2014, 

Papathomas et al. 2014, Denes et al. 2015, Xekouki et al. 

2015, Tufton  et  al. 2017, Maher  et  al. 2018), including 

a study showing that Sdhb+/− mice develop pituitary 

lactotroph hyperplasia (Xekouki  et  al. 2015), have 

further strengthened the link between germline SDHx 

mutations and PAs, and this has allowed the definition of 

a novel clinical entity called 3PAs (phaeochromocytoma/

paraganglioma with PAs). Notably, only one case of a 

double somatic mutation (detected by loss of SDHB and 

SDHA immunostaining and confirmed by sequencing) 

was described in 1/309 sporadic PAs, implying that this is 

an extremely rare event (Gill et al. 2014).

The SDH enzymatic complex is composed of two 

subunits which form the catalytic core (SDHA and SDHB) 

and two subunits which are responsible for anchoring 

the complex to the mitochondrial membrane (SDHC and 

SDHD). The SDH complex is responsible for the reversible 

enzymatic conversion of succinate into fumarate within 

the citric acid cycle (Bardella et al. 2011). The mechanisms 

linking loss of SDH function with tumorigenesis remain 

to be fully determined but are likely to be multifactorial 

(Fig. 2). Disruption of the SDH complex as a result of loss-

of-function SDHx mutations leads to the accumulation 

of succinate, which in turn causes an inhibition of 

prolyl-hydroxylases, leading to stabilisation of the 

hypoxia-inducible factor 1α (HIF1α) and transcription 

of HIF-responsive genes, some of which are involved in 

tumorigenesis, including, among others, VEGF and TGF 

(Selak et al. 2005, Cervera et al. 2008, Guzy et al. 2008). 

These findings are corroborated by the evidence that 

gene expression profiling in SDHx-related paragangliomas 

overlaps with that observed in tumours due to VHL 

(encoding a component of the ubiquitin ligase complex 

that mediates the degradation of HIFs) and EPAS1 (HIF2A) 

mutations (Comino-Mendez  et  al. 2013). Interestingly, 

HIF1α was found to exert an anti-apoptotic role in a 
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human PA cell line in hypoxic conditions (Yoshida et al. 

2006) and hypoxia was found to induce invasiveness of the 

same cell line in vitro (Yoshida & Teramoto 2007). HIF1A 

knockdown and HIF1α inhibition were shown to increase 

the sensitivity of human PA cells to temozolomide, 

an alkylating agent employed for the treatment of 

aggressive PAs and pituitary carcinomas, both in vitro 

and in PA xenografts (Chen et al. 2013). Altogether, these 

data support a role for the HIF1α pathway in pituitary 

tumorigenesis and might provide a mechanistic link 

between SDHx mutations and PAs.

In addition, loss of SDH activity leads to increased 

intracellular production of reactive oxygen species, 

which can also contribute to the inhibition of prolyl-

hydroxylases and to the stabilisation of HIF1α 

(Niecknig et al. 2012). Moreover, reactive oxygen species 

promote a condition of chronic metabolic oxidative stress 

and genomic instability (Ishii  et  al. 2005, Slane  et  al. 

2006). Whether this could as well contribute to the 

SDH-related tumorigenesis is yet to be determined, also 

considering that SDH-mutated paragangliomas were 

found to harbour a low rate of somatic mutations or copy 

number alterations (Castro-Vega et al. 2015).

Interestingly, SDH-deficient tumours present with 

a significantly greater genomic methylation level 

compared to SDH-proficient neoplasms, as it was shown 

in gastrointestinal stromal tumours (Killian  et  al. 2013). 

Similar findings were shown in paragangliomas, where 

SDHx- and particularly SDHB-related tumours showed 

a hypermethylator phenotype (Letouze  et  al. 2013). 

Hypermethylated tumours were characterised by younger 

age at diagnosis and a worse prognosis. Sdhb knockout 

chromaffin cells displayed increased 5-methylcytosine and 

increased H3K9 and H3K27 methylation (Letouze  et  al. 

2013). These methylome changes were associated 

with downregulation of several genes, including genes 

associated with neuroendocrine differentiation, the 

tumour suppressor gene RBP1, known to be downregulated 

in several human malignancies (Esteller  et  al. 2002, 

Mendoza-Rodriguez  et  al. 2013) and KRT19 (encoding 

cytokeratin-19), a marker of epithelial-to-mesenchymal 

transition. Moreover, Sdhb-knockout mouse chromaffin 

Figure 2
Mechanisms involved with SDH-related tumorigenesis. The SDH enzymatic complex mediates the reversible enzymatic conversion of succinate into 

fumarate within the citric acid cycle (here represented schematically). Inactivating mutations in the SDHx genes are responsible for familial 

paragangliomas and phaeochromocytomas, and a small subset of patients carrying an SDHx mutation develop PAs. The accumulation of succinate as a 

result of a loss-of-function SDHx mutation determines inhibition of prolyl-hydroxylases, which results in the stabilisation of the hypoxia-inducible factor 

1α (HIF1α), and increased expression of HIF1α-responsive genes. Indirect effects (dashed lines) of loss of SDH function include increased production of 
reactive oxygen species (ROS), which also have an inhibitory effect on prolyl hydroxylase activity and may cause genomic instability as a result of 
oxidative stress. Moreover, SDHx mutations are associated with a hypermethylator phenotype which results in the silencing of genes involved with 

epithelial-to-mesenchymal (EMT) transition and cell invasiveness. α-KG, alpha-ketoglutarate; OAA, oxaloacetic acid.
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cells presented mesenchymal changes reminiscent of  

epithelial-to-mesenchymal transition (Loriot  et  al. 2015) 

with increased invasiveness and enhanced cell migration, 

and expression of KRT19 by lentiviral transduction 

partially rescued the invasive phenotype of these cells 

and enhanced cell adherence (Loriot  et  al. 2015). While 

the hypermethylation secondary to SDHx mutations 

seem to play a pivotal role in mediating tumorigenesis 

in paragangliomas, no data are available whether this 

mechanism could also be involved in SDHx-associated PAs.

The penetrance of pituitary tumours in patients 

carrying SDHx mutations is estimated to be low (<1%). 

However, this might be an underestimation, considering 

that subjects carrying SDHx mutations are not routinely 

screened for pituitary tumours. Among 18 cases of SDHx-

related PAs which were confirmed by genetic testing 

(Benn et al. 2006, Xekouki et al. 2012, 2015, Dwight et al. 

2013, Varsavsky  et  al. 2013, Papathomas  et  al. 2014, 

Denes et al. 2015, Tufton et al. 2017, Maher et al. 2018), 

data regarding family history are available from 16 

patients. Among these, 14 patients had a positive family 

history of PPGL (and PAs in two kindreds), while only 

two patients presented with sporadic disease. Most 

patients with SDHx-related PAs were diagnosed with 

PPGL (in most instances, PPGL were diagnosed first or 

simultaneously to the pituitary tumour), while five PAs 

occurred in patients without a personal history of PPGL. 

Among the 16 patients with available clinical data, most 

(10) were affected by prolactinomas, while somatotroph 

or NFPAs occurred in three cases each. Most of the 

reported cases were macroadenomas, in some cases 

displaying an aggressive behaviour, including a non-

functioning pituitary carcinoma in a patient harbouring 

an SDHB mutation (Tufton et al. 2017). Notably, SDHx-

related PAs showed peculiar histopathology features, 

with typical intracytoplasmic vacuoles (Denes  et  al. 

2015, Tufton  et  al. 2017, Maher  et  al. 2018). As SDHx 

mutations are extremely rare in patients with sporadic 

PAs (Gill  et  al. 2014, Xekouki  et  al. 2015), sequencing 

of SDHx genes should be reserved for patients with 

a personal or family history of paraganglioma or 

phaeochromocytoma. Considering the aggressive 

phenotype of SDHx-related PAs and the potential risk of 

malignancy, patients carrying SDHx mutations should 

be screened for pituitary tumours, although, owing 

to the small number of reported cases, frequency and 

modalities of screening remain to be established.

PAs have been recently reported in patients with 

phaeochromocytomas harbouring mutations in the 

MAX gene (14q23.3) (Roszko  et  al. 2017, Daly  et  al. 

2018, Kobza  et  al. 2018), including three patients with 

prolactinomas and two affected with acromegaly. 

Interestingly, three of these reported cases carried large 

deletions that were missed by Sanger sequencing. MAX 

is one of several genes causing predisposition to familial 

PPGL (Comino-Mendez et al. 2011) and encodes a protein 

which acts as an interacting partner for MYC and MXD1, 

transcription factors involved in the regulation of cell 

proliferation and apoptosis (Atchley & Fitch 1995). 

While the role of MAX in PA pathogenesis has not been 

investigated, these reports expand the knowledge on the 

genetic background of the 3PAs association and suggest 

that genes other than SDHx could be involved in its 

pathogenesis.

DICER1 syndrome

The DICER1 syndrome, or pleuropulmonary blastoma 

(PPB)-familial tumour and dysplasia syndrome, is a 

rare autosomal dominant disorder due to germline 

heterozygous mutations in the DICER1 gene.

DICER1 syndrome is characterised by a variety of 

cancerous and benign tumours, including pleuropulmonay 

blastoma, ovarian sex cord-stromal tumours (mostly Sertoli-

Leydig cell tumour), cystic nephroma, nodular hyperplasia 

of the thyroid, differentiated thyroid cancer, pituitary 

blastoma, nasal chondromesenchymal hamartoma, ciliary 

body medulloepithelioma, renal sarcoma, genitourinary 

embryonal rhabdomyosarcoma and pinealoblastoma 

(Doros et al. 1993, Schultz et al. 2018).

The first case of pituitary blastoma was characterised 

in 2008 in a 13-month-old female with ACTH-dependent 

Cushing’s disease (Scheithauer  et  al. 2008), although a 

link with DICER1 mutations was only established more 

recently (de Kock  et  al. 2014). The term blastoma was 

employed as these neoplasms presented the appearances 

of pituitary embryonic tissue with an aggressive clinical 

behaviour (Scheithauer et al. 2008). The histopathological 

features of pituitary blastomas are typical and include 

Rathke-like epithelial cells forming rosettes or gland-

like structures admixed with secretory cells disposed in 

lobules rather than acini and positive for ACTH and, 

less frequently, also for GH. Pituitary blastomas are very 

rare in the setting of DICER1 syndrome (<1%). These 

aggressive tumours usually arise in young children 

(median age at presentation is 8  months with a range 

from 7 to 24  months), and they present clinically with 

severe ACTH-dependent Cushing’s disease and, in some 

cases, opthalmoplegia. The condition can be fatal in about 

40% of the cases (Scheithauer  et al. 2008, de Kock  et al. 
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2014). Out of 12 pituitary blastoma patients available 

for genetic testing, DICER1 mutations were identified in 

11 patients (de Kock  et  al. 2014), suggesting that these 

rare tumours represent a pathognomonic feature of the 

DICER1 syndrome.

The DICER1 gene is located on the long arm of 

chromosome 14 (14q32.13). This gene encodes a 

cytoplasmic endoribonuclease responsible for processing 

precursor into mature miRNAs, which modulate mRNA 

expression at the post-transcriptional level (Krol  et  al. 

2010). The pathogenesis in DICER1 syndrome normally 

relies on a germline loss-of-function mutation (more 

often represented by a nonsense or frameshift mutation) 

followed by a second somatic ‘hit’, often involving 

the RNase IIIb catalytic domain of DICER1 (Heravi-

Moussavi  et  al. 2012, de Kock  et  al. 2014). Somatic 

mosaic mutations, often affecting the RNase IIIb catalytic 

domain, have also been identified using high-sensitivity 

detection systems (Brenneman et al. 2015, de Kock et al. 

2016). Interestingly, these mutations appeared to be 

accompanied by second somatic mutations represented 

by truncating DICER1 mutations outside the RNase IIIb 

domain or by LOH. Mutations affecting the RNase IIIB 

domain of DICER1 lead to loss of its enzymatic activity and 

loss of miRNAs generated from the 5p strand of miRNA 

precursors (Gurtan  et  al. 2012, Heravi-Moussavi  et  al. 

2012, Anglesio  et  al. 2013). In vitro, DICER1 mutations 

were shown to lead to a reduction of 5p-derived miRNAs 

in ovarian Sertoli-Leydig cell tumours and to promote cell 

proliferation in a granulosa cell line via deregulation of 

the let-7 miRNA family (Wang et al. 2015), miRNAs with 

important roles in cell differentiation and proliferation 

(Bussing  et  al. 2008). Interestingly, in mice lacking 

epithelial Dicer1, increased Fgf9 expression in the lung 

epithelium, possibly mediated by downregulation of  

miR-140, resulted in hyperplastic changes resembling 

those observed in pleuropulmonary blastoma, the primary 

manifestation of DICER1 syndrome (Yin et al. 2015). The 

occurrence of pituitary blastomas in DICER1 syndrome is 

likely related to miRNA deregulation. For instance, let-7 

miRNAs have been shown to be downregulated in PAs 

(Bottoni et al. 2007, Amaral et al. 2009, Qian et al. 2009). 

Among its targets, these miRNAs regulate the expression 

of HMGA2, which is often overexpressed in prolactinomas 

(Finelli et al. 2002). Moreover, mice transgenic for Hmga2 

develop PAs, especially lactotroph and somatotroph 

tumours, supporting a role for this oncogene in PA 

pathogenesis (Fedele et al. 2002). However, the molecular 

mechanisms linking DICER1 with pituitary blastomas still 

remain to be determined.

Other germline mutations linked with pituitary 
tumours

Recently, novel genes have been implicated with the 

occurrence of both sporadic and familial PAs. In one FIPA 

kindred with two cases of acromegaly and two NFPAs, 

exome sequencing revealed a heterozygous missense 

mutation in the CDH23 gene (10q22.1) (Zhang et al. 2017), 

encoding a cadherin member previously implicated in 

the pathogenesis of a subtype of Usher syndrome (Usher 

syndrome type 1D), an autosomal recessive condition of 

hearing impairment, vestibular dysfunction and retinitis 

pigmentosa (Bolz  et  al. 2001). The CDH23 c.4136G>T 

p.R1379L missense variant was found to segregate with 

the PA phenotype and was predicted to alter the formation 

of hydrogen bonds and impair the calcium-binding 

ability and stability of one of the extracellular cadherin 

domains. In 3 of 11 other FIPA families, three CDH23 

missense variants were detected and found to co-segregate 

with the phenotype. All these variants were rare (minor 

allele frequency <0.05%) and predicted to be pathogenic 

by at least one in silico prediction tool employed. Out of 

125 patients with sporadic PAs of different subtypes, 15 

harboured rare CDH23 variants predicted to be potentially 

pathogenic. All potentially pathogenic CDH23 variants 

identified in this study were found to affect extracellular 

cadherin domains, and the frequency of these variants 

in the PA cohort was significantly higher compared to 

260 local healthy control individuals (Zhang et al. 2017). 

No in vitro functional studies have been performed, and 

the mechanisms how CDH23 mutations could lead to 

PA remain unclear. Of note, Usher syndrome patients 

or unaffected heterozygous mutation carriers are not 

known to be at increased risk of developing PAs, and the 

highly polymorphic nature of CDH23 (and other Usher 

syndrome-related genes) can make the interpretation 

of genetic variants in this gene challenging (Le Quesne 

Stabej et al. 2012). Thus, further studies will be needed to 

confirm the role of CDH23 in PA pathogenesis.

The CABLES1 gene (18q11.2) is a cell cycle regulator 

involved in the negative regulation of cell cycle progression 

in corticotroph cells in response to glucocorticoids 

(Roussel-Gervais  et  al. 2016). Cables1 knockdown was 

found to stimulate the growth of a corticotroph cell line 

(AtT-20 cells) and counteracted the inhibitory effects of 

glucocorticoids on cell growth. Interestingly, CABLES1 

expression was lost in about 50% of a series of 31 

corticotroph adenomas, and this was strongly associated 

with loss of p27 expression (Roussel-Gervais et al. 2016). 

CABLES1 was previously shown to maintain p21 protein 
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stability by antagonising its proteasomal degradation 

(Shi et al. 2015), while Cables1-knockout mouse embryonic 

fibroblasts displayed reduced p27 and p16 expression 

(Kirley et al. 2005), supporting a potential broader role for 

CABLES1 as a cell cycle regulator. Recently, four patients 

harbouring potentially pathogenic missense CABLES1 

variants were found in a cohort of 181 sporadic patients 

(2.2%) with Cushing’s disease (Hernandez-Ramirez  et al. 

2017a). These variants affected residues located within or 

in proximity with the predicted cyclin-dependent kinase 

3-binding domains of CABLES1. All four patients carrying 

these variants had corticotroph macroadenomas (one 

patient harboured a silent corticotroph PA) with high 

proliferation index and an aggressive behaviour, with 

two patients requiring more than one operation. None of 

these patients had a family history of Cushing’s disease 

or other PAs. Tamoxifen-inducible chimeric CABLES1 

proteins were produced and, while WT CABLES1 inhibited 

cell growth when expressed in AtT-20 corticotroph cells 

in the presence of tamoxifen, this effect was lost in cells 

expressing the four mutant forms of CABLES1, supporting 

their pathogenic role. Further confirmatory studies will be 

necessary to assess the occurrence of CABLES1 mutations 

in patients with Cushing’s disease or other PAs.

Concluding remarks

While most PAs occur sporadically, about 5% of all 

PAs occur in a familial setting as a result of a genetic 

predisposing mutation. More commonly, familial PAs 

occur without other associated manifestations as FIPA – 

two genes, AIP and very rarely GPR101, are known to be 

responsible for this condition, while the causative gene(s) 

in the majority of FIPA kindreds are yet to be identified. 

PAs can also occur as part of syndromic conditions and 

can sometimes represent the first manifestation of the 

disease. Remarkably, somatotroph PAs and prolactinomas 

represent the most common PA subtypes associated with 

a predisposing genetic mutation. While the molecular 

mechanisms linking these mutations with pituitary 

tumorigenesis have not always been uncovered, several 

lines of evidence confirm the involvement of the cAMP-

dependent PKA pathway, which plays a central role 

in regulating hormone secretion and proliferation in 

cells of the PIT1 lineage. In some cases, more than one 

pathway might be affected, as seems to be the case for 

AIP-related PAs.

Significant advances have been achieved in the field 

of pituitary genetics in recent years, although further 

studies will be needed to better elucidate the molecular 

mechanisms linking genetic mutations and pituitary 

tumours. With the use of pangenomic techniques, novel 

genes involved in PA pathogenesis are expected to be 

discovered, and this will broaden our understanding of 

the mechanisms underlying PA formation.
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