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Abstract

Background: Drug resistance is the outcome of multiple-gene interactions in cancer cells under stress of anticancer 

agents. MDR1 overexpression is most commonly detected in drug-resistant cancers and accompanied with other gene 

alterations including enhanced glucosylceramide synthase (GCS). MDR1 encodes for P-glycoprotein that extrudes 

anticancer drugs. Polymorphisms of MDR1 disrupt the effects of P-glycoprotein antagonists and limit the success of 

drug resistance reversal in clinical trials. GCS converts ceramide to glucosylceramide, reducing the impact of ceramide-

induced apoptosis and increasing glycosphingolipid (GSL) synthesis. Understanding the molecular mechanisms 

underlying MDR1 overexpression and how it interacts with GCS may find effective approaches to reverse drug 

resistance.

Results: MDR1 and GCS were coincidently overexpressed in drug-resistant breast, ovary, cervical and colon cancer cells; 

silencing GCS using a novel mixed-backbone oligonucleotide (MBO-asGCS) sensitized these four drug-resistant cell 

lines to doxorubicin. This sensitization was correlated with the decreased MDR1 expression and the increased 

doxorubicin accumulation. Doxorubicin treatment induced GCS and MDR1 expression in tumors, but MBO-asGCS 

treatment eliminated "in-vivo" growth of drug-resistant tumor (NCI/ADR-RES). MBO-asGCS suppressed the expression 

of MDR1 with GCS and sensitized NCI/ADR-RES tumor to doxorubicin. The expression of P-glycoprotein and the 

function of its drug efflux of tumors were decreased by 4 and 8 times after MBO-asGCS treatment, even though this 

treatment did not have a significant effect on P-glycoprotein in normal small intestine. GCS transient transfection 

induced MDR1 overexpression and increased P-glycoprotein efflux in dose-dependent fashion in OVCAR-8 cancer cells. 

GSL profiling, silencing of globotriaosylceramide synthase and assessment of signaling pathway indicated that GCS 

transfection significantly increased globo series GSLs (globotriaosylceramide Gb3, globotetraosylceramide Gb4) on 

GSL-enriched microdomain (GEM), activated cSrc kinase, decreased β-catenin phosphorylation, and increased nuclear 

β-catenin. These consequently increased MDR1 promoter activation and its expression. Conversely, MBO-asGCS 

treatments decreased globo series GSLs (Gb3, Gb4), cSrc kinase and nuclear β-catenin, and suppressed MDR-1 

expression in dose-dependent pattern.

Conclusion: This study demonstrates, for the first time, that GCS upregulates MDR1 expression modulating drug 

resistance of cancer. GSLs, in particular globo series GSLs mediate gene expression of MDR1 through cSrc and β-catenin 

signaling pathway.

Background
Chemotherapy is the principal treatment option for patients

with late stage cancers. Despite considerable advances in

drug discovery, metastatic solid malignancies remain incur-

able, due to their poor response to most of the conventional

antineoplastic agents. Acquired drug resistance of cancer

cells severely limits the success of chemotherapy, particular

in solid tumors [1,2]. The ABCB1 transporter, known as P-

glycoprotein (P-gp) is encoded by human multidrug resis-
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tance 1 gene (MDR1) and is an important mediator of drug

resistance [2,3]. Like other membrane transport proteins in

ABC (ATP binding cassette) family, P-gp is found in vari-

ous cellular membranes of organisms from bacteria to

mammals. P-gp plays roles in the absorption, distribution,

and excretion of pharmacological compounds in normal tis-

sues [4,5]. However, overexpression of MDR1 in tumors

results in increase of P-gp and active effluxing of a variety

of natural product anticancer agents from cells [2,6]. The

polymorphism of MDR1, particularly the 'silent' polymor-

phism, blocks the effects of currently available P-gp antag-

onists and thus limits the success of these agents in clinical

trials [7-10].

Drug resistance is the outcome of multiple-gene interac-

tions in cancer cells under the stress of antineoplastic

agents. Several drug-resistant markers including Bcl-2,

mutant p53, and glucosylceramide synthase (GCS) are

overexpressed in drug-resistant cancers [5,11-13]. How-

ever, little is known about the molecular mechanism under-

lying MDR1 overexpression and how it interacts with other

genes to impart drug-resistance. Recently, an emerging

body of evidence indicates a curious association of multi-

drug resistance with ceramide glycosylation [13-18]. GCS

(UDP-glucose:ceramide glucosyltransferase, UGCG) trans-

fers a glucose residue from UDP-glucose to ceramide and

produces glucosylceramide [19,20]. This first step in gly-

cosphingolipid (GSL) synthesis tightly regulates the pro-

duction of all upstream GSLs [21]. Ceramide, a lipid

second messenger, induces growth arrest or apoptosis in

cancer cells; this induced-apoptosis is in part responsible

for the therapeutic efficiency of antineoplastic regimens

including anthracyclines, taxanes, and vinca alkaloids and

radiation therapy [15,22-25]. Overexpression of GCS can

result in drug resistance, as introduction of GCS confers

cell resistance to doxorubicin, daunorubicin, and tumor

necrosis factor-α [16,26,27]. GCS is overexpressed in many

MDR cancer cell lines [17,28], and in leukemia, breast can-

cer, and renal cell cancer [29-31]. Interestingly, GCS is

coincidently overexpressed with MDR1 in drug-resistant

cells [28,32] and in leukemia cells from patients who have

poor-response to chemotherapy [31,33]. We have studied

the effects of ceramide glycosylation on MDR1 and found

that GCS upregulates MDR1 expression through activation

of cSrc and β-catenin signaling.

Results
Silencing GCS represses MDR1 expression and sensitizes 

cancer cells to chemotherapeutic agents

We observed the role of GCS in the regulation of MDR1

expression in NCI/ADR-RES and its GCS transfectants.

GCS protein levels were increased in NCI/ADR-RES/GCS

cells and significantly decreased in NCI/ADR-RES/asGCS

cells (Figure 1A). Consistent with these, GCS enzyme

activity was decreased to 52% (0.9 vs. 1.7 GC/Cer) in NCI/

ADR-RES/asGCS cells, whereas the activity was increased

to 110% (1.9 vs. 1.7 GC/Cer) in NCI/ADR-RES/GCS, as

compared with parental NCI/ADR-RES cells (Figure

1A,B). Coordinately, P-gp was significantly decreased to

40% in NCI/ADR-RES/asGCS cells, as detected by West-

ern blotting and immunostaining (Figure 1A,C). HPLC

assays indicated that cellular accumulation of doxorubicin

was increased by 3-fold in NCI/ADR-RES/asGCS cells

(2.54 ± 0.15 vs. 0.80 ± 0.51 ng/105 cells) as compared with

NCI/ADR-RES cells (Figure 1D). Substantial intracellular

accumulation of doxorubicin was also observed in NCI/

ADR-RES/asGCS cells under fluorescence microscopy

(Figure 1D).

MDR1 and GCS have been shown to be coincidently

overexpressed in several drug-resistant cell lines [17,28].

To validate the association of MDR1 expression with GCS,

we assessed MDR1 expression in four different types of

cancer cells, in the absence and presence of GCS silencing

with MBO-asGCS (a mixed-backbone oligonucleotide

against human GCS) [34,35]. Results showed that GCS

protein levels were decreased to 40%, 45%, 56% and 20%

of control, respectively in drug-resistant human A2780-AD

ovary cancer, KB-A1 cervical cancer, SW620/AD colon

cancer, and murine EMT6/AR1 breast cancer cells treated

with MBO-asGCS (50 nM, 7 days) (Figure 2A). Consis-

tently, MBO-asGCS treatments decreased P-gp protein lev-

els to 10%, 5%, 2% and 20% of control in these cell lines.

Furthermore, MBO-asGCS substantially sensitized cells to

doxorubicin; the EC50 values for doxorubicin were

decreased by 4-fold in A-2780AD, 43-fold in KB-A1, 7-

fold in SW620/AD, and 6-fold in EMT6/AR1 cells, respec-

tively (Figure 2B). These data indicate that suppressing

GCS can repress MDR1 expression and reverse cellular

resistance to anticancer agents.

Silencing GCS represses MDR1 expression and restores 

tumor sensitivity to doxorubicin

Inoculation of NCI/ADR-RES cells into athymic mice gen-

erated MDR tumor xenografts. Mice with MDR xenografts

were treated with MBO-asGCS (1 mg/kg per 3 days) alone

or combined with doxorubicin (2 mg/kg per week). As

shown in Figure 3A, MBO-asGCS treatment significantly

decreased tumor growth and increased the sensitivity of

these tumors to doxorubicin. The combination treatment

(MBO-asGCS + Dox) decreased tumor volumes to 45%

(187 vs. 411 mm3, p < 0.01) and 20% (187 vs. 913 mm3, p <

0.001), respectively, as compared with doxorubicin or

saline treatment. Western blot analysis revealed that GCS

and P-gp protein levels were increased 2-fold and 4-fold in

tumors treated with doxorubicin, as compared with saline

(Figure 3B). However, MBO-asGCS decreased both GCS

and P-gp protein levels by approximately 4-fold in tumors

treated with MBO-asGCS alone or MBO-asGCS combined

with doxorubicin, as compared with saline and doxorubicin
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Figure 1 Effects of GCS on P-gp in NCI/ADR-RES Transfectants. (A) GCS and P-gp proteins detected by Western blot. Detergent-soluble protein 

(50 μg/lane) from NCI/ADR-RES (ADR-RES), NCI-ADR-RES/GCS (GCS) and NCI/ADR-RES/asGCS (asGCS) cells was immunoblotted with anti-GCS or anti-

P-gp antibody. GAPDH was used as loading control. (B) Ceramide glycosylation catalyzed by GCS. Cells were incubated with NBD C6-Cer (100 nM) in 

1% BSA RPMI-1640 medium, at 37°C for 2 hr. C6-Cer and C6-GlcCer were identified on chromatograms with commercial standard (St.) and measured 

using spectrophotometry. *, p < 0.001 compared to ADR-RES cells. (C) Immunostaining of GCS and P-gp. Cells were incubated with anti-human GCS 

(green) and anti-P-gp (red) following addition of Alexa 488- and Alexa 667-conjugated secondary antibodies. DAPI in mounting solution was used for 

nucleus counterstaining (blue). Ctrl, NCI/ADR-RES cells were incubated with the secondary antibodies alone, as specificity control; Fluo, merged fluo-

rescence microphotograph (× 200). (D) Doxorubicin accumulation. After 1 hr incubation with doxorubicin (0.1 mg/ml), cellular doxorubicin was doc-

umented by fluorescence microscopy (× 200) and analyzed by HPLC, following methanol extraction. Doxorubicin amount was normalized to 100,000 

cells. *, p < 0.001.
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groups (Figure 3B). These findings were confirmed in

tumor tissues after immunostaining for GCS and P-gp (Fig-

ure 3C).

In agreement with its repressive effect on P-gp protein,

MBO-asGCS significantly increased doxorubicin accumu-

lation in tumor tissues. As shown in Figure 4A, MBO-asS-

GCS treatment augmented tumor accumulation of

doxorubicin by 8-fold (78 pg/mg vs. 10 pg/mg) and 2-fold

(59 pg/mg vs. 28 pg/mg) after 4 and 24 hrs of doxorubicin

administration, compared to the saline group, respectively.

Meanwhile, serum levels of doxorubicin decreased in the

MBO-asGCS group. Further assessment using Flutax-2

(Oregon green 488-paclitaxel, a substrate of the P-gp

pump) revealed that paclitaxel accumulation was increased

4-fold (11.41% vs. 3.32% of total, p < 0.001, Figure 4B),

since that paclitaxel efflux decreased by 8-fold (1.66% vs.

13.2% of accumulated, p < 0.001) in tumors treated with

MBO-asGCS (Figure 4C). MBO-asGCS treatments did not

have a significant effect on P-gp of normal small intestine.

These results indicate that silencing GCS by MBO-asGCS

efficiently represses MDR1 expression and reverses in vivo

drug resistance.

GCS upregulates MDR1 expression through cSrc kinase and 

β-catenin signaling

We transiently transfected GCS in human OVCAR-8 ovar-

ian carcinoma cells, which express low level of MDR1 [36],

in order to explore putative mechanisms underlying GCS

upregulation of MDR1. One week after the transfection,

GCS protein levels were elevated by 10-fold, 20-fold and

25-fold in cells transfected with increasing amounts of GCS

plasmid DNA (2, 4, and 8 μg/dish) (Figure 5A). Interest-

ingly, the levels of phosphorylated cSrc and FAK proteins

were enhanced corresponding to GCS levels, even though

the total cSrc levels remained relatively unchanged.

Nuclear β-catenin levels were elevated by 5- to 10-fold

whereas phosphorylated β-catenin declined as GCS, p-cSrc,

and p-FAK increased in these cells (at 4, and 8 μg/dish). P-

gp protein levels were elevated by 2 to 3-fold concomitant

with MDR1 promoter activities in these cells (4 and 8 μg/

dish) (Figure 5B). The pyrazolo pyrimidine (PP2), a Src

kinase inhibitor [37,38] selectively decreased the levels of

phosphorylated cSrc (not p-FAK) and increased phosphory-

lated β-catenin, but did not decrease Gb3 synthase of cells

after GCS transfection (8 mg/dish, Figure 5A). The PP2

treatments blocked the stimulation effect of GCS on nuclei

β-catenin, further MDR1 promoter activity and P-gp

expression (Figure 5A,B). We also assessed the cellular

accumulation and activity of P-gp using Flutax-2. As

shown in Figure 5C, paclitaxel accumulation was decreased

to 60% and 47% of control in cells transfected with increas-

ing amounts of GCS plasmid (4, 8 μg DNA/dish), respec-

tively, as compared with mock transfection. Conversely,

cell efflux of paclitaxel was elevated to 153% and 212%

over control in these transfectants. Inhibition of cSrc kinase

by PP2 treatment eliminated the effects of GCS transfection

on P-gp activity in the accumulation and efflux of paclitaxel

(Figure 5C).

Figure 2 Silencing of GCS by MBO-asGCS Represses MDR1 Expression and Sensitizes Drug-Resistant Cancer Cells. (A) P-gp and GCS in drug-

resistant cancer cells. Cells were cultured in growth medium for 24 hr, and then treated with vehicle or MBO-asGCS (50 nM) for an additional 48 hr. 

Equal amounts of protein (50 μg/lane) were resolved by 4-20% gradient SDS-PAGE and immunoblotted with anti-GCS and anti-P-gp antibodies. GAP-

DH was used as endpoint control, and GCS/GAPDH or P-gp/GAPDH represents optical densities of the bands. -, vehicle (Lipofectamine 2000); +, MBO-

asGCS (50 nM). *, p < 0.001 compared with vehicle treatment. (B) Cell response to doxorubicin. After pretreatment of MBO-asGCS (50 nM) or vehicle, 

cells were incubated with 5% FBS medium at the presence of doxorubicin for an additional 72 hr. *, p < 0.001 compared with vehicle.
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Silencing GCS represses MDR1 transactivation via 

inhibition of cSrc and β-catenin signaling

We silenced GCS with MBO-asGCS in NCI/ADR-RES

cells that overexpressed GCS and MDR1, to verify the

mechanism underlying GCS modulation of MDR1. After

one week of MBO-asGCS treatments, GCS protein levels,

but neither GD3 synthase nor Gb3 synthase, were

decreased to 30%, 5% and 2% in cells treated with increas-

ing concentrations of MBO-asGCS (50, 100, 200 nM), as

compared with vehicle control, respectively (Figure 6A).

The levels of the phosphorylated cSrc and FAK proteins,

but not the total cSrc, were correspondingly decreased with

GCS protein levels. Interestingly, nuclear β-catenin was

decreased to approximately 10%, whereas phosphorylated

β-catenin was increased as the levels of GCS, p-cSrc, and p-

FAK were decreased in these cells after MBO-asGCS treat-

ments. P-gp protein levels were decreased to 85%, 30% and

25% with decreases in MDR1 promoter activity of cells

treated with increasing concentrations of MBO-asGCS (50,

100, 200 nM) (Figure 6B). Sequentially, we found that cel-

lular accumulation of paclitaxel was elevated by 2.5-fold,

11-fold and 22-fold in cells treated with MBO-asGCS,

compared to vehicle control, respectively (Figure 6C). Con-

versely, cell efflux of paclitaxel was reduced to 89%, 48%,

and 31% in cell after these treatments. As anticipated, vera-

pamil treatment (10 μM) inhibited P-gp function, as effec-

tively as MBO-asGCS (50 nM) in the cellular accumulation

and efflux of paclitaxel in NCI/ADR-RES cells (Figure

6C).

Globo series GSLs modulate MDR1 expression

It has been reported that glycosphingolipids-enriched

microdomains (GEMs) or rafts on cell membranes can

mediate cSrc kinase activation [39-41]. To clarify which

GSL has a major role in mediating MDR1 expression, we

analyzed GSL profiles of NCI/ADR-RES variants. It was

found that the levels of globo series GSLs including globot-

riaosylceramide (Gb3) and globotetraosylceramide (Gb4)

were significantly increased in NCI/ADR-RES/GCS cells

and decreased in NCI/ADR-RES/asGCS cells (Figure 7A).

On the other hand, N-acetylneuraminyl-α2,3-galactosyl-

β1,4-glucosyl ceramide (GM3) and N-acetylgalactosami-

nyl-β1,4-(α2,3N-acetylneuraminyl) galactosyl-β1,4-gluco-

syl ceramide (GM2) were increased in NCI/ADR-RES/

asGCS cells. As a receptor for verocytotoxin, the levels of

Gb3 on cells are associated with the cytotoxicity of verocy-

totoxin [42-44]. To assess the levels of Gb3 in NCI/ADR-

RES variants, we examined cell viability in response to

verocytotoxin. As shown in Figure 7B, NCI/ADR-RES/

asGCS cells were substantially resistant, while NCI/ADR-

RES/GCS cells were extremely sensitive to verocytotoxin.

Figure 3 Silencing of GCS by MBO-asGCS Represses MDR1 Expression and Reverses Tumor Resistance to Doxorubicin in vivo. (A) Tumor 

growth. Tumors generated from NCI/ADR-RES cells (~3 mm in diameter, 10 mice/group) were treated with MBO-asGCS (1 mg/kg every 3 days) or dox-

orubicin (2 mg/kg/week) and combination thereof. Data represent the mean ± SE; *, p < 0.001 compared to saline group (open squares); **, p < 0.001 

compared to doxorubicin treatment (solid squares). (B) Western blots of tumor tissues. After treatments, extracted tumor proteins (100 μg/μl, three 

samples per group) were resolved by 4-20% SDS-PAGE and immunoblotted with anti-GCS or anti-P-gp antibodies, respectively. (C) Immunostaining. 

After retrieval, antigens on tissue sections (5 μm) were recognized by anti-GCS (green) and anti-P-gp (red) antibodies with fluorescence conjugated 

secondary antibodies. Microphotographs of merged fluorescence (Fluo.) with H&E staining (H&E) were originally magnified by 200.
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The EC50 for verocytotoxin was increased by 4,000-fold (8

× 102 vs. 2 × 10-1 ng/ml) in NCI/ADR-RES/asGCS cells and

was decreased by 400-fold (2 × 10-1 vs. 5 × 10-4 ng/ml) in

NCI/ADR-RES/GCS cells.

Furthermore, we examined whether GCS alter Gb3 con-

centration and cSrc kinase in GEMs. As shown in Figure

7C and 7D, silencing of GCS by MBO-asGCS (100 nM)

significantly decreased Gb3 level, and p-cSrc to 32% in

GEMs of NCI/ADR-RES cells. On the contrary, GCS trans-

fection significantly increased Gb3 and doubled p-cSrc in

GEMs of OVCAR-8 cells. Alterations of Gb3 and cSrc

kinase in GEMs following GCS gene manipulations signifi-

cantly changed P-gp expression levels as well.

In order to characterize the role of GSLs in MDR1

expression, we selectively silenced the enzyme responsible

for the synthesis of globo series GSLs. Cells were trans-

fected with siRNA against Gb3 synthase to block globo

series GSL production. As shown in Figure 8A, silencing

Gb3 synthase significantly decreased MDR1 promoter

activity, particularly in NCI/ADR-RES/GCS cells (p <

0.001, compared with NCI/ADR-RES cells). Consistently,

silencing of Gb3 synthase considerably decreased p-cSrc,

β-catenin and P-gp protein levels and efflux in both cell

lines, as detected in Western blot (Figure 8B), cellular

efflux (Figure 8C) and immunostaining (Figure 8D). We

further treated NCI/ADR-RES cells with FH535, inhibiting

β-catenin recruitment to T-cell factor (Tcf) [45]. We found

that FH535 (20 μM) decreased P-gp protein to 25% of con-

trol (Figure 8E); however, it did not affect either Gb3 syn-

thase or p-cSrc in Western blotting.

Discussion
GCS is a key enzyme for ceramide glycosylation and GSL

synthesis. This study demonstrates that GCS upregulates

MDR1 expression and modulates drug resistance of cancer.

It reveals that GSLs, in particular globo series GSLs medi-

ate gene expression through cSrc and β-catenin signaling.

Previous works indicate that GCS and MDR1 are co-

overexpressed in drug-resistant leukemia [33] and in drug-

resistant cancer cells including human ovarian cancer (NCI/

ADR-RES), cervical cancer (KB-V1), leukemia (HL-60/

VCR), melanoma (MeWo Eto) and colon cancer (SW620/

AD) [13,28]. However, it is not clear how GCS or MDR1

affects each other to promote drug-resistance. Suppressing

GCS with siRNA or a GCS inhibitor, 1-phenyl-2-

decanoylamino-3-morpholino-1-propanol (PDMP), down-

regulates the expression and function of P-gp in human

breast cancer cells [18]; however, inhibition of GCS by

other types of GCS inhibitors (N-butyl-deoxygalac-

tonojirimycin, OGB-1; N-nonyl-deoxygalactonojirimycin,

OGB2) did not appear to have any effect on P-gp functional

activity in chronic lymphocytic leukemia cells, even though

OGB-1 and OGB2 sensitized these cells [46]. P-pg has

been proposed as a Golgi glucosylceramide flippase that

enhances neutral GSL synthesis, since transfection of

MDR1 increases globo series GSLs, and inhibition of P-gp

Figure 4 Effects of GCS Silencing on P-gp Regulated Drug Accumulation and Efflux in Tumors. NCI/ADR-RES tumors were treated with MBO-

asGCS (1 mg/kg/3 days, 3 mice/group) or saline for 7 days. (A) Doxorubicin accumulation. After 4 hr and 24 hr peritoneal administration of doxorubicin 

(1 mg/kg), serum and tumor tissues were collected and prepared for HPLC assays. Doxorubicin levels were represented per μl of serum or per mg of 

tumor tissue. *, p < 0.001 compared with serum of saline treatment at 24 hr; **, P < 0.001 compared with saline treatments. (B) Paclitaxel accumulation. 

After two administrations of MBO-asGCS, tissue suspensions (25 mg/reaction) were incubated with Flutax-2 (1 μM) in medium containing collagenase 

IV, immediately following mincing. Accumulation of paclitaxel was measured after 2 hr incubation. *, p < 0.001 compared with saline treatment of 

tumors. (C) Paclitaxel efflux. After accumulation described in (B), tissues were incubated with fresh medium for an additional 2 hr to measure paclitaxel 

efflux. *, p < 0.001 compared with saline treatment of tumors.
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with cyclosporine A decreases neutral GSL biosynthesis in

cells [32,44,47,48]. To characterize the role of GCS in

MDR1-GCS co-overexpression, we tested P-gp expression

after GCS gene silencing in several different types of can-

cer cells and in tumors. We have found that silencing of the

GCS down-regulates P-gp expression, inhibits its efflux

activity, and consequently sensitizes MDR cells including

NCI/ADR-RES, A2780-AD, KB-A1, SW620/AD and

EMT6/AR1 (Figure 1, 2). Furthermore, suppressing GCS

with MBO-asGCS substantially decreases P-gp protein,

enhances the accumulation of doxorubicin or paclitaxel,

and sensitizes tumors to chemotherapy (Figure 3, 4). We

have reported that doxorubicin upregulates GCS expression

and results in drug resistance in cells [17]. Herein it has

been found that doxorubicin treatment up-regulates GCS

expression and importantly, P-gp expression in tumors

(Dox vs. saline, Figure 3B); MBO-asGCS simultaneously

suppresses GCS and MDR1 overexpression (MBO-asGCS

vs. saline, Figure 3B), even under doxorubicin challenge

(MBO-asGCS + Dox vs. Dox, Figure 3B). Taken together,

these results demonstrate that GCS has a regulatory role in

MDR1 expression and genesis of drug resistance. Inhibition

of GCS appears to be an efficient approach not only to pre-

vent the formation of drug resistance during the course of

cancer chemotherapy, but also to reverse drug resistance of

cancers.

It has taken time to understand how GSLs generated by

GCS modulate gene expression. By introducing GCS into

OVCAR-8 cells that express low levels of GCS and P-gp,

we have found that GCS consequently upregulates MDR1

expression and enhances P-gp efflux through cSrc and β-

catenin signaling. Inhibition of Src kinase by PP2 further

indicates that GSLs in cell membrane may mediate the

phosphorylation of cSrc and of β-catenin that decreases β-

catenin levels in the nucleus (Figure 5). This finding has

been confirmed by selective silencing of GCS (not Gb3

synthase or GD3 synthase) using MBO-asGCS, in NCI/

ADR-RES cells that over express GCS and P-gp (Figure 6).

The promoter of the human MDR1 contains multiple Tcf4/

LEF (T-cell factor 4/lymphoid enhancer factor) binding

motifs, CTTTGA/TA/T [49,50]. It has been demonstrated

that MDR1 is a direct target gene of the β-catenin/Tcf4 tran-

scriptional complex, and activation of β-catenin increases

P-gp expression [51-53]. It has been reported that active

cSrc elevates the levels of β-catenin, and inhibition of cSrc

decreases the binding of β-catenin to the promoters of β-

Figure 5 GCS Upregulates MDR1 Expression through Enhanced cSrc/β-Catenin Signaling. After a series of transient GCS transfection (0, 2.0, 4.0, 

8.0 μg of pcDNA 3.1-GCS plasmid DNA in 100-mm dish), OVCAR-8 cells were cultured in 10% FBS RPMI-1640 medium for 7 days. OVCAR-8 cells trans-

fected with pcDNA 3.1-GCS (8 μg) were then treated with 10 μM PP2 for 24 hr (+PP2). (A) Western blots. Equal amounts of detergent-soluble total 

cellular proteins or nuclear proteins (50 μg/lane) were resolved on 4-20% gradient SDS-PAGE and immunoblotted with indicated primary antibodies. 

Gb3 syn, Gb3 synthase; p-cSrc, phosphorylated cSrc; p-FAK, phosphorylated FAK; p-β-catenin, phosphorylated β-catenin. (B) MDR1 expression. MDR1 

promoter activity (top panel) and P-gp protein (bottom panel) were assessed as described in Methods, after 7 days of GCS transient transfection in 

OVCAR-8 cells. *, p < 0.001 compared with mock transfection; **, p < 0.001 compared with vehicle treatment in cells transfected with GCS (8 μg DNA). 

(C) Paclitaxel accumulation and efflux. Cells were incubated with Flutax-2 (0.5 μM) in medium at 37°C. Accumulation of paclitaxel (top panel) was mea-

sured after 2 hr incubation. After washing with ice-cold PBS, cells were re-incubated with fresh medium for an additional 2 hr to measure efflux (bot-

tom panel). *, p < 0.001 compared with the mock transfection. **, p < 0.001 compared with vehicle treatment in cells transfected with GCS (8 μg DNA).
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catenin/Tcf4 complex targets such as cyclin D1 and c-Myc

[54,55]. In present study, inhibitions of cSrc kinase by PP2

and β-catenin/Tcf4 recruitment by FH535 sequentially pre-

vent MDR1 transactivation (Figure 5, 6, 8). These data

strongly support the model that GCS enhances cSrc signal-

ing and β-catenin, and transactivates MDR1 expression.

GCS is the rate-limiting enzyme in GSL synthesis. Glu-

cosylceramide, the product of GCS, is further converted to

lactosylceramide (Galβ1-4GlcCer) by lactosylceramide

synthase (glucosylceramide 1,4-galactosyltransferase).

Lactosylceramide is the common precursor of nearly all the

neutral GSLs and gangliosides. GSL profiling and selective

silencing of Gb3 synthase indicate that globo series GSLs

(Gb3, Gb4) have more important role than ganglioside in

mediating MDR1 transactivation and expression (Figure 7,

8). GSLs in either tumor cells or normal cells are clustered

and assembled with specific membrane proteins and signal

transducers to form GSL-enriched microdomains (GEMs)

or rafts [39,56,57]. Gb3 (defined as CD77) is associated

with Src family Yes kinase on GEMs [58]. Shiga toxin

binds to its receptor Gb3, and activates cSrc kinase [59,60].

Stimulation of monosialyl-Gb5 by its antibody RM1 acti-

vates cSrc on GEMs and increases β-catenin in MCF-7 cells

[39]. AdamantylGb3, a water-soluble Gb3 mimic signifi-

cantly increases MDR1 expression [61]. Inhibition of GCS

by D-PDMP indicates Globo series of GSLs are required

for Src kinases that are associated with and concentrated on

GEMs [62]. In this study we have found that introduction of

GCS or silencing of GCS significantly increases or

decreases the levels of Gb3 in entire cells, and particular in

GEMs (Figure 7A,B,C). Gb3 levels affect cSrc kinase and

result in p-cSrc alterations in GEMs, and consequentially P-

gp expression (Figure 7). Taken together, we propose that

GCS regulates MDR1 expression through activation of cSrc

and β-catenin signaling, as depicted in Figure 9. Overex-

pression of GCS produces large amounts of glucosylcer-

amide when cancer cells are under chemotherapy stress.

Enhancement of globo series GSLs (Gb3, Gb5, MSGb5) on

the GEMs activates cSrc kinase and β-catenin signaling;

nuclear β-catenin with Tcf4 binds to the MDR1 promoter

and upregulates MDR1 expression. Increase of P-gp

extrudes anticancer drug out of cells and leads to cancer

resistance. Conversely, MBO-asGCS silences GCS gene

and down-regulates P-gp through decreasing cSrc and β-

catenin signaling.

Conclusions
This study demonstrates, for the first time, that GCS upreg-

ulates MDR1 expression and modulates drug resistance of

cancer. GSLs, in particular of globo series GSLs mediate

Figure 6 Silencing GCS Represses MDR1 Expression by Decreasing cSrc/β-Catenin Signaling. After MBO-asGCS treatments (0, 50, 100, 200 nM), 

drug resistant NCI/ADR-RES cells were cultured in 10% FBS RPMI-1640 medium for 7 days. The NCI/ADR-RES cells were incubated with verapamil (10 

μg, 2 hr) in 5% FBS RPMI-1640 medium to inhibit P-gp function. (A) Western blots. Equal amounts of total cellular proteins or nuclear proteins (50 μg/

lane) were resolved by 4-20% gradient SDS-PAGE and immunoblotted with indicated primary antibodies. GD3 syn, GD3 synthase; Gb3 syn, Gb3 syn-

thase; p-cSrc, phosphorylated cSrc; p-FAK, phosphorylated FAK; p-β-catenin, phosphorylated β-catenin. (B) MDR1 expression. MDR1 promoter activity 

(top panel) and P-gp protein (bottom panel) were assessed as described in Methods, after 7 days of MBO-asGCS treatments. *, p < 0.001 compared 

with vehicle. (C) Paclitaxel accumulation and efflux. Cells were incubated with Flutax-2 (0.5 μM) in medium at 37°C for 2 hr to measure paclitaxel ac-

cumulation (top panel). After washing with ice-cold PBS, cells were incubated with fresh medium for an additional 2 hr to measure paclitaxel efflux 

(bottom panel). *, p < 0.001 compared with vehicle treatment.
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gene expression of MDR1 through cSrc and β-catenin sig-

naling.

Methods
Cell culture

Drug-resistant NCI/ADR-RES human ovarian cancer cells

(designed as MCF-7-AdrR previously) [63,64] were kindly

provided by Dr. Kenneth Cowan (UNMC Eppley Cancer

Center, Omaha, NE) and Dr. Merrill Goldsmith (National

Cancer Institute, Bethesda, MD, USA). The ovarian carci-

noma cells A2780-AD, which is resistant to doxorubicin

[65], was kindly provided by Dr. Thomas C. Hamilton (Fox

Chase Cancer Center, Philadelphia, PA). Doxorubicin-

selected KB-A1 cells [66] were from Dr. Michael M. Got-

tesman (National Cancer Institute, Bethesda, MD). Drug

resistant SW620/Ad colon cancer cells [67] were kindly

provided by Drs. Susan Bates and Antonio Fojo (National

Cancer Institute, Bethesda, MD). Drug-resistant murine

EMT6/AR1 breast carcinoma cells [68,69] were kindly pro-

vided by Dr. Ian Tannock (Ontario Cancer Institute,

Toronto, ON, Canada). The OVCAR-8 human ovarian car-

cinoma cells were provided by Dr. M. Hollingshead of

Division of Cancer Treatment and Diagnosis Tumor Repos-

itory at National Cancer Institute (Frederick, MD). NCI/

ADR-RES, KB-A1 and SW620Ad cells were maintained in

RPMI-1640 medium containing 10% (v/v) FBS, 100 units/

ml penicillin, 100 μg/ml streptomycin, and 584 mg/liter L-

glutamine. A2780-AD cells were cultured in RPMI-1640

medium containing 100 nM doxorubicin in addition to the

above components. EMT6/AR1 cells were maintained in

Dulbecco's modified eagle medium (DMEM) containing 1

μg/ml of doxorubicin for 2 days/week in addition to the

above components. Cells were cultured in a humidified

incubator with 95% air and 5% CO2 at 37°C. Doxorubicin

Figure 7 Globo Series GSLs Mediate MDR1 Transactivation. (A) Glycosphingolipids. Cells were cultured in 10% FBS RPMI-1640 medium and har-

vested by trypsin-EDTA. Extracted lipids (5 μl aliquot of 100 μl) were resolve by TLC and GSLs were visualized by spraying with diphenylamine-aniline 

phosphoric acid reagent. GlcCer, glucosylceramide. (B) Gb3, a receptor of verocytotoxin on GCS transfectants. Cells were incubated with increasing 

concentrations of verocytotoxin in 5% FBS RPMI-1640 medium for 72 hr. *, p < 0.001 compared to ADR-RES. (C) GEM GSLs. GEMs of cells were prepared 

with gradient sucrose and extracted lipids (100 μg of GEM protein) were applied to HPTLC plates. (D) cSrc phosphorylation in GEMs. Equal amounts 

of GEM protein (50 μg/lane) were resolved by 4-12% gradient SDS-PAGE and immunoblotted with antibodies. p-cSRc/cSrc represents optical densities 

of the bands; *, p < 0.001 compared with mock.
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hydrochloride was purchased from Sigma (St. Luis, MO).

NCI/ADR-RES cells transfected with human GCS gene

(NCI/ADR-RES/GCS) and GCS antisense (NCI/ADR-

RES/asGCS) were cultured in RPMI 1640 containing the

above components and G418 (400 μg/mL) [13,70].

Mixed-backbone oligonucleotide and inhibitors

A mixed-backbone oligonucleotide, designed to target the

ORF 18-37 of human GCS [34,71], was verified and desig-

nated as MBO-asGCS [35]. MBO-asGCS were 20-mer

phosphorothioate DNAs, except that four bases at the 5' end

and the 3' end were replaced by 2'-O-methyl RNA. MBO-

asGCS was synthesized and purified by reverse-phase

HPLC and desalting (Integrated DNA Technologies, Inc.,

Coralville, IA). The MBO-asGCS was introduced into cells

with Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA) in

Opti-MEM I reduced-serum medium (Invitrogen). To

repress MDR1 expression, cells were transfected with

MBO-asGCS (100 nM) twice and grown in 10% FBS

RPMI-1640 medium for 7 days. To inhibit P-gp function,

NCI/ADR-RES cells were exposed to verapamil (10 μM) in

5% RPMI-1640 at 37°C for 2 hr, before the analysis of

accumulation and efflux. Verapamil hydrochloride was pur-

chased from Sigma-Aldrich (St. Louis, MO).

To silence Gb3 synthase, NCI/ADR-RES and NCI/ADR-

RES/GCS cells were transfected with siRNA targeting

human Gb3 synthase (siRNA-Gb3S 100 nM) or scrambled

control siRNA (siRNA-SC 100 nM) twice and grown in

10% FBS RPMI-1640 medium for 7 days. The siRNA tar-

geting human Gb3 synthase and control siRNA-A were

purchased from Santa Cruz Biotechnology (Santa Cruz,

CA, USA). β-1,3-Gal-TL siRNA (sc-62006) was designed

to knockdown human β-1,3-galactosyltransferase (GeneID:

145173). Control siRNA-A was consists of a scrambled

sequence that will not lead to the specific degradation of

Figure 8 Gb3 Synthesis and β-Catenin Recruitment Are Involved in MDR1 Transactivation. To silence Gb3 synthase, cells were transfected with 

siRNA-Gb3S (100 nM) or control siRNA (siRNA-SC) twice and grown in 10% FBS RPMI-1640 medium for 7 days. (A) MDR1 promoter activity. *, P < 0.001 

compared with siRNA-SC. (B) Western blot. Gb3 syn, Gb3 synthase; p-cSrc, phosphorylated cSrc. (C) Cellular efflux. *, p < 0.001 compared with siRNA-

SC. (D) Immunostaining. Cells were incubated with anti-human Gb3 synthase (red) and anti-P-gp (green) following addition of Alexa 667- and Alexa 

488-conjugated secondary antibodies. DAPI in mounting solution was used for nucleus counterstaining (blue). Fluo., merged fluorescence micropho-

tograph (x 200). (E) β-catenin/Tcf4 on P-gp expression. NCI/ADR-RES cells were exposed to FH535, β-catenin/Tcf4 inhibitor in 5% FBS medium for 24 hr.
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Gb3. siRNAs (100 nM) were introduced into these cells

with Lipofectamine 2000.

A Src kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-

butyl) pyrazolo[3,4-d]pyrimidine (PP2) [37,38] was pur-

chased from Enzo Life Sciences (Plymouth Meeting, PA).

An effective β-catenin/Tcf inhibitor, FH535 [45] was pur-

chased from Sigma-Aldrich (St. Louis, MO). OVCAR-8/

GCS cells were incubated with PP2 (10 μM) in 5% RPMI-

1640 medium for 24 hr. NCI-ADR-RES cells were exposed

to FH535 (1 to 20 μM) in 5% RPMI-1640 medium for 24

hr.

Western blotting analysis

Western blotting was conducted as described previously

[13,17]. After treatments, cells or tissue homogenates were

lysed using NP40 cell lysis buffer (Biosource, Camarillo,

CA, US) to extract the total cellular protein for Western

blot. The nuclear proteins were extracted as described pre-

viously [72]. Briefly, cells were suspended in 100 μl of

Tween-20 lysis buffer (25 mM Tris/Hepes, pH 8.0, 250 mM

NaCl, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride,

0.5% Tween-20), and kept on ice for 15 min. The nuclei

were pelleted at 6000 g for 5 min at 4°C, and then resus-

pended in 100 μl of the lysis buffer containing 500 mM

NaCl and incubated on ice for additional 15 min. After

incubation, the samples were mixed with 100 μl of the lysis

buffer (without NaCl). The supernants were collected for

Western blotting following a spin-down at 10,000 g for 15

min. Equal amounts of these proteins (50 μg/lane) were

resolved using 4-20% gradient SDS-PAGE (Invitrogen).

The transferred blot was blocked with 5% fat-free milk in

PBS and immuno-blotted with primary antibodies (anti-

GCS goat IgG, anti-P-pg mouse, cSrc, phosphorylated cSrc,

phosphorylated FAK, β-catenin, phosphorylated β-catenin)

at 4°C, overnight. The antigen-antibody in blots was

detected by using a second antibody-conjugated HRP and

enzyme-linked chemiluminescence plus substrate (GE

Healthcare). GAPDH or β-tubulin was used as loading con-

trol for total proteins or nuclear proteins.

Immunohistochemistry

Cells (10,000 cells/chamber) were grown in 4-chamber

slides with 10% FBS culture medium for 48 hr. After meth-

anol fixation, cells were blocked and then incubated with

anti-GCS serum and anti-P-gp antibody (1:100) in block

solution (Vector Laboratories, Burlingame, CA), overnight

at 4°C. GCS antibody and P-gp antibody on cells were rec-

ognized by Alexa Fluor®488 goat anti-rabbit IgG and Alexa

Fluor 667 goat anti-mouse IgG (Invitrogen). Cell nuclei

were counterstained with DAPI (4', 6 diamidino-2-phe-

nylindole) in mounting solution (Vector Laboratories). The

slides were observed using a Nikon TE-2000 phase contrast

microscope, and the images were captured by a Retiga

2300™ monochrome digital camera using IPLab™ image

analysis program (Scanalytics Inc., Rockville, MD).

Cell viability assay

Cell viability was analyzed by quantitation of ATP, an indi-

cator of active cells using CellTiter-Glo luminescent cell

viability assay (Promega, Madison, WI), as described pre-

viously [17]. Briefly, cells (4,000 cells/well) were grown in

96-well plates with 10% FBS RPMI-1640 medium for 24

hr. MBO-asGCS (50 nM) was introduced into cells by

Lipofectamine 2000 (vehicle) in Opti-MEM reduced-serum

medium, for 4 hr. Cells were then incubated with increasing

concentrations of agents in 5% FBS medium for another 72

hr. Cell viability was determined by the measurement of

Figure 9 GSL Synthesis and MDR1 Expression. GCS, glucosylceramide synthase; GlcCer, glucosylceramide; Tcf4, T-cell factor 4; FAK, focal adhesion 

kinase; cSrc, proto-oncogene (Schmidt-Ruppin A-2); Gb3, globotriaosylceramide; Gb5, globopentaosylceramide; MSGb5, monosyl-Gb5.
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luminescent ATP using a Synergy HT microplate reader

(BioTek, Winnooski, VT. USA), following incubation with

CellTiter-Glo reagent (Promega, Madison, WI, USA).

Verocytotoxin was kindly provided by Dr. Clifford A.

Lingwood (University of Toronto and Hospital for Sick

Children, Toronto, Canada). After 24 hr growth in 96-well

plates, cells were incubated with verocytotoxin in 5% FBS

RPMI-1640 medium for an additional 72 hr.

Cellular ceramide glycosylation assay

Cells were grown 24 hr in 35-mm dishes (1 × 106 cells/dish)

in 10% FBS RPMI-1640 medium and MBO-asGCS (50

nM) was introduced as described above. After 12 hr growth

in 10% RPMI-1640 medium, cells were switched to 1%

bovine serum albumin (fatty acid free) medium containing

50 μM NBD C6-ceramide complexed to BSA (Invitrogen).

After 2 hr incubation at 37°C, lipids were extracted, and

resolved on partisil high performance TLC plates with fluo-

rescent indicator in a solvent system containing chloroform/

methanol/3.5 N ammonium hydroxide (85:15:1, v/v/v), as

described previously [17,73]. NBD C6-glucosylceramide

and NBD C6-ceramide were identified using AlphaImager

HP imaging system (Alpha Innotech, San Leandro, CA)

and quantitated on a Synergy HT multi-detection

microplate reader (BioTek). For quantitation, calibration

curves were established after TLC separation of NBD C6-

ceramide (Invitrogen) and NBD C6-glucosylceramide (N-

hexanol-NBD-glucosylceramide; Matreya, Pleasant Gap,

PA).

Glycosphingolipid analysis

Cells were cultured in 10% FBS RPMI-1640 medium and

harvested by trypsin-EDTA. Approximately 400 mg of pel-

leted cells was lyophilized and extracted twice with 4 ml of

chloroform/methanol (2/1, v/v). The two extracts were

combined, evaporated to dryness and subjected to saponifi-

cation by suspending the residue in 1 ml of 0.5 N NaOH.

After incubation at 55°C for 1 hr, the mixture was neutral-

ized with glacial acetic acid, evaporated to dryness, sus-

pended in 1 ml of water, exhaustively dialyzed against

water and lyophilized. The lyophilized powder was dis-

solved in 100 μl chloroform/methanol (2/1) and a 5-μl ali-

quot was spotted on a TLC plate (Merck, Darmstadt,

Germany). The plate was developed in chloroform/metha-

nol/12 mM MgCl2 (50/40/10, v/v/v), and GSLs were visual-

ized by spraying the plate with diphenylamine-aniline

phosphoric acid reagent as described previously [74].

GSLs on GEMs were prepared and analyzed in NCI/

ADR-RES/asGCS, OVCAR-8/GCS and each mock-trans-

fected cell lines, as described previously [58,75] with modi-

fication. Briefly, cells (1 × 107) were harvested, suspended

in 1 ml of lysis buffer containing 1% Triton X-100 (TX-

100), and 75 units of Aprotinin in TNEV solution (10 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM

NaVO4), homogenized and incubated on ice for 20 min.

Cell lysates were centrifuged for 5 min at 1300 g to remove

nuclei and large cellular debris. The supernatant collected

(700 μl) was mixed with equal volume (700 μl) of 85%

sucrose (wt/vol) in TNEV solution. The diluted Triton X-

100 lysates were overlaid with 30% (6 ml) and 5% (3.3 ml)

of sucrose TNEV solution in SW41 centrifuge tube. The

samples were centrifuged for 18 h at 200,000 g at 4°C.

White bands located at ~5-7% sucrose were collected as

GEM fraction and its protein content was determined using

BCA Protein Assay Kit. The lipids were extracted with

chlofrom/methanol/water (1:1:1, v/v/v) from 200 μg of

GEM protein. Extracted lipids were resuspended in cholo-

form-methanol (1:1, v/v) and applied to partisil HPTLC

plates. Lipids were resolved using the solvent system of

chloroform/methanol/water (65:25:4 v/v/v). Acid alcohol

(90% methanol/5% sulfuric acid, 5% acetic acid; Sigma-

Aldrich) was used for the chemical detection of glycosphin-

golipids. Neurtral glycospingolipids qualmix and ceramide

trihexosides (Gb3) were purchased from Matreya (Pleasant

Gap, PA) and used as standards in TLC.

High-pressure liquid chromatography (HPLC) analysis of 

doxorubicin

The concentrations of doxorubicin in cells, serum and

tumors were analyzed, as described previously with minor

modifications [76,77]. Cells (2.5 × 105 cells/well) were

grown in 6-well plates with 10% FBS RPMI-1640 medium.

After 24 hr, cells were shifted to medium containing doxo-

rubicin (100 μM) for 2 hr incubation, at 37°C. Following

ice-cold PBS rinsing, cellular doxorubicin was extracted

using 3 ml of methanol. For tumor samples, ~80 mg of tis-

sue was homogenized in 200 μl of ice-cold methanol. After

centrifugation (7,000 g, 10 min), the supernatant of samples

was injected into the HPLC system with an auto-sampler.

Doxorubicin was resolved on a Pecosphere C18 reversed-

phase column with mobile phase of 50 mM sodium phos-

phate buffer (pH 2.0):acetonitrile:1-propanol (65:25:2; v/v/

v; flow rate of 0.8 ml/min). Doxorubicin was detected with

the use of a scanning fluorescence detector at λexcitation 480

nm and λemission 550 nm. The retention time was approxi-

mately 7 minutes for doxorubicin. Standard curves were

linear within the range of 1 ng/ml to 100 ng/ml (equal to

0.002 ~ 0.17 μM). Samples containing high doxorubicin

concentrations were diluted as needed.

For the analysis of doxorubicin in serum, proteins were

precipitated with 10% trichloroacetic acid. The supernatant

obtained after centrifugation (7,000 g, 10 min) was used for

HPLC assay.

Paclitaxel accumulation and efflux

The measurements were performed as described previously

[78,79]. After treatments or transfection, cells were grown
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in 10% FBS RPMI-1640 medium for 24 hr and then shifted

to 5% FBS RPMI-1640 medium containing Fluotax-2 (Ore-

gon green 488 paclitaxel, 0.5 μM) and incubated at 37°C

for 2 hr. After ice-cold wash and trypsinization, accumula-

tion of paclitaxel was measured. For efflux, at the end of the

2 hr incubation, fresh media was added following wash and

re-incubated at 37°C for an additional 2 hr. Fluorescent

paclitaxel was measured at λexcitation 485 nm and λemission 529

nm using a Synergy HT microplate reader. Cellular accu-

mulation of paclitaxel was normalized to cell number and

paclitaxel added (total intensity). The efflux was normal-

ized against accumulated paclitaxel in cells. Flutax-2 (Ore-

gon green 488 paclitaxel) was purchased from Invitrogen.

After two MBO-asGCS administrations (1 mg/kg every

3-days, ip, 3 mice/group), the small intestine (ileum) and

tumors were resected. Tissues (25 mg/reaction) were incu-

bated with fluorescent paclitaxel (1.0 μM) in 200 μl of 1%

BSA RPMI-1640 medium containing collagenase IV,

immediately following mincing. Accumulation of pacli-

taxel was measured after 2 hr incubation and 3 times of

washes with ice-cold PBS. For efflux, samples were incu-

bated with fresh medium for an additional 2 hr following

accumulation and washed 3 times with ice-cold PBS.

Drug-resistant tumor models and treatments

Drug-resistant NCI/ADR-RES tumors were established by

using the methods described previously [35,80]. Athymic

nude mice (Foxn1nu/Foxn1+, 4-5 weeks, female) were pur-

chased from Harlan (Indianapolis, IN) and maintained in

the Vivarium, University of Louisiana at Monroe, accord-

ing to the approved protocol. Cultured cells after 3 to 5 pas-

sages were washed with and resuspended in serum-free

RPMI-1640 medium. A suspension of NCI/ADR-RES cells

(1 × 106 cells in 20 μl per mouse) was injected into the left

flank of the mouse. The mice were monitored by measuring

tumor growth, body weight and clinical observation.

Tumor-bearing mice were randomly divided into multiple

treatment and control groups (ten mice per group). MBOs,

dissolved in RPMI 1640 medium were given at the dose of

1 mg/kg, twice per week, at the tumor site. The control

group received medium only. In combination therapy, dox-

orubicin was given by intraperitoneal injection at 2 mg/kg

once a week with medium or MBOs for 42 days, respec-

tively.

Tumors were removed, fixed and maintained in paraffin

blocks. Microsections from each tumor (5 μm) were H&E

stained and identified by pathologist (Dr. J. Bao). For

immunostaining, antigens were retrieved in steaming

sodium citrate buffer (10 mM, 0.05% Tween-20, pH 6.0, 10

min). After blocking with 2% block solution (Vector Labo-

ratories, Burlingame, CA), the slides were incubated with

primary antibodies (1:100) at 4°C, overnight.

MDR1 promoter assay

The human MDR1 promoter reporter, pMDR1 [81] was

kindly provided by Dr. Kathleen W. Scotto (University of

Medicine and Dentistry of New Jersey, New Brunswick,

NJ). MDR1 promoter (sequence from -1202 to +118) drives

luciferase expression from pGL2B. After treatments or

transfection, cells (2.5 × 105 cells/well) were placed into 6-

well plates with 10% FBS RPMI-1640 medium. After 24 hr

culture, pMDR1 plasmid (4 μg/well) and pGL4 renilla

luciferase reporter driven by thymidine kinase promoter

(pGL4-hRluc/TK; 4 μg/well) were introduced into cells

with Lipofectamine 2000 and cells were cultured in 10%

FBS medium for additional 48 hr. Cell lysates were incu-

bated with Dual-luciferase reporter assay system reagents

(Promega). The intensities of firefly luciferase (MDR1 pro-

moter activity) and renilla luciferase (TK promoter activity)

were measured using a Synergy HT multidetection

microplate reader. MDR1 promoter activity was normalized

to protein and TK promoter.

Statistic analysis

All data represent the mean ± SD. Experiments in triplicate

were repeated 2 or 3 times in cell models. Student's t test

was used to compare mean values, using a Prism 4 program

(GraphPad software, San Diego, CA).
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