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Abstract In this paper, activation dynamics of complex-valued neural networks are studied
on general time scales. Besides presenting conditions guaranteeing the existence of a unique
equilibrium pattern, its global exponential stability is discussed. Some numerical examples
for different time scales are given in order to highlight the results.
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Introduction

The study of complex-valued neural networks (CVNNs for short) is a fast growing area
of research in recent times as is apparent from a large number of publications (see e.g.,
[6–8,10,11] and the references therein). The main focus of these networks is aimed at explor-
ing new capabilities and higher performance, making it possible to solve problems which
cannot be solved with their real-valued counterparts. For example [9], the XOR problem
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and the detection of symmetry problem cannot be solved with a single real-valued neuron
(i.e., a two-layered real-valued neural network), but they can be solved with a single com-
plex-valued neuron (i.e., a two-layered complex-valued neural network) with the orthogonal
decision boundaries, which reveals the potent computational power of complex-valued neu-
rons. CVNNs have been found highly useful in extending the scope of applications in opto-
electronics, filtering, imaging, speech synthesis, computer vision, remote sensing, quantum
devices, spatio-temporal analysis of physiological neural devices and systems, and artificial
neural information processing [6,11]. Usually, information flow is represented by waves such
as acoustic, light, electromagnetic etc. In recent years optical flow has been represented as
two-dimensional vector fields consisting of two dimensional vectors. Since waves and two-
dimensional vectors can be represented by complex numbers, complex-valued networks are
well suited to handle these applications. It is known that in the human brain regular activities
are routinized (which simplifies the thinking process) and are performed subconsciously. On
the other hand the conscious “focus of attentions” or “short-term working memory” attends
to the important aspects through the activations. Thus, the study of activation dynamics plays
a significant role in the modeling of brain activities. In a recent paper by Rao and Murthy
[10], the authors have studied global activation dynamics of a discrete CVNN and have
obtained easily verifiable sufficient conditions for global exponential stability of the unique
equilibrium pattern. It is known that discrete CVNNs follow a specific time scale. This fact
makes the study incomplete in the sense that in real-life situations it is not always the case
that the time scales match with the commonly known integer-valued discrete time scales.
Thus it is important to study global dynamics on general time scales, and this is the starting
point of the present investigation. For an introduction to the theory of time scales, we refer
the readers to [3,4]. Stability analysis of systems on time scales has been studied in [1,2,5].

Let T be a time scale and C be the set of complex numbers. We consider the generalized
CVNN described by the equation

z�(t) = Cz(t)+ A f (z(t))+ r, (1)

where z : T → C
n, C and the connection weight matrix A are n × n-matrices with complex

entries, the activation functions are given by f : C
n → C

n , and the inputs are given by
r ∈ C

n . System (1) represents complex-valued activations of the associative memory as a
complex-valued dynamical system.

The organization of this paper is as follows. In Section 2 we present some preliminary
results on time scales that are needed in the remainder of this paper. Section 3 discusses
the existence of a unique equilibrium pattern to the CVNN (1). In Section 4, we derive new
conditions that guarantee the global exponential stability of the equilibrium pattern for (1)
on any arbitrary time scale. These conditions are new for the continuous case and improve
known results even in the discrete case [10]. In Section 5, we present numerical examples
for different choices of time scales. Finally a discussion follows in Section 6.

Essentials of Time Scales

An arbitrary nonempty closed subset T of the set of real numbers R is called a time scale.
In this paper, we only consider time scales that are unbounded above. Examples of such
time scales are the reals R (continuous calculus), the integers Z (discrete calculus), hZ =
{hk : k ∈ Z} with h > 0, and qN0 = {qk : k ∈ N0} with q > 1 (quantum calculus). We
define the forward jump operator σ : T → T (and similarly the backward jump operator
ρ) by σ(t) = inf{s ∈ T : s > t}. A point t ∈ T is called right-scattered, right-dense,
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left-scattered, left-dense, if σ(t) > t, σ (t) = t, ρ(t) < t, ρ(t) = t holds, respectively. The
graininess μ : T → [0] is defined by μ(t) = σ(t) − t . For T = R, Z, hZ, qN0 we have
μ(t) = 0, 1, h, and (q − 1)t , respectively.

For f : T → C
n we note that the real and imaginary parts of f are real valued and one

can use the time scales results below for the real-valued entries of Re f and Im f . We say
that f : T → R is delta differentiable at t ∈ T provided there exists an α such that for all
ε > 0 there is a neighborhood N of t with

| f (σ (t))− f (s)− α(σ(t)− s)| ≤ ε |σ(t)− s| for all s ∈ N .

In this case we denote α by f �(t), and if f is differentiable for every t ∈ T, then f is said
to be differentiable on T and f � is a new function defined on T. Then it is easy to see that

f �(t) =
{

lims→t,s∈T
f (t)− f (s)

t−s if μ(t) = 0
f (σ (t))− f (t)

μ(t) if μ(t) > 0.

Other useful results are the product rule

( f g)� = f �g + f σ g� = f g� + f �gσ , (2)

where we put f σ = f ◦ σ , and the simple useful formula

f σ = f + μ f �. (3)

A function f : T → R is called rd-continuous provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous
functions f : T → R is denoted by Crd. We say that a function f : T → R is regressive
provided 1+μ(t) f (t) �= 0 for all t ∈ T. The set of all regressive and rd-continuous functions
is denoted by R. The set R+ of all positively regressive function consists of those p ∈ R
that satisfy 1 + μ(t)p(t) > 0 for all t ∈ T. It is known that if p ∈ R and t0 ∈ T, then the
initial value problem y� = p(t)y, y(t0) = 1 possesses a unique solution. This solution is
called the exponential function on the time scale and is denoted by ep(·, t0). The following
properties of the exponential function are known [3].

Lemma 1 Let p, q ∈ R and t, s, r ∈ T. Then

(i) e0(t, t0) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) 1
ep(t,t0)

= e�p(t, t0), where �p = − p
1+μp ;

(iv) ep(t, s) = 1
ep(s,t)

= e�p(s, t);
(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s), where p ⊕ q = p + q + μpq;
(vii) ep(t,s)

eq (t,s)
= ep�q(t, s), where p � q = p−q

1+μq ;
(viii) if T = R, then ep(t, t0) = e

∫ t
t0

p(τ )dτ ;
(ix) if T = R and p(t) ≡ α, then ep(t, s) = eα(t−s);
(x) if T = Z and s < t , then ep(t, s) = ∏t−1

τ=s(1 + p(τ ));
(xi) if T = hZ, h > 0, and p(t) ≡ α, then ep(t, s) = (1 + hα)(t−s)/h;

(xii) if p ∈ R+, then ep(t, s) > 0 for all t > s.

The following inequality result [3, Theorem 6.1] will be used.
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Lemma 2 Let y, f ∈ Crd and p ∈ R+. If y is differentiable on [t0,∞) ∩ T such that

y�(t) ≤ p(t)y(t)+ f (t) for all t ∈ [t0,∞) ∩ T,

then

y(t) ≤ y(t0)ep(t, t0)+
t∫

t0

ep(t, σ (τ )) f (τ )�τ for all t ∈ [t0,∞) ∩ T.

For a more detailed study of time scales we refer to [3,4].

Existence of a Unique Equilibrium Pattern

In this section, we consider the model equation (1) and obtain conditions that guarantee
the existence of a unique equilibrium to the system (1). We consider the space C

n of all
n-vectors of complex numbers and let |z| = √

z∗z denote the absolute value of z ∈ C
n ,

where ∗ indicates the conjugate transpose.

Theorem 3 Suppose f : C
n → C is continuous with f (0) = 0 and there exists L > 0 such

that | f (z)− f (ẑ)| ≤ L|z − ẑ| for all z, ẑ ∈ C
n. Let ‖·‖ be the operator norm induced by the

absolute value in C
n and define

γ := ‖I + C‖ + L‖A‖.
If γ ∈ (0, 1), then the system (1) possesses a unique equilibrium pattern.

Proof Clearly, the assumptions of the theorem imply | f (z)| ≤ L|z| for all z ∈ C
n . Now

define the operator T : C
n → C

n by

T (z) = (I + C)z + A f (z)+ r.

For z, ẑ ∈ C
n , we have

|T (z)− T (ẑ)| = |(I + C)(z − ẑ)+ A( f (z)− f (ẑ))|
≤ ‖I + C‖|z − ẑ| + ‖A‖| f (z)− f (ẑ)|
≤ ‖I + C‖|z − ẑ| + L‖A‖|z − ẑ|
≤ (‖I + C‖ + L‖A‖)|z − ẑ|
= γ |z − ẑ|.

Thus the mapping T is a contraction on C
n . Therefore, T has a unique fixed point in C

n since
C

n is complete. This unique fixed point is the required equilibrium pattern for the CVNN (1).
��

Remark 4 In the proof of Theorem 3, we can obtain a localization result for the unique fixed
point as follows: If we choose α > 0 so that

α ≥ |r |
1 − γ
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and let S(α) = {z ∈ C
n : |z| ≤ α}, then

|T (z)| ≤ |(I + C)z| + |A f (z)| + |r |
≤ (‖I + C‖ + L‖A‖) |z| + |r |
≤ (‖I + C‖ + L‖A‖) α + α(1 − γ )

= α.

This shows that T (S(α)) ⊆ S(α). Thus the mapping T is a contraction on S(α). From
Banach’s contraction mapping principle, there exists a unique z̃ ∈ S(α) satisfying T (z̃) = z̃.

Global Exponential Stability

We assume that the network (1) possesses a unique equilibrium pattern z̃. Using the trans-
formation ẑ(t) = z(t)− z̃ in Eq. (1), we get

ẑ�(t) = Cẑ(t)+ Ag
(
ẑ(t)

)
, where g(x) = f (x + z̃)− f (z̃).

Redesignating ẑ(t) as z(t), we obtain

z�(t) = Cz(t)+ Ag(z(t)). (4)

Clearly the stability of z̃ for the system (1) is equivalent to the stability of the trivial solution
for the system (4). We use the following concept of global exponential stability.

Definition 5 Suppose ψ ∈ Crd is such that eψ(t, t0) → 0 as t → ∞. Then the trivial
solution of (4) is said to be ψ-globally exponentially stable if for any solution z of (4) there
exists a constant M > 0 such that

z∗(t)z(t) ≤ Meψ(t, t0) for all t ≥ t0.

In order to prove our main result about global exponential stability of the trivial solution
of (4), we require the following two lemmas.

Lemma 6 If z is a solution of (4), then w = z∗z satisfies

w� = z∗(C∗ + C + μC∗C)z + μg∗(z)A∗ Ag(z)

+g∗(z)A∗(I + μC)z + z∗(I + μC)∗ Ag(z).

Proof We use the product rule (2) and the simple useful formula (3) to calculate

w� = (z∗)�zσ + z∗z�

= (z�)∗(z + μz�)+ z∗z�

= (z�)∗z + z∗z� + μ(z�)∗z�

= (z∗C∗ + g∗(z)A∗)z + z∗(Cz + Ag(z))

+μ(z∗C∗ + g∗(z)A∗)(Cz + Ag(z))

= z∗C∗z + g∗(z)A∗z + z∗Cz + z∗ Ag(z)

+μz∗C∗Cz + μz∗C∗ Ag(z)+ μg∗(z)A∗Cz + μg∗(z)A∗ Ag(z)

= z∗(C∗ + C + μC∗C)z + μg∗(z)A∗ Ag(z)

+ g∗(z)A∗(I + μC)z + z∗(I + μC)∗ Ag(z).

This completes the proof. ��
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We can use the equality from Lemma 6 to prove an estimate of w� as follows.

Lemma 7 Let β > 0. If z is a solution of (4), then w = z∗z satisfies

w� ≤ z∗
(

C∗ + C + μC∗C + 1

β
(I + μC∗)(I + μC)

)
z

+ (μ+ β)g∗(z)A∗ Ag(z).

Proof First notice that for β > 0 we have

0 ≤
(√

βAg(z)− 1√
β
(I + μC)z

)∗ (√
βAg(z)− 1√

β
(I + μC)z

)
= βg∗(z)A∗ Ag(z)− g∗(z)A∗(I + μC)z

−z∗(I + μC)∗ Ag(z)+ 1

β
z∗(I + μC)∗(I + μC)z.

Using this in Lemma 6 results in

w� = z∗(C∗ + C + μC∗C)z + μg∗(z)A∗ Ag(z)

+ g∗(z)A∗(I + μC)z + z∗(I + μC)∗ Ag(z)

≤ z∗(C∗ + C + μC∗C)z + μg∗(z)A∗ Ag(z)

+βg∗(z)A∗ Ag(z)+ 1

β
z∗(I + μC)∗(I + μC)z

= z∗
(

C∗ + C + μC∗C + 1

β
(I + μC∗)(I + μC)

)
z

+ (μ+ β)g∗(z)A∗ Ag(z),

which completes the proof. ��

The following stability result is the main theorem of this paper.

Theorem 8 Suppose g satisfies a Lipschitz condition with Lipschitz constant L. Assume that
C = diag(c1, c2, . . . , cn) is a diagonal matrix. If there exists β > 0 such that

ψ := c̃ + (μ+ β)L2λ satisfies ψ ∈ R+ and lim
t→∞ eψ(t, t0) = 0,

where λ is the maximal eigenvalue of A∗ A and

c̃ = max
1≤i≤n

{
2 Re ci + μ|ci |2 + 1

β
|1 + μci |2

}
,

then the trivial solution of (4) is ψ-globally exponentially stable.

Proof Let z be any solution of (4) and define w = z∗z. Then

g∗(z)A∗ Ag(z) ≤ λg∗(z)g(z) = λ|g(z)|2 ≤ λ(L|z|)2 = L2λ|z|2 = L2λw
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and

z∗
(

C∗ + C + μC∗C + 1

β
(I + μC∗)(I + μC)

)
z

=
n∑

i=1

zi

{
2 Re ci + μ|ci |2 + 1

β
|1 + μci |2

}
zi

=
n∑

i=1

{
2 Re ci + μ|ci |2 + 1

β
|1 + μci |2

}
|zi |2

≤ c̃
n∑

i=1

|zi |2 = c̃|z|2 = c̃w.

Thus, by Lemma 7, we have

w� ≤ z∗
(

C∗ + C + μC∗C + 1

β
(I + μC∗)(I + μC)

)
z + (μ+ β)g∗(z)A∗ Ag(z)

≤ c̃w + (μ+ β)L2λw = ψw.

Now Lemma 2 yields

w(t) ≤ w(t0)eψ(t, t0) → 0 as t → ∞,

so that the claim follows. ��
Remark 9 Note that ψ in general is a function of t , namely whenever the graininess of the
time scale is not constant. E.g., R and hZ with h > 0 have constant graininess, while, e.g.,
qN0 with q > 1 does not. For that reason, we allow β to be a function of t as well, but of
course β(t) > 0 is required for all t ∈ T.

Examples and Applications

Theorem 8 ensures sufficient conditions for global exponential stability of CVNN (4) for any
arbitrary time scale T, which obviously includes the well-known time scales R and Z. We
start with formulating Theorem 8 for these two cases. Our results are new additions to the
literature even for these two classical cases.

Example 10 For T = R, μ(t) ≡ 0, and if there exists a constant β > 0 such that

α := c̃ + βL2λ < 0,

where λ is the maximal eigenvalue of A∗ A and

c̃ = max
1≤i≤n

{
2 Re ci + 1

β

}
,

then the trivial solution of (4) is α-globally exponentially stable.

Example 11 When T = Z, μ(t) ≡ 1, and if there exists a constant β > 0 such that

α := c̃ + (1 + β)L2λ ∈ (−1, 0),
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where λ is the maximal eigenvalue of A∗ A and

c̃ = max
1≤i≤n

{
2 Re ci + |ci |2 + 1

β
|1 + ci |2

}
,

then the trivial solution of (4) is α-globally exponentially stable.

We now consider some numerical examples. The following example is from [10]. We
have applied this example to obtain results for a few well-known time scales.

Example 12 Consider the network

z�(t) =
[−0.99 0

0 −0.988

]
z(t)+

[
0.025 + 0.025i −0.05 + 0.025i
0.075 − 0.05i −0.025 + 0.025i

]
g(z(t)). (5)

If in (5) we choose the function g as a Lipschitz function with Lipschitz constant equal to 1
and β = 1, then

c1 = −0.99, 2c1 + c2
1 + (1 + c1)

2 = −0.9998,

c2 = −0.988, 2c2 + c2
2 + (1 + c2)

2 = −0.999712

so that c̃ = −0.999712. The two eigenvalues of A∗ A can be computed as (11 ±√
68)0.0252

so that λ = (11 + √
68)0.0252. Hence

ψ = −0.999712 + (μ+ β)(11 + √
68)0.0252

is constant if μ and β are constant, in which case we write α = ψ .

1. For T = R we have μ(t) ≡ 0. We find α ≈ −0.9876831 and thus eα(t, 0) = eαt → 0
as t → ∞ so that the trivial solution of (5) is α-globally exponentially stable.

2. For T = Z we have μ(t) ≡ 1. We find α ≈ −0.97565 and thus eα(t, 0) = (1 +α)t → 0
as t → ∞ so that the trivial solution of (5) is α-globally exponentially stable.

3. For T = hZ with h > 0 we have μ(t) ≡ h. With β = 1, we find c̃ = 2 Re c2 + h|c2
2| +

|1 + hc2|2 = 0.99960004h2 − 0.99999996h − 0.9996. Thus α ≈ 0.99960004h2 −
0.987971078h − 0.987571118 and eα(t, 0) = (1 + hα)t/h → 0 as t → ∞ if α < 0
or h should be less than 1.60422071, and then the trivial solution of (5) is α-globally
exponentially stable.

The following example illustrates the improvement of Theorem 4 over [10, Theorem 3.2],
especially in the case when T = Z.

Example 13 For the time scale T = Z, let us consider the network

z�(t) =
[−0.75 0

0 −0.65

]
z(t)+

[
0.025 + 0.025i −0.05 + 0.025i
0.075 − 0.05i −0.025 + 0.025i

]
g(z(t)). (6)

We observe (using the notation from [10, Theorem 3.2]) ρ = 2.9894 > 1, and as such [10,
Theorem 3.2] fails to guarantee the global exponential stability of the network (6). On the
other hand, Theorem 8 with μ(t) ≡ 1 and β = 1 gives us α = −0.7525 + 0.02406 =
−0.7284 ∈ (−1, 0), implying that the trivial solution of (6) is α-globally exponentially
stable.
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Discussion

In this paper we have studied the activation dynamics of a complex-valued neural network on
a general time scale. Sufficient conditions for the existence of a unique equilibrium solution
are derived. Further, we have introduced the notion of ψ-global exponential stability of the
equilibrium pattern, which generalizes the notion of global exponential stability. The global
exponential stability conditions derived in this paper are fairly general and offer greater flex-
ibility in handling time scales of practical importance. Examples of a few time scales are
presented.
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