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Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor,
Glide approximates a complete systematic search of the conformational, orientational, and
positional space of the docked ligand. In this search, an initial rough positioning and scoring
phase that dramatically narrows the search space is followed by torsionally flexible energy
optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate
poses. The very best candidates are further refined via a Monte Carlo sampling of pose
conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of
the best docked pose uses a model energy function that combines empirical and force-field-
based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB
complexes starting from conformationally optimized ligand geometries that bear no memory
of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 Å in
nearly half of the cases and are greater than 2 Å in only about one-third of them. Comparisons
to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and
more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also
found to be more accurate than the recently described Surflex method.

1. Introduction
The number of drug-discovery projects that have a

high-resolution crystal structure of the receptor avail-
able has increased in recent years and is expected to
continue to rise because of the human genome project
and high-throughput crystallography efforts. A common
computational strategy in such a case is to dock
molecules from a physical or virtual database into the
receptor and to use a suitable scoring function to
evaluate the binding affinity. A number of docking
programs are employed extensively in the pharmaceuti-
cal and biotechnology industries,1-10 of which the most
widely used appear to be GOLD,1 FlexX,2 and DOCK.3
Over the past several years, considerable success has
been reported for these programs in virtual screening
applications.11-13 However, none as of now can be
viewed as offering a robust and accurate solution to the
docking problem, even in the context of a rigid protein
receptor.

In this paper, we describe a new docking methodology
that has been implemented in the FirstDiscovery soft-
ware package Glide14 (grid-based ligand docking with
energetics). Glide has been designed to perform as close
to an exhaustive search of the positional, orientational,
and conformational space available to the ligand as is

feasible while retaining sufficient computational speed
to screen large libraries. This has been accomplished
via the use of a series of hierarchical filters, as described
below. The current performance characteristics of Glide
are as follows:

(i) Docking times average less than 1 min for data
sets having 0-10 rotatable bonds on an AMD Athelon
MP 1800+ processor running Linux.

(ii) Robustness in binding mode prediction is quali-
tatively superior to what is reported in the current
literature for docking methods in widespread use. For
example, a comparison with results obtained by the
developers of GOLD yields an average rmsd of 1.46 Å
for Glide compared with 2.56 Å for GOLD for the 72
noncovalently bound cocrystallized ligands of the GOLD
test set15 that have 10 or fewer rotatable bonds. The
comparison to FlexX is even more favorable. Compari-
sons for ligands having up to 20 rotatable bonds yield
similar results.

(iii) Binding affinity predictions, compared with ex-
perimental data for cocrystallized complexes, are rea-
sonable (2.3 kcal/mol rmsd), though clearly subject to
improvement.

(iv) Results for library screening, reported in the
following paper,16 are very encouraging. Furthermore,
database enrichment factors obtained using Glide 2.5
are significantly higher than those obtained using
previous versions of Glide.

The paper is organized as follows. Section 2 sum-
marizes the computational methodology used by Glide,
while section 3 describes Glide’s approach to scoring
relative ligand binding affinities. The fourth section

* To whom correspondence should be addressed. Phone: 212-854-
7606. Fax: 212-854-7454. E-mail: rich@chem.columbia.edu.

† Columbia University.
‡ Schrödinger, L.L.C., NY.
| Present address: Serono International, S.A, CH-1211 Geneva 20,

Switzerland.
§ Schrödinger, L.L.C., OR.
# Schrödinger, L.L.C., NY and D. E. Shaw Research and Develop-

ment.

1739J. Med. Chem. 2004, 47, 1739-1749

10.1021/jm0306430 CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/27/2004



then presents rmsd values obtained for redocking co-
crystallized ligands and compares Glide to GOLD,
FlexX, and Surflex, methods we believe to be represen-
tative of the current state of the art in high-throughput
docking. The fifth section summarizes the results and
discusses future directions. Finally, section 6 provides
details of the docking methodology and of the opti-
mization of the scoring function; this section also de-
scribes the procedure we recommend for protein prep-
aration, which in many cases can substantially affect
the quality of the results obtained in docking calcula-
tions.

2. Overview of Docking Methodology
Glide uses a series of hierarchical filters to search for

possible locations of the ligand in the active-site region
of the receptor (Figure 1). The shape and properties of
the receptor are represented on a grid by different sets
of fields that provide progressively more accurate scor-
ing of the ligand pose. (By “pose” we mean a complete
specification of the ligand: position and orientation
relative to the receptor, core conformation, and rotamer-
group conformations.) These fields are generated as
preprocessing steps in the calculation and hence need
to be computed only once for each receptor.

The next step produces a set of initial ligand confor-
mations. These conformations are selected from an
exhaustive enumeration of the minima in the ligand
torsion-angle space and are represented in a compact
combinatorial form. Given these ligand conformations,
initial screens are performed over the entire phase space
available to the ligand to locate promising ligand poses.
This prescreening drastically reduces the region of
phase space over which computationally expensive
energy and gradient evaluations will later be performed
while at the same time avoiding the use of stochastic
methods; such methods can miss key phase-space
regions a certain fraction of the time, thus precluding
development of a truly robust algorithm. To our knowl-
edge, Glide is unique in its reliance on the techniques
of exhaustive systematic search, though approximations
and truncations are required to achieve acceptable
computational speed.

Starting from the poses selected by the initial screen-
ing, the ligand is minimized in the field of the receptor
using a standard molecular mechanics energy function
(in this case, that of the OPLS-AA force field17) in

conjunction with a distance-dependent dielectric model.
Finally, the three to six lowest-energy poses obtained
in this fashion are subjected to a Monte Carlo pro-
cedure that examines nearby torsional minima. This
procedure is needed in some cases to properly orient
peripheral groups and occasionally alters internal tor-
sion angles.

We and others have found that a conventional mo-
lecular mechanics energy function is a reasonable model
for predicting binding modes, even in the absence of
solvent. However, it is not inadequate for ranking
disparate ligands, for example, ligands with different
net charge. Therefore, we have implemented a modified
and expanded version of the ChemScore18 scoring func-
tion, GlideScore, for use in predicting binding affinity
and rank-ordering ligands in database screens. How-
ever, we use a combination of GlideScore, the ligand-
receptor molecular mechanics interaction energy, and
the ligand strain energy to select the correctly docked
pose. We find that this composite scoring function,
which we call Emodel, is much better at selecting the
correct pose than is either the molecular mechanics
energy or GlideScore alone.

A final and very important issue is that the scoring
function, particularly the molecular mechanics compo-
nent, needs to be modified in order to accommodate the
fact that the protein structure used for docking will not
in general be optimized to fit a particular ligand. We
have found that the most severe problem when docking
a library of ligands into a single rigid receptor structure
is the inability of some actives to fit into the protein
cavity because the cavity is too small. Therefore, we
typically scale down the van der Waals radii of selected
(e.g., nonpolar) protein and/or ligand atoms to create
additional space in the binding pocket. Our database
enrichment studies show that this approach is effective
in that context.16 Better enrichment can often be
obtained by tuning the scaling parameters for a given
receptor,16 but the default values are suitable for routine
use.

3. Scoring Function

The starting point for Glide scoring is the empirically
based ChemScore function of Eldridge et al.,18 which can
be written as

The summation in the second term extends over all
ligand-atom/receptor-atom pairs defined by ChemScore
as lipophilic, while that in the third term extends over
all ligand-receptor hydrogen-bonding interactions. In
eq 1, f, g, and h are functions that give a full score (1.00)
for distances or angles that lie within nominal limits
and a partial score (1.00-0.00) for distances or angles
that lie outside those limits but inside larger threshold
values. For example, g(∆r) is 1.00 if the H‚‚‚X hydrogen-
bond distance is within 0.25 Å of a nominal value of 1.85
Å but tails off to zero in a linear fashion if the distance
lies between 2.10 and 2.50 Å. Similarly, h(∆R) is 1.00 if
the Z-H‚‚‚X angle is within 30° of 180° and decreases
to zero between 150° and 120°.

Figure 1. Glide docking “funnel”, showing the Glide docking
hierarchy.

∆Gbind ) C0 + Clipo∑f(rlr) + Chbond∑g(∆r) h(∆R) +

Cmetal∑f(rlm) + CrotbHrotb (1)
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Glide 2.5 employs two forms of GlideScore: (i) Glide-
Score 2.5 SP, used by Standard-Precision Glide; (ii)
GlideScore 2.5 XP, used by Extra-Precision Glide. These
functions use similar terms but are formulated with
different objectives in mind. Specifically, GlideScore 2.5
SP is a “softer”, more forgiving function that is adept
at identifying ligands that have a reasonable propensity
to bind, even in cases in which the Glide pose has
significant imperfections. This version seeks to minimize
false negatives and is appropriate for many database
screening applications. In contrast, GlideScore 2.5 XP
is a harder function that exacts severe penalties for
poses that violate established physical chemistry prin-
ciples such as that charged and strongly polar groups
be adequately exposed to solvent. This version of Glide-
Score is more adept at minimizing false positives and
can be especially useful in lead optimization or other
studies in which only a limited number of compounds
will be considered experimentally and each computa-
tionally identified compound needs to be as high in
quality as possible. In what follows, we discuss the
development and parametrization of Glide 2.5 SP; XP
docking and scoring19 will be described in a subsequent
paper.

GlideScore 2.5 modifies and extends the ChemScore
function as follows:

The lipophilic-lipophilic term is defined as in Chem-
Score. The hydrogen-bonding term also uses the Chem-
Score form but is separated into differently weighted
components that depend on whether the donor and
acceptor are both neutral, one is neutral and the other
is charged, or both are charged. In the optimized scoring
function, the first of these contributions is found to be
the most stabilizing and the last, the charged-charged
term, is the least important. The metal-ligand interac-
tion term (the fifth term in eq 2) uses the same
functional form as is employed in ChemScore but varies
in three principal ways. First, this term considers only
interactions with anionic acceptor atoms (such as either
of the two oxygens of a carboxylate group). This modi-
fication allows Glide to recognize the evident strong
preference for coordination of anionic ligand functional-
ity to metal centers in metalloproteases.20,21 In addition,
Glide 2.5 counts just the single best interaction when
two or more metal ligations are found. We set the
coefficient to -2.0 kcal/mol, a value we believe to be
reasonable, though the parameter refinement would
have preferred an even more strongly negative value.
Third, we assess the net charge on the metal ion in the
unligated apo protein (generally straightforward via
examination of the directly coordinated protein side
chains). If the net charge is positive, the preference for
an anionic ligand is incorporated into the scoring

function. On the other hand, if the ion is net neutral
(as it is, for example, in the case of the zinc metallo-
protein farnesyl protein transferase, which accepts
neutral ligands such as substituted imidazoles22), the
preference is suppressed. The seventh term, from Schrö-
dinger’s active site mapping facility, rewards instances
in which a polar but non-hydrogen-bonding atom (as
classified by ChemScore) is found in a hydrophobic
region.

The second major component is the incorporation of
contributions from the Coulomb and vdW interaction
energies between the ligand and the receptor. To make
the gas-phase Coulomb interaction energy a better pre-
dictor of binding (and a better contributor to a composite
scoring function), we reduce, by ∼50%, the net ionic
charge on formally charged groups such as carboxylates
and guanidiniums; we also reduce the vdW interaction
energies for the atoms directly involved.23 Table 1
illustrates the effect of these changes for some prototype
systems. The wide disparities in the original interaction
energies are greatly reduced, though charge-charge in-
teractions are still favored to some extent. The Coulomb-
vdW energies used in GlideScore 2.5 (but not those used
in Emodel) employ these reductions in net ionic charge
except in the case of anionic ligand-metal interactions,
for which Glide uses the full interaction energy.

The third major component is the introduction of a
solvation model. Like other scoring functions of this
type, previous versions of GlideScore did not properly
take into account the severe restrictions on possible
ligand poses that arise from the requirement that
charged and polar groups of both the ligand and protein
be adequately solvated. Charged groups, in particular,
require very careful assessment of their access to
solvent. In addition, water molecules may be trapped
in hydrophobic pockets by the ligand, also an unfavor-
able situation.

To include solvation effects, Glide 2.5 docks explicit
waters into the binding site for each energetically

∆Gbind ) Clipo-lipo∑f(rlr) +

Chbond-neut-neut∑g(∆r) h(∆R) +

Chbond-neut-charged∑g(∆r) h(∆R) +

Chbond-charged-charged∑g(∆r) h(∆R) +

Cmax-metal-ion∑f(rlm) + CrotbHrotb +
Cpolar-phobVpolar-phob + CcoulEcoul +

CvdWEvdW + solvation terms (2)

Table 1. OPLS-AA Interaction Energies with Full and
Modified Charge Distributions for Ionic Centers and Groups (ε
) 2r)

system
full

charges
reduced
charges

charged-charged
Zn2+‚‚‚MeOPO3

2- -111.1 -16.8
Zn2+‚‚‚(MeO)2PO2

- -70.8 -14.5
Zn2+‚‚‚Me2PO2

- -68.0 -13.4
Zn2+‚‚‚acetate -80.8 -14.4
Mg2+‚‚‚acetate -90.0 -16.2
Mn2+‚‚‚acetate -71.7 -12.6
Zn2+‚‚‚CH3S- -48.7 -11.5
NH4

+‚‚‚acetate -24.8 -7.1
Me-guanidinium‚‚‚acetate -31.6 -11.8
benzamidinium‚‚‚acetate -27.3 -9.2
His+‚‚‚acetate -22.3 -7.4
Me-guanidinium‚‚‚(MeO)2PO2

- -27.7 -12.0
charged-polar

Zn2+‚‚‚H2O -23.8 -10.3
NH4

+‚‚‚H2O -7.2 -5.6
H2O‚‚‚acetate -8.6 -4.9
Me-guanidinium‚‚‚H2O -8.1 -6.4
benzamidinium‚‚‚H2O -6.9 -4.8
His+‚‚‚H2O -7.2 -6.5
H2O‚‚‚Me2PO2

- -7.2 -4.4
H2O‚‚‚CH3S- -4.0 -2.4

polar-polar
H2O‚‚‚H2O -3.7 -3.7
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competitive ligand pose and employs empirical scoring
terms that measure the exposure of various groups to
the explicit waters. This “water-scoring” technology has
been made efficient by the use of grid-based algorithms.
Using explicit waters, as opposed to a continuum
solvation model, has significant advantages. In the
highly constrained environment of a protein active site
containing a bound ligand, the location and environment
of individual water molecules become important. Cur-
rent continuum solvation models have difficulty captur-
ing these details, but our explicit-water approach has
allowed us to develop consistently reliable descriptors
for rejecting a high fraction of the false positives that
appear in any empirical docking calculation. Our analy-
sis also produced trial values for the coefficients of the
various penalty terms. For the most part, these coef-
ficients were used without modification in GlideScore
2.5 XP.19 For Glide 2.5 SP, however, the need to make
the program relatively fast limits the amount of sam-
pling that can be done during docking and hence limits
the accuracy of the docked poses. As a result, optimiza-
tion of the solvation penalties led to smaller coefficients
that do not too heavily penalize misdocked actives. Even
these smaller values, however, provide substantial
enhancement in enrichment factors for many database
screens, thrombin being the most prominent example
(in this case primarily by rejecting false positives that
bury charged groups in a hydrophobic region of the
thrombin active site).

4. Docking Accuracy

This section characterizes Glide’s performance in
reproducing the geometries of cocrystallized ligands
taken from an extensive set of 282 publically available
PDB24 complexes. This set includes most of the members
of the well-known GOLD and FlexX test sets, ap-
proximately 50 PDB complexes used in evaluations of
Glide by prospective customers and approximately 50
more complexes whose experimental binding affinities
have been used to develop one or more of the empirical
scoring functions described in the literature (e.g., Chem-
Score18). We used the latter complexes, and others
included in the GOLD and FlexX test sets, to calibrate
the GlideScore function. Our coverage of the GOLD and
FlexX sets is not quite complete because Glide does not
deal with covalently attached ligands (seven cases:
1aec, 1ase, 1blh, 1tpp, 1lmp, 3gch, and 4est) and cannot
handle ligands having more than 35 rotatable bonds
(one case: 2er6). In addition, we excluded one complex
(6rsa) because it contains an atomic species (vanadium)
for which the OPLS-AA force field used by Glide has
no parameters.

All results were obtained with release 2.5021 of the
FirstDiscovery suite14 on an AMD Athelon MP 1800+
processor running Linux. All structures were prepared
using the protein-preparation procedure described in
section 6 or an earlier version of that procedure. For
these calculations, the vdW radii of nonpolar protein
atoms were not scaled, but the radii of nonpolar ligand
atoms (taken to be atoms having a partial charge of less
than 0.15 e- in magnitude) were scaled down by a factor
of 0.8; the same default scaling is also employed in the
database-enrichment studies presented in the accom-
panying paper.16

To examine the dependence of the results on the
starting geometries, we docked five sets of ligand
geometries. One set consists of the (restraint-optimized)
native ligands obtained from the protein-preparation
procedure. These ligands typically have an rmsd for non-
hydrogen atoms of 0.3 Å or less from the original PDB
coordinates. The second set uses MMFF94s-optimized25

versions of the native ligands. Except for 1cps, 1d8f,
1hbv, 1pro, and 2cht,26 however, the primary set used
for assessing docking accuracy and for comparison to
GOLD and FlexX consists of MMFF94s-optimized ge-
ometries obtained via a short MacroModel conforma-
tional search, starting from MMFF94s-optimized ver-
sions of the (restraint-optimized) native-ligand geom-
etries. In each case, the optimizations used a 4r distance-
dependent dielectric model. The fourth set consists of
ligand geometries obtained using Corina,27 while the
fifth set contains geometries obtained by optimizing the
Corina structures with MMFF94s.

We emphasize that the initial geometry of the ligand
never explicitly enters as a docked conformation. How-
ever, the conformations sampled by Glide’s conformation
generator depend on the input bond lengths and bond
angles because these variables are not optimized. Fur-
thermore, the fact that the potential-energy landscape
has multiple minima and that finite sampling is done
by Glide means that different solutions can be obtained
from different starting points, even when they are very
close to one another. There is also a dependence on input
ring conformation, though Glide by default generates
and docks alternative conformations of saturated or
partly saturated five- and six-membered rings when it
deems them to be energetically accessible. We generated
the conformationally optimized ligand geometries cited
above to make sure that no “memory” of the cocrystal-
lized pose influenced the docking results.

All results are for flexible dockings carried out using
Glide’s internal conformation generator. With the ex-
ception of terminal CH3, NH3

+, and NH2 groups, all
rotatable bonds are treated as optimization variables.
In addition, as noted above, alternative ring conforma-
tions are considered for saturated or partly saturated
five- and six-membered rings, and inversion at nitrogen
is performed for asymmetric trigonal nitrogen centers
in compounds such as sulfonamides. The reported rms
deviations in coordinate positions are based on heavy
(non-hydrogen) atoms, as is also done by GOLD1 and
FlexX,28 and are computed relative to the coordinates
of the restraint-optimized native-ligand structures ob-
tained from the protein-preparation procedure.

Table 2 summarizes the rms errors obtained as a
function of the flexibility of the ligand. As expected, rms
errors and CPU times increase with ligand flexibility.

Table 2. Average rms Deviations for Flexible Docking on 282
PDB Complexesa

no. of
rotatable bonds

no. of
cases

av rms
top-ranked pose (Å)

av CPU
time (min)

0-3 51 1.01 0.2
4-6 92 1.64 0.6
7-10 48 1.79 1.7
0-8 164 1.48 0.5
0-10 191 1.51 0.8
0-20 263 1.89 2.4

a Times are AMD Athelon MP 1800+ CPU minutes.
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Both, however, are quite modest for sets of ligands
having 0-8 or 0-10 rotatable bonds such as are often
employed in database screens carried out to find new
leads. In general, the docking performance of Glide is
very reasonable over a wide range of rotatable bonds
and chemical functionality. Detailed results are given
in Table S1 (Supporting Information); these results
show that Glide reproduces the experimentally mea-
sured binding affinities for 128 cocrystallized ligands
with an rms deviation of 2.3 kcal/mol and produces rms
deviations from the cocrystallized ligand position that
are less than 1 Å for nearly half of the 282 cases and
are greater than 2 Å in only about one-third of the cases.

Comparison to GOLD and FlexX. Detailed docking
accuracy results for GOLD and FlexX are posted on the
GOLD15 and FlexX29 web sites. These data have enabled
us to make the head-to-head comparisons shown in the
tables below.

Tables 3 and 4 compare rms deviations (Å) given by
Glide and GOLD and by Glide and FlexX for common
sets of noncovalently bound ligands having up to 10 and
up to 20 rotatable bonds as well as for all ligands Glide
can handle (i.e., up to 35 rotatable bonds). In some cases,
the PDB structure available when the GOLD or FlexX
work was done is no longer accessible but a later
structure is available. In such cases, we have used the
later submission. For example, Glide uses 4aah whereas
GOLD and FlexX use 3aah. The Glide calculations use
the conformationally optimized versions of the native
ligands. The comparison for ligands having 10 or fewer
rotatable bonds seems to us the most relevant to
database screening applications, which usually seek to
find leads that are relatively inflexible. On average,
Glide gives rms deviations that are less than 60% of
those given by GOLD and less than half those given by
FlexX. The comparison for ligands having up to 20
rotatable bonds is also favorable.

Table 5 presents the detailed results on which the
summaries in Tables 3 and 4 are based. This listing
shows that Glide gives a better result nearly twice as
often as GOLD and more than 4 times as often as FlexX.
While far from perfect, we believe that this performance
represents a qualitative improvement in docking ac-
curacy. We should note, however, that these compari-
sons may not be completely fair to GOLD and FlexX.
The ligands were prepared in a comparable manner for

all three methods, i.e., by subjecting the native ligand
structures to a force-field-based optimization procedure
before docking,1,28 though Glide also used conforma-
tional search to ensure that the starting ligand struc-
tures had no memory of the cocrystallized pose. A
difference arises in the preparation of the protein sites,
however, in that both the GOLD and FlexX calculations
retained the original PDB coordinates for non-hydrogen
atoms. It is possible that these methods might give more
accurate dockings if they used our protein and ligand
preparations, in which steric clashes have been an-
nealed away. However, while the GOLD study cites four
cases of noncovalently bound ligands in which the
crystallographic ligand geometry appears to be incorrect
(1apt, 1tdb, 1hef, and 1ive),1 it does not ascribe any of
the problematic dockings to steric clashes between the
ligand and the protein; for FlexX, only one such instance
(1srj) is cited.28

One reason for suspecting that GOLD and FlexX may
be less sensitive to the details of the protein preparation
is that neither uses the hard 12-6 Lennard-Jones vdW
potential employed by Glide. GOLD does employ an 8-4
potential,1 but this potential is much more forgiving of
nonbonded incursions. For example, it penalizes a
contact at 70% of the sum of the vdW radii by only 0.9-
1.8 kcal/mol, whereas Glide penalizes such a contact by
5.5-11 kcal/mol (assuming a well depth of -0.1 to -0.2
kcal/mol). FlexX does not use a molecular mechanics
expression for nonbonded repulsion. Indeed, it may use
no repulsive function at all, though it does reject
dockings for which the “overlap volume” exceeds 2.5 Å3

for any particular pair of ligand and protein atoms or
1.0 Å3 averaged over all such interactions.28 In view of
these differences, it is not clear that the results for
GOLD and FlexX would be materially improved by
using our preparations. However, only explicit compari-
sons that use identical protein preparations can resolve
this question.

Comparison to Surflex. Docking accuracy is also
better than that recently reported by Jain for Surflex.30

In particular, for a common set of 78 cocrystallized PDB
complexes (of 81 considered by Jain), Glide gives an
average rmsd from the cocrystallized ligand pose of 1.35
Å whereas Surflex gives an average rmsd of 1.82 Å.
Moreover, Glide places 47 of the 78 ligands wthin 1 Å
rmsd as against 38 for Surflex and makes errors of more
than 2 Å in 14 cases as against 19 for Surflex.

Cross-Docking for Thymidine Kinase. Table 6
shows rms deviations to the cocrystallized pose for
docking of thymidine kinase actives to the 1kim site by
GOLD, FlexX, and DOCK,12 by Surflex,30 and by Glide.
All methods have trouble docking the acv, gcv, and pcv
ligands. This is expected because acv, gcv, and pcv are
purine-based ligands that do not fit properly into the
pyrimidine-based 1kim site. The reason is that the Gln
125 side chain undergoes a 180° rotation on going from
a pyrimidine site to a purine site and the geometry that
is correct for the parent site has an acceptor-acceptor
and/or a donor-donor clash in the alternative site. For
the seven pyrimidine-based ligands, Glide does very well
except for hmtt, which does not fit quite properly into
the 1kim site when the nonpolar ligand vdW radii are
scaled by 0.8 (the default). Surflex and GOLD also give

Table 3. Comparison of rms Deviations (Å) for Flexible
Docking by Glide and GOLD

e10 rotatable bonds
(72 cases)

e20 rotatable bonds
(86 cases)

all ligands
(93 cases)

method
av

rmsd
max
rmsd

av
rmsd

max
rmsd

av
rmsd

max
rms

Glide 1.46 8.5 1.65 8.5 1.85 13.7
GOLD 2.56 14.0 2.92 14.0 3.06 14.0

Table 4. Comparison of rms Deviations (Å) for Flexible
Docking by Glide and FlexX

e10 rotable bonds
(133 cases)

e20 rotatable bonds
(175 cases)

all ligands
(189 cases)

method
av

rmsd
max
rmsd

av
rmsd

max
rmsd

av
rmsd

max
rms

Glide 1.38 8.5 1.70 9.2 1.95 13.7
FlexX 2.99 12.6 3.48 13.4 3.72 15.5
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quite reasonable results in this case, but FlexX and
DOCK fare noticeably more poorly.

Influence of Input Ligand Geometry on Docking
Accuracy. Table 7 examines the effect on the final

docked structures of using different starting ligand
geometries. The native ligands perform best, followed
by the conformationally optimized ligands. The
MMFF94s-optimized geometries used for the native
ligands and the Corina structures do slightly less well
but are docked more accurately than are the raw Corina
structures. The last comparison shows that it helps to
preminimize Corina-derived ligands with a force field
such as MMFF94s.

MMFF94s preminimization can be performed fairly
easily on a large database with the premin script
provided with Glide. These minimizations employ a 4r
distance-dependent dielectric model and use MacroMod-

Table 5. The rms Deviations (Å) for Glide, GOLD, and FlexX for Members of the GOLD and FlexX Test Sets

complex Glide GOLD FlexX complex Glide GOLD FlexX complex Glide GOLD FlexX complex Glide GOLD FlexX

121p 1.57 n/a 1.29 1aaq 1.30 12.85 1.75 1phf 1.14 n/a 4.23 1phg 4.32 1.35 4.74
1abe 0.17 0.86 1.16 1abf 0.20 n/a 1.27 1poc 5.09 1.27 9.25 1ppc 7.92 n/a 3.05
1acj 0.28 4.00 0.49 1acm 0.29 0.81 1.39 1pph 4.31 n/a 4.91 1ppi 6.24 n/a 6.91
1aco 1.02 0.86 0.96 1aha 0.11 0.51 0.56 1ppk 0.45 n/a 1.54 1ppl 2.82 n/a 5.62
1ake 3.35 n/a 1.18 1apt 0.58 1.62 1.89 1ppm 0.62 n/a 8.27 1pso 13.10 n/a 1.61
1atl 0.94 n/a 2.06 1avd 0.52 n/a 1.22 1rbp 0.96 n/a 1.13 1rds 3.75 4.78 4.89
1azm 1.87 2.52 2.37 1baf 0.76 6.12 8.27 1rne 10.08 2.00 12.24 1rnt 0.72 n/a 1.90
1bbp 4.96 n/a 3.75 1bma 9.31 n/a 13.41 1rob 1.85 3.75 7.70 1slt 0.51 0.78 1.63
1byb 10.49 n/a 1.62 1cbs 1.96 n/a 1.68 1snc 1.91 n/a 7.48 1srj 0.58 0.42 2.36
1cbx 0.36 0.54 1.35 1cde 1.29 n/a 7.45 1stp 0.59 0.69 0.65 1tdb 1.46 10.48 10.10
1cdg 3.98 n/a 4.87 1cil 3.82 n/a 3.85 1thy 2.31 n/a 2.67 1tka 2.28 1.88 1.17
1com 3.64 n/a 1.62 1coy 0.28 0.86 1.06 1tlp 1.86 n/a 2.85 1tmn 2.80 1.68 0.86
1cps 3.00 0.84 0.99 1ctr 3.56 n/a 2.82 1tng 0.19 n/a 1.93 1tnh 0.33 n/a 0.56
1dbb 0.41 1.17 0.81 1dbj 0.20 0.72 1.22 1tni 2.18 n/a 2.71 1tnj 0.35 n/a 0.89
1dbk 0.47 n/a 0.76 1dbm 1.97 n/a 2.08 1tnk 0.87 n/a 1.41 1tnl 0.23 n/a 0.71
1did 3.82 3.72 4.22 1die 0.79 1.03 4.71 1tph 0.20 n/a 1.50 1tpp 1.12 0.43 1.11
1dr1 1.47 1.41 5.64 1dwb 0.25 n/a 0.54 1trk 1.64 n/a 1.57 1tyl 1.06 n/a 2.34
1dwc 0.87 n/a 1.19 1dwd 1.32 1.71 1.66 1ukz 0.37 n/a 0.94 1ulb 0.28 0.32 3.37
1eap 2.32 3.00 3.72 1eed 5.90 12.43 9.78 1wap 0.12 n/a 0.57 1xid 4.30 0.92 2.01
1ela 1.60 n/a 9.71 1elb 4.40 n/a 7.17 1xie 3.86 0.69 1.94 2ack 0.97 4.99 2.21
1elc 8.22 n/a 4.74 1eld 0.67 n/a 6.98 2ada 0.53 0.40 0.67 2ak3 0.71 5.08 0.91
1ele 2.52 n/a 10.73 1epb 1.78 2.08 2.77 2cgr 0.38 0.99 3.53 2cht 0.42 0.59 4.58
1eta 2.92 11.21 8.46 1etr 1.48 4.23 7.24 2cmd 0.65 n/a 3.75 2cpp 0.17 n/a 2.94
1fen 0.66 n/a 1.39 1fkg 1.25 1.81 7.59 2ctc 1.61 0.32 1.97 2dbl 0.69 1.31 1.49
1fki 1.92 0.71 0.59 1frp 0.27 n/a 1.89 2gbp 0.15 n/a 0.92 2lgs 7.55 n/a 4.63
1ghb 1.89 1.45 1.33 1glp 0.34 n/a 0.47 2mcp 1.30 4.37 2.07 2phh 0.38 0.72 0.43
1glq 0.29 1.35 6.43 1hdc 0.58 10.49 11.74 2pk4 0.86 1.34 1.66 2plv 1.88 13.92 7.85
1hdy 1.74 0.94 n/a 1hef 5.30 1.87 15.32 2r04 0.80 n/a 12.55 2r07 0.48 8.23 11.63
1hfc 2.24 n/a 2.51 1hgg 2.10 n/a 10.05 2sim 0.92 0.92 1.99 2tmn 0.58 n/a 5.16
1hgh 0.28 n/a 4.14 1hgi 0.28 n/a 0.97 2xis 0.85 n/a 1.54 2yhx 3.84 1.19 2.25
1hgj 0.18 n/a 3.98 1hri 1.59 14.01 10.23 2ypi 0.31 n/a 1.22 3cla 8.51 5.45 6.42
1hsl 1.31 0.97 0.59 1hti 4.40 n/a 1.54 3cpa 2.40 1.58 2.53 3hvt 0.77 1.12 10.26
1hvr 1.50 n/a 3.35 1hyt 0.28 1.10 1.62 3mth 5.48 10.12 1.59 3ptb 0.27 0.96 0.55
1icn 2.34 8.63 10.52 1ida 11.88 12.12 11.95 3tpi 0.49 0.80 1.07 4aah 0.30 0.42 5.93
1igj 1.30 9.42 7.17 1imb 0.89 n/a 4.71 4cts 0.19 1.57 1.53 4dfr 1.12 1.44 1.40
1ivb 4.97 n/a 1.29 1ivc 1.94 n/a 2.21 4fab 4.50 5.69 4.95 4fbp 0.56 n/a 1.78
1ivd 0.72 n/a 5.42 1ive 2.61 2.16 5.34 4fxn 0.44 n/a 1.04 4hmg 0.78 n/a 5.74
1ivf 0.53 n/a 6.97 1lah 0.13 n/a 0.28 4phv 0.38 1.11 1.12 4tim 1.32 n/a 4.09
1lcp 1.98 n/a 1.65 1ldm 0.30 1.00 0.74 4tln 2.24 n/a 3.68 4tmn 1.87 n/a 8.35
1lic 4.87 10.78 5.07 1lmo 0.93 n/a 4.49 4ts1 0.85 n/a 1.41 5abp 0.21 n/a 1.17
1lna 0.95 n/a 5.40 1lst 0.14 0.87 0.71 5cpp 0.59 n/a 1.49 5cts 0.28 n/a 11.61
1mbi 1.68 n/a 0.47 1mcr 4.33 6.23 10.04 5p2p 1.82 1.55 1.00 5tim 0.58 n/a 1.99
1mdr 0.52 0.36 0.88 1mld 0.32 n/a 1.45 5tmn 2.43 n/a 4.38 6abp 0.40 1.08 1.12
1mmq 0.92 n/a 0.52 1mrg 0.30 n/a 0.81 6cpa 4.58 n/a 6.61 6rnt 2.22 1.20 4.79
1mrk 1.20 1.01 3.55 1mup 4.37 3.96 3.82 6tim 1.73 n/a 1.60 6tmn 2.66 n/a 5.10
1nco 6.99 n/a 5.85 1nis 0.97 4.29 1.41 7cpa 4.14 n/a 9.11 7tim 0.14 0.78 1.49
1nsc 1.21 n/a 2.12 1pbd 0.21 0.57 0.33 8atc 0.37 n/a 0.62 8gch 0.30 0.86 8.91
1pha 0.69 1.24 n/a 1phd 1.22 0.85 0.65 9hvp 2.68 n/a 15.54

Table 6. Accuracy in Cross-Docking of Thymidine-Kinase
Inhibitors to the 1kim Sitea

rmsd (Å) of best-scoring poseb

ligand Glide DOCK FlexX GOLD Surflex

dT 0.45 0.82 0.78 0.72 0.74
ahiu 0.54 1.16 0.88 0.63 0.87
mct 0.79 7.56 1.11 1.19 0.87
dhbt 0.68 2.02 3.65 0.93 0.96
idu 0.35 9.33 1.03 0.77 1.05
hmtt 2.83 9.62 13.30 2.33 1.78
hpt 1.58 1.02 4.18 0.49 1.90

acv 4.22 3.08 2.71 2.74 3.51
gcv 3.19 3.01 6.07 3.11 3.54
pcv 3.53 4.10 5.96 3.01 3.84
a The last three ligands are purines that are not expected to fit

properly into a pyrimidine-based site such as 1kim (see text).
b Data for DOCK, FlexX, and GOLD are taken from Rognan and
co-workers;12 data for Surflex are taken from Jain.30

Table 7. Effect of Input Ligand Geometry on Docking
Accuracy for Glide Using the GOLD Test Set

ligand set av rms (Å)

native ligands 1.49
MMFF94s-optimized native ligands 2.00
MMFF94s-conformational search 1.85
Corina 2.35
MMFF94s-optimized Corina 2.02
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el’s efficient truncated Newton minimizer. Processing
times are a few tenths of a second per ligand on an AMD
Athelon MP 1800+ processor running Linux. The pro-
cedure keeps track of instances in which the structure
recognition (e.g., atom typing) or minimization fails and
automatically submits a series of MacroModel jobs that
ultimately collect the good (minimized) and bad (un-
treatable) structures. The user can examine and fix the
bad structures or can discard them.

5. Discussion and Conclusions

This paper has described the new computational
algorithms for docking and scoring we have developed
for Glide and has evaluated the performance of these
algorithms in predicting binding modes over a wide
range of cocrystallized structures. While significant
errors in binding mode prediction are found in some test
cases, robustness has clearly been qualitatively im-
proved compared to widely used alternative packages
such as GOLD and FlexX. Docking accuracy is also
better than that reported for the recently introduced
Surflex method.30

Further improvements can be made to Glide with
regard to both accuracy and computational efficiency.
The algorithms for initial screening and energy mini-
mization are not yet fully optimized, and a 2- to 3-fold
reduction in computational effort per ligand may be
attainable. The ability to impose constraints on the
ligand position (e.g., by requiring that a suitable ligand
atom be hydrogen-bonded to a particular protein residue
or be coordinated to a metal atom in the protein) is
included in Glide 2.5. This approach allows the user to
guarantee satisfaction of targeted protein interactions
and speeds up the calculations by reducing the size of
the phase space that needs to be examined. We expect
to continue to improve the scoring functions used in all
three phases of the calculation (initial screening, energy
minimization, binding affinity prediction). Most impor-
tantly, we have developed new sampling and scoring
algorithms for Extra-Precision Glide that are proving
to be highly efficient at finding correctly docked poses
and at rejecting false positives in database screens;19

these efforts will be described in a subsequent paper.

6. Methods

Conformation Generation. As a first step in its
docking protocol, Glide carries out an exhaustive con-
formational search, augmented by a heuristic screen
that rapidly eliminates conformations deemed not to be
suitable for binding to a receptor, such as conformations
that have long-range internal hydrogen bonds. This
procedure eliminates high-energy conformers by evalu-
ating the torsional energy of the various minima using
a truncated version of the OPLS-AA molecular mechan-
ics potential function and by imposing a cutoff of the
allowed value of the total conformational energy com-
pared to the lowest-energy state. The parameters of the
heuristic screening function were optimized via exten-
sive testing on cocrystallized PDB complexes, as de-
scribed below.

Each ligand is divided into a “core” region and some
number of “rotamer groups” (Figure 2), each of which
is attached to the core by a rotatable bond but does not
itself contain additional rotatable bonds. That is, the

core is what remains when each terminus of the ligand
is severed at the “last” rotatable bond, as is indicated
in the figure (the directly attached atom of each rotomer
group is also considered to be part of the core). Carbon
and nitrogen end groups terminated with hydrogen
(-CH3, -NH2, -NH3

+) are not considered rotatable
because their conformational variation is of little inter-
est. Each core region is represented by a set of core
conformations, the number of which depends on the
numbers of rotatable bonds, conformationally labile five-
and six-membered rings, and asymmetric pyramidal
trigonal nitrogen centers in the core. As Table 8 shows,
this set typically contains fewer than 500 core confor-
mations, even for quite large and flexible ligands, and
far fewer for more rigid ligands. Every rotamer state
for each rotamer group is enumerated, and the core plus
all possible rotamer-group conformations is docked as
a single object in Glide. Because each core typically has
many rotamer-group combinations, the effective number
of conformations being docked can easily number in the
thousands or tens of thousands for molecules having
several rotatable bonds.

A key issue is how closely one of the conformations
matches the correct cocrystallized conformation. An
exact match is not needed because the ligand subse-
quently undergoes flexible torsional optimization. We
have found, however, that for best results one of the
starting conformations needs to be within about 1.5 Å
rmsd of the correct cocrystallized conformation. We have
tested our algorithm by applying it to 796 cocrystallized
ligands taken from the PDB and by locating the core

Figure 2. Definition of core and rotamer groups. The four
central torsions are part of the core. Note that methyl groups
are not considered rotatable.

Table 8. Maximum Number of Conformers Allowed vs
Number of Core Degrees of Freedom

no. of core
degrees of
freedoma

max no. of
conformers allowed

actual no. of core conformers
kept for individual ligands

3 120 4, 13, 17, 18
4 120 4, 6, 18, 19, 24, 34
5 120 9, 106, 106
6 150 24, 28, 150
7 214 214, 214, ...
8 278 278, 278, ...
9 342 342, 342, ...

10 406 406, 406, ...
12 534 534, 534, ...
14 662 662, 662, ...

a Number of rotatable bonds in the core plus number of
conformationally labile five- and six-membered rings and number
of asymmetric trigonal nitrogen centers in compounds such as
sulfonamides.
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plus rotamer-group conformation that best matches the
cocrystallized pose. The results, summarized in Table
9, show that only 7% of ligands having 1-10 rotat-
able bonds have rms deviations between the best core/
rotamer-group conformation and the cocrystallized
pose of 1.5 Å or greater. For more flexible ligands, the
errors are understandably larger. Nevertheless, 77% of
ligands having 11-15 rotatable bonds and 48% of
ligands having 16-20 rotatable bonds have rms devia-
tions of less than 1.5 Å. Furthermore, 89% of ligands
with 11-20 rotatable bonds fall within 2 Å.

Initial Screening of Ligand Poses. For each core
conformation (or for rigid docking, each ligand), Glide
performs an exhaustive search of possible positions and
orientations over the active site of the protein. The
search begins with the selection of “site points” on an
equally spaced 2 Å grid that permeates the active-site
region (step 1 in Figure 1). To make this selection,
precomputed distances from the site point to the recep-
tor surface, evaluated at a series of prespecified direc-
tions and binned in 1 Å ranges, are compared to binned
distances from the ligand center to the ligand surface.
For flexible docking, the ligand center is defined as the
midpoint of the two most widely separated atoms in the
core region (which includes the directly attached atom
of each rotamer group); for rigid docking, the two most
widely separated atoms in the entire ligand are used.
The line through these atoms is called the “ligand
diameter.” Glide positions the ligand center at the site
point if there is a good enough match of the histograms
of binned distances but skips over the site point if there
is not. The ligand center can be placed at any site point
on or within a box (by default, 12 Å on a side) that
contains the candidate site points. The generous size of
this “ligand center” box ensures that the placement of
the docked ligand is not overly constrained.

The second stage examines the placement of atoms
that lie within a specified distance of the ligand-diam-
eter axis for a prespecified selection of possible orienta-
tions of the ligand diameter (step 2a). If there are too
many steric clashes with the receptor, the orientation
is skipped. Next (step 2b), the ligand is rotated about
the ligand diameter and the subset consisting of the
atoms capable of making hydrogen bonds or ligand-
metal interactions with the receptor is scored (“subset
test”). If this score is good enough, all interactions with
the receptor are scored (step 2c).

The scoring in these three tests is carried out using
a discretized version of ChemScore18 in which precom-
puted scores for the ChemScore atom types are assigned
to 1 Å3 boxes. Much as for ChemScore itself, this algo-
rithm recognizes favorable hydrophobic, hydrogen-bond-
ing, and metal-ligation interactions and also penalizes
steric clashes. This stage is called “greedy scoring” be-
cause the actual score for each atom depends not only

on its position relative to the receptor but also on the
best possible score it could get by moving (1 Å in X, Y,
and/or Z. This is done to mute the sting of the large 2 Å
jumps in the site-point/ligand-center positions. The final
step in stage 2 is to rescore the top greedy-scoring poses
(typically ∼5000 in number) via a “refinement” proce-
dure (step 2d) in which the ligand as a whole is allowed
to move rigidly by (1 Å in the Cartesian directions.

Energy Minimization Using a Molecular Me-
chanics Scoring Function. Only a small number of
the best refined poses (typically 400) are minimized on
precomputed OPLS-AA van der Waals and electrostatic
grids for the receptor. The energy and gradient calcula-
tions are performed using standard three-dimensional
interpolation methods. The Coulomb and van der Waals
fields of the protein are stored at the vertexes of a grid,
and the interaction of each ligand atom with these fields
is evaluated using trilinear interpolation formulas for
a cube. Methods of this type are in common use and
have been described extensively in the literature, so we
do not discuss the mathematical details here.

To ensure sufficient accuracy in regions in which the
ligand and protein come into contact, Glide uses a
multigrid strategy. The Coulomb/van der Waals grid is
initially built using large boxes, typically 3.2 Å on a side,
and is then refined hierarchically into boxes of 1.6, 0.8,
or 0.4 Å depending on the distance of the box to the van
der Waals surface of the protein; the smaller this
distance, the higher the resolution of the box used. The
resulting mesh tiles the docking volume with cubes of
various size. Once the identity of the cube in which a
ligand atom is contained is identified, the appropriately
scaled interpolation formula can be used. While some
extra bookkeeping is required, the additional computa-
tional cost as compared to a uniform mesh is negligible,
whereas the reduction in memory can be more than 2
orders of magnitude.

The energy minimization typically begins on a set of
Coulomb and vdW grids that have been “smoothed” to
reduce the large energy and gradient terms that result
from too-close interatomic contacts; it finishes on the
full-scale OPLS-AA nonbonded energy surface (“anneal-
ing”). This minimization consists only of rigid-body
translations and rotations when external conformations
are docked rigidly. For flexible docking, however, the
minimization also includes torsional motion about the
core and end-group rotatable bonds. Finally, the three
to six lowest-energy poses obtained in this fashion are
subjected to the Monte Carlo procedure cited in sec-
tion 2.

The minimized poses are then rescored using the
scoring function described in section 3. As previously
noted, the choice of the best-docked structure is made
using a model energy score (“Emodel”) that combines
the energy-grid score, the binding affinity predicted by

Table 9. The rms Deviations between Best-Generated and Cocrystallized Ligands, Expressed as a Percentage of Ligands Falling into
Specified rms Distance Ranges

percent of ligands having an rms deviation in the listed range, Å

no. of rotatable bonds no. of ligands 0.00-0.49 0.50-0.99 1.00-1.49 1.50-1.99 2.00-2.99 >3.00

1-10 495 33 37 23 15 2 0
11-15 159 3 29 45 17 6 0
16-20 87 0 10 38 31 20 1
>20 55 0 9 25 29 27 9
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GlideScore, and (for flexible docking) the internal strain
energy for the model potential used to direct the
conformational-search algorithm.

Optimization of the Scoring Function. The pa-
rameter optimization for GlideScore 2.5 used a simulated-
annealing algorithm that has proven to be very efficient
at producing large changes to the input values for the
parameters when large changes are warranted. In
addition to the terms described in section 3, the fitting
process also considered, but ultimately rejected, a
number of other prospective terms, including nearly all
of those employed in ScreenScore or in its FlexX or PLP
predecessors.13

The largest component of the objective function in the
optimization process was the ranking of active com-
pounds in a large and diverse suite of database screen-
ing tests, as measured by enrichment factors computed
as described in the following paper.16 The second
component was the fit of the predicted binding affinities
for a set of 125 PDB cocrystallized complexes to experi-
mentally measured values; the rmsd achieved in this
case is 2.2 kcal/mol, a reasonable result but one that
can clearly be improved.

In the parametrization of GlideScore 1.8 and 2.0, we
used decoy ligands assembled from cocrystallized PDB
complexes and from a small portion of the Comprehen-
sive Medicinal Chemsitry database31 in the database
screens. However, it became apparent through more
extensive testing that these ligands, which average only
290 in molecular weight, are too small to make enough
favorable interactions with the protein site to compete
fairly with the known actives for our screens, which
average about 410 in molecular weight when the very
large HIV protease ligands are excluded. This disparity
in molecular weight distorted both the apparent enrich-
ment factors in the database screens and the param-
eters we obtained from the optimization process.

A second set of database ligands used in the present
work was provided recently by a pharmaceutical col-
league. This set consists of known drugs and other
compounds identified in drug-discovery projects. Be-
cause our colleage intentionally chose the compounds
to be “relatively small” (their average molecular weight
is 337), they, too, are smaller than typical drugs and
investigational compounds, which judging from Oprea’s
survey of the MDDR database average about 410 or 420
in molecular weight.32 A third set of average molecular
weight 350 (the “pc-350” set) consists of 1000 represen-
tative compounds drawn from a ∼1 million compound
database of purchasable compounds recently assembled
by Schrödinger. Finally, two sets of 1000 “druglike”
compounds of average molecular weight 360 and 400,
the “dl-360” and “dl-400” sets, were also drawn from the
million-compound database. For the pc and dl datasets,
neutral database compounds were first modified by
FirstDiscovery’s ionizer utility to protonate or deproto-
nate ionizable functional groups (subject to limits of (2
on the net charge and to a total of no more than four
charged groups) to yield ionic states likely to be present
in measurable concentration between pH 5 and 9. (This
is to allow for shifts in pKa induced by the protein site.)
The dl sets were selected to mimic the property distri-
bution of the drug/lead set by using a precursor to the
FirstDiscovery ligparse facility. The FirstDiscovery

premin utility was then employed to minimize the pc
and dl ligands with MMFF94s,25 using a “4r” distance-
dependent dielectric. All compounds considered had 100
or fewer atoms and 20 or fewer rotatable bonds.

The properties of these ligand databases are shown
in Table 10. We believe that the dl-400 set is represen-
tative of ligands one would expect to find in the
compound collection of a pharmaceutical or biotechnol-
ogy company.

We weighted the dl-400 set the most heavily in the
parametrization of GlideScore 2.5, but to broaden the
parametrization, we used the others as well and also
included screens run with nonstandard values for the
protein and ligand scaling factors. The large number of
screens employed (94 in all, embracing 16 receptor sites)
should guard against overfitting and help to make
database screening with Glide as tolerant as possible
to variations in the ligand sets and the vdW scale
factors.

The lipophilic-contact term in Glide 2.5 SP scoring (eq
2) contributes -4.85 kcal/mol to an average score of
-9.33 kcal/mol for active compounds included in the
database screens, and a second contact term, the vdW
interaction energy, contributes -2.39 kcal/mol on aver-
age. Thus, these two terms account for nearly 80% of
the total score. The hydrogen-bonding terms are next
largest in importance, their average contributions for
the actives being -1.12 kcal/mol, representing roughly
two hydrogen bonds. One major change in the scoring
concerns the way in which hydrogen bonding is evalu-
ated. While GlideScore 2.0 differentiated hydrogen
bonds on the basis of charge, our investigation of
database screening results and PDB cocrystallized
structures led us to a new understanding of how
hydrogen bonds can be further differentiated. We be-
lieve the contribution of hydrogen bonds to binding

Table 10. Properties of 1000-Compound Ligand Databases
Used in Database Screensa

property (av)
cmc/
pdbb

drug/
leadc pc-350d dl-360e dl-400e

molecular weight 290 337 350 360 400
atoms 38.30 42.83 42.79 45.74 50.75
non-hydrogen atoms 22.44 26.37 25.63 28.13 31.28
higher-row atoms 0.52 0.47 0.82 0.50 0.56
% hydrophobic

carbons
58.52 59.12 63.67 58.94 59.12

rings 1.53 2.09 2.33 2.23 2.51
heteroaramatic rings 0.24 0.84 0.40 0.90 0.99
rotatable bonds 5.51 5.80 5.95 6.19 6.92
amide hydrogens 0.39 0.27 0.66 0.29 0.33
neutral donors 1.61 1.46 1.02 1.56 1.70
charged donors 0.88 0.96 0.30 1.02 1.14
neutral acceptors 1.87 1.49 2.09 1.59 1.78
charged acceptors 0.63 0.42 0.11 0.45 0.49
divalent oxygens 0.55 0.68 0.78 0.73 0.82
neutral amines 0.05 0.01 0.02 0.11 0.13
acidic hydrogens 0.02 0.01 0.00 0.04 0.04

a Each ligand database contains 1000 compounds. b Taken from
a subset of the Comprehensive Medicinal Chemistry database or
from cocrystallized PDB complexes. c Compounds of relatively low
molecular weight from the Derwent World Drug Index provided
by a pharmaceutical collaborator. d Extracted from a 1-million-
compound database of purchasable compounds assembled by
Schrödinger in such a way as to preserve the distribution of listed
properties. e Extracted from the million-compound database in
such a way as to preserve proportionately scaled values of
properties of the “drug/lead” set; however, the distribution of the
last two listed properties was not controlled for.
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affinity depends substantially on the details of the
hydrogen bonding in certain specific ways. On the basis
of these insights, we programmed terms beyond those
shown in eq 2 into Glide and optimized them against
our entire range of database screens. While this is still
an ongoing research area, the current parametrization
leads to a substantial improvement compared to the
treatment in Glide 2.0. One similarity, however, is that
neutral-neutral hydrogen bonds make the largest
contribution, followed by charged-neutral and then
charged-charged hydrogen bonds.

Protein Preparation. Our philosophy in the ap-
plication of rigid docking methods to virtual screening
is that, if possible, information based on existing coc-
rystallized structures for the receptor of interest should
be exploited. Obviously, there will be situations in which
no experimentally determined structure exists, e.g.,
when dealing with genomic targets. In this case, a
variety of strategies are possible, for example, the use
of homology modeling based on cocrystallized structures
for related proteins. We focus here, however, on the case
in which an experimental structure is available.

Our procedure normally starts with a protein and a
cocrystallized ligand. It finishes with a partially opti-
mized protein-ligand complex to which hydrogens have
been added, subject to adjustment of protonation states
for ionizable residues, modification of tautomeric forms
for histidine residues, and repositioning of reorientable
hydrogens (e.g., side chain hydroxyl hydrogens).

The first step is to prepare the cocrystallized ligand
by making sure that multiple bonds are defined cor-
rectly and that hydrogens are properly added. Normally,
proteins are provided without attached hydrogens.
When hydrogens are present, we usually delete all
except those in peptide bonds. In such a case, it is
important to note where the authors of the structure
have assigned nonstandard protonation states so that
these can be reimposed later if this appears warranted.
Cofactors, which are included as part of the protein,
need to have multiple bonds and formal charges as-
signed properly so that hydrogens will be added cor-
rectly in a later step.

The second step uses the pprep script that is provided
with Glide. This procedure neutralizes residues that do
not participate in salt bridges and that are more than
a specified distance from the nearest ligand atom.33 By
default, it choses the value between 10 and 20 Å for this
distance that minimizes the total charge of the receptor
plus ligand complex. The script also sets the tautomeric
state for His residues, which are assumed to be neutral,
by considering potential metal-ligation and hydrogen-
bonding interactions.

The third step is to postprocess the pprep’d receptor.
This is necessary because the judgments made by the
preparation procedure will not always be correct. For
example, for an aspartyl protease such as HIV, both
active-site aspartates will be close to one or more atoms
of a properly docked ligand and hence will be repre-
sented as negatively charged. One of these aspartates,
however, is typically taken to be neutral in modeling
studies. Similarly, Glu 143 in thermolysin typically
interacts with an acceptor oxygen of the bound ligand.
This residue may need to be protonated, as may His 231,
which forms a salt bridge with Asp 226 and typically

places its second ring nitrogen atom within about 3 Å
of a second zinc-bound oxygen of a carboxylate or
phosphonate ligand. Other special circumstances can
also arise. In addition, if the protein had some or all
hydrogens attached, the original and prepared versions
of the protein need to be compared to decide how to
resolve any discrepancies.

Step four adds structural waters if any are to be kept.
Nearly all waters have been removed in this work.
Exceptions are 1add, 1adf, 1ebg (three waters), 1lna
(two waters), and 1mdr, where a water molecule is
tightly bound to a Mg2+ ion. By comparison, GOLD
retains waters for 2ctc, 1mdr, and 1nis,1 and FlexX does
so for 1aaq, 1lna, 1xie, and 4phv.28 Omitting structural
waters can be useful because it may allow ligands to be
found that are capable of displacing them. For example,
we removed the water under the flaps in HIV protease
to allow ligands such as the DuPont-Merck cyclic urea,
which displaces this water, to dock. The resultant overly
generous active site might have encouraged “false
positives” in the docking. However, excellent rank orders
were obtained for known HIV ligands in the database
screen.16

The fifth step adds hydrogens to the protein, to any
cofactors, and to any added structural waters, and the
final step carries out a series of restrained minimiza-
tions on the protein-ligand complex. The first stage
reorients repositionable side chain hydroxyls in Ser,
Thr, and Tyr residues and side chain sulfhydryls of Cys.
This is accomplished by tightly tethering non-hydrogen
atoms (force constant ) 10 kcal mol-1 Å-2) and mini-
mizing the hydrogens with torsion interactions turned
off. In effect, the hydrogens are allowed to fly freely in
the electrostatic wind. Subsequent steps restore the
torsion potential and use progressively weaker re-
straints on the non-hydrogen atoms (hydrogen atoms
are always free); the force constants employed are 3, 1,
0.3, and 0.1 kcal mol-1 Å-2. The procedure stops when
the cumulative rms deviation from the initial coordi-
nates for non-hydrogen atoms exceeds a target value
the user specifies, the default for which is 0.3 Å. The
last structure having an rms deviation smaller than the
target value is then selected. We perform these mini-
mizations with either the Impact34 or Macromodel35

protein molecular modeling codes. When MacroModel
is used, MMFF94s25 can be employed instead of
OPLS-AA.

Our experience is that this or an equivalent prepara-
tion procedure is important for attaining accurate
docking with Glide. It is essential that physically un-
tenable steric clashes often found in crystallographically
determined protein sites be annealed away so that the
native ligand (and others) can yield favorable vdW
interaction energies for properly docked structures. It
is also important that protonation states and hydrogen-
bonding patterns be correct.
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