
MNRAS 468, 1273–1299 (2017) doi:10.1093/mnras/stx173

Advance Access publication 2017 January 23

Growing supermassive black holes in the late stages of galaxy mergers

are heavily obscured

C. Ricci,1,2,3‹ F. E. Bauer,1,2,4,5 E. Treister,1,2 K. Schawinski,6 G. C. Privon,1,2

L. Blecha,7 P. Arevalo,8 L. Armus,9 F. Harrison,10 L. C. Ho,3,11 K. Iwasawa,12,13

D. B. Sanders14 and D. Stern15

1Facultad de Fı́sica, Instituto de Astrofı́sica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, 8970117 Chile
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ABSTRACT

Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which

can activate rapid accretion on to supermassive black holes (SMBHs), giving rise to active

galactic nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to

be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local luminous

and ultraluminous infrared galaxies in different merger stages in the hard X-ray band, where

radiation is less affected by absorption, we find that the amount of material around SMBHs

increases during the last phases of the merger. We find that the fraction of Compton-thick

(CT, NH ≥ 1024 cm−2) AGN in late-merger galaxies is higher (fCT = 65+12
−13 per cent) than

in local hard X-ray selected AGN (f CT = 27 ± 4 per cent), and that obscuration reaches

its maximum when the nuclei of the two merging galaxies are at a projected distance of

D12 ≃ 0.4–10.8 kpc (fCT = 77+13
−17 per cent). We also find that all AGN of our sample in

late-merger galaxies have NH > 1023 cm−2, which implies that the obscuring material covers

95+4
−8 per cent of the X-ray source. These observations show that the material is most effec-

tively funnelled from the galactic scale to the inner tens of parsecs during the late stages of

galaxy mergers, and that the close environment of SMBHs in advanced mergers is richer in

gas and dust with respect to that of SMBHs in isolated galaxies, and cannot be explained by

the classical AGN unification model in which the torus is responsible for the obscuration.

Key words: galaxies: active – galaxies: nuclei – quasars: general – galaxies: Seyfert – infrared:

galaxies – X-rays: general.

1 IN T RO D U C T I O N

Over the past 20 years, accumulated evidence shows that galaxies

and the supermassive black holes (SMBHs) at their centres grow

together (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Kormendy

⋆ E-mail: cricci@astro.puc.cl

& Ho 2013) during a phase in which the SMBH is accreting matter

and is observed as an active galactic nucleus (AGN). It is how-

ever still uncertain how accretion on to SMBHs is triggered, since

the gas and dust need to lose ∼99 per cent of their angular mo-

mentum before reaching the vicinity of the SMBH (e.g. Shlosman,

Begelman & Frank 1990). The merger of two or more galaxies has

been long thought to be one of the main mechanisms capable of

funnelling material from the kpc- to the pc-scale environment of
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SMBHs, while simultaneously triggering vigorous star formation

(Sanders et al. 1988). This has been predicted by analytical stud-

ies as well as by numerical simulations (e.g. Di Matteo, Springel

& Hernquist 2005), which indicate that tidal torques lead to the

inflow of gas into the innermost regions (Hernquist 1989). In agree-

ment with this idea, Treister et al. (2012) found that the fraction

of AGNs in mergers increases with the AGN luminosity (see also

Bessiere et al. 2012; Schawinski et al. 2012; Hickox et al. 2014;

Glikman et al. 2015), and observations of optically selected (Ellison

et al. 2011), IR-selected (Satyapal et al. 2014) and X-ray-selected

(Silverman et al. 2011; Koss et al. 2012) samples of pairs have

shown that the fraction of dual AGN is larger in systems with

close companions. Studies of radio-loud AGN have also shown that

galaxy interactions might play a role in triggering AGN activity

(Ramos Almeida et al. 2011), as well as in the formation of strong

jets (Chiaberge et al. 2015).

One of the main predictions of merger-triggered accretion is that

during the final phases of a merger most of the accretion would

happen when the SMBH is completely enshrouded by gas and dust

(e.g. Hopkins et al. 2006). Recent studies have also shown that

there seems to be an increase in the amount of obscuring mate-

rial in mergers of galaxies. Studying pairs of galaxies, Satyapal

et al. (2014) found that there is an enhanced fraction of IR-selected

AGN with respect to optically selected AGN in advanced mergers,

which suggests that a large number of objects are missed by optical

classification because they are heavily obscured.

Studying galaxies at z ∼ 1, Kocevski et al. (2015) found an

increase in the fraction of galaxies undergoing mergers, or with

interactions signatures, in AGN with NH ≥ 3 × 1023 cm−2 with re-

spect to unobscured AGN. Tentative evidence of an excess of merg-

ing systems in AGN with NH ≥ 2 × 1023 cm−2 was found by Del

Moro et al. (2016) studying mid-IR quasars at z ∼ 2. Analysing

the X-ray spectra of heavily obscured AGN in the COSMOS field,

Lanzuisi et al. (2015) found evidence of an increase in the fraction of

mergers in CT sources with respect to X-ray-selected samples. Koss

et al. (2016b) also discussed a possible increase in the fraction of

advanced mergers in Compton-thick (CT, NH ≥ 1024 cm−2) AGN,

finding that 2 out of 9 CT AGN selected by using the spectral cur-

vature approach are in close mergers (D12 < 10 kpc). This fraction

(26+14
−12 per cent)1 is higher than that typically found for Swift/BAT

(Burst Alert Telescope) AGN (8 ± 2 per cent; Koss et al. 2010).

With the aim of understanding how galaxy mergers affect the en-

vironment of AGN, we have studied a sample of 30 luminous2 and

ultraluminous3 IR galaxies (U/LIRGs) in different merger stages

(for a total of 52 individual galactic nuclei) at hard X-ray energies

(≥10 keV). Hard X-rays are one of the best energy bands to detect

and characterize the most obscured and possibly CT AGN, due to

the lower opacity of the obscuring material with respect to softer

X-ray energies. The recent launch of the NASA mission Nuclear

Spectroscopic Telescope Array (NuSTAR; Harrison et al. 2013),

the first focusing hard X-ray (3–79 keV) telescope in orbit, has

allowed the study of even some of the most obscured and elu-

sive growth episodes of AGN (e.g. Baloković et al. 2014; Gandhi

et al. 2014; Lansbury et al. 2014, 2015; Annuar et al. 2015; Bright-

man et al. 2015; Boorman et al. 2016; Ricci et al. 2016a,b). The ob-

jects in our sample were selected from the Great Observatories All-

1 The value was calculated following Cameron et al. (2012), and the uncer-

tainties represent the 16th and 84th quantiles of a binomial distribution.
2 L IR(8−1000 µm) = 1011−1012 L⊙.
3 L IR(8−1000 µm) > 1012 L⊙.

sky LIRG Survey (GOALS; Armus et al. 2009). GOALS is a local

(z < 0.088) galaxy sample selected from the Infrared Astronomical

Satellite (IRAS) revised bright Galaxy Survey (Sanders et al. 2003).

The sample has a rich collection of ancillary data, from the radio

to the X-rays (e.g. Inami et al. 2010; Iwasawa et al. 2011b; Petric

et al. 2011; Romero-Cañizales et al. 2012; Dı́az-Santos et al. 2013;

Stierwalt et al. 2013; Privon et al. 2015, 2017), and the IRAS infrared

selection guarantees that the sample is not biased by obscuration.

In this work, we report the results of broad-band X-ray spec-

troscopy for all the U/LIRGs of the sample by combining NuS-

TAR and Swift/BAT data with archival Chandra, XMM–Newton and

Swift/X-ray telescope (XRT) data. From X-ray spectroscopy and

multiwavelength properties, clear evidence of AGN emission is

found in 25 nuclei, of which 13 are early mergers and 12 are late

mergers. The X-ray spectra of these AGN were self-consistently

modelled to take into account both absorption (including Comp-

ton scattering and photoelectric absorption) and reprocessing of the

X-ray radiation from the circumnuclear material. This approach

provides strong constraints on the line-of-sight column density. The

paper is structured as follows. In Section 2, we describe the sam-

ple of galaxies used and the different merger stages, in Section 3

we report details about the X-ray data used and the data reduc-

tion, and in Section 4 we discuss the spectral fitting procedure

adopted. The observed increase in the fraction of CT AGN along

the merger sequence (with advanced mergers being typically more

obscured than isolated galaxies) is discussed in Section 5, while in

Section 6 we summarize our results and present our conclusions.

In a forthcoming paper (Ricci et al. in preparation), we will dis-

cuss the relation between the multiwavelength properties of the

U/LIRGs of our sample and the bolometric luminosity of the AGN.

Throughout the paper, we adopt standard cosmological parameters

(H0 = 70 km s−1 Mpc−1, �m = 0.3, �� = 0.7). Unless otherwise

stated, all uncertainties are quoted at the 90 per cent confidence

level.

2 SA M P L E A N D M E R G E R STAG E S

The GOALS sample contains 180 LIRGs and 22 ULIRGs selected

from the IRAS revised bright Galaxy Sample (Sanders et al. 2003),

which is a complete sample of extragalactic objects with 60 µm

flux >5.24 Jy. The galaxies in GOALS represent a large, sta-

tistically complete sample of U/LIRGs. Objects in GOALS have

been observed by Spitzer and Herschel (Inami et al. 2010, 2013;

Dı́az-Santos et al. 2011, 2013, 2014; Petric et al. 2011; Stierwalt

et al. 2013, 2014). Our sample contains all GOALS sources ob-

served by NuSTAR and for which data were available as of 2016

March. This includes: i) sources located at <120 Mpc, and with

log(L IR/L⊙) > 11.3, amongst which ten LIRGs in different merger

stages that were awarded to our group during AO–1 (for a total

of 200 ks, PI: F. E. Bauer); ii) the nearest (z < 0.078) ULIRGs

from Sanders et al. (2003) (see Teng et al. 2015 for details); iii)

sources detected by Swift/BAT and observed as a part of the cam-

paign aimed at characterising local hard X-ray selected sources

with NuSTAR. We excluded the four U/LIRGs classified as non-

mergers (N stage) by Stierwalt et al. (2013) since we are inter-

ested in studying the evolution of obscuration along the merger

sequence. We also included three systems (IRAS F23007+0836,

IRAS 23262+0314, IRAS F13197−1627) that were detected at

hard X-rays by Swift/BAT (Baumgartner et al. 2013) but have not

been observed by NuSTAR, to avoid any possible bias in the NuSTAR

selection of BAT sources.

MNRAS 468, 1273–1299 (2017)
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Figure 1. Merger stages of U/LIRGs from the GOALS sample. HST images of four systems in different merger stages: IRAS F11231+1456 (stage A, F435W),

ESO 069−IG006 (stage B, F435W), NGC 6090 (stage C, F814N) and IRAS F23365+3604 (stage D, F435W). Objects in stage A and B are early mergers

while those in stage C and D are late mergers (see Section 2).

We divided GOALS galaxies into four subsamples, based on the

merger stage determined by Stierwalt et al. (2013) and Haan et al.

(2011) from visual inspection of Spitzer IRAC 3.6 µm and Hubble

Space Telescope (HST) images (see Fig. 1 and Table 1). The merger

sequence we considered is the following:

Stage A are systems in pre-merger, i.e. galaxy pairs prior to a first

encounter.

Stage B are objects in the initial phases of merger, i.e. galaxies after

the first encounter, with galaxy discs still symmetric and showing

signs of tidal tails.

Stage C are systems in the mid-stage of merger, showing amorphous

discs, tidal tails and other signs of merger activity.

Stage D are sources in the final merger stages, showing the two

nuclei in a common envelope or only a single nucleus.

Objects in stage A and B can be considered early mergers, and

those in stage C and D late mergers. We used the merger classifica-

tions provided by Stierwalt et al. (2013), with the exception of the

following three systems.

(i) IRAS F14544−4255 (IC 4518A and IC 4518B) is in the

GOALS sample but, while Spitzer imaging is available, this system

was not classified by Stierwalt et al. (2013). Optical and IR im-

ages show that the two galaxies are clearly separated (36 arcsec or

12.0 kpc) and show signs of tidal interactions (see Appendix A21).

They were therefore classified as being in stage B.

(ii) IRAS F18293−3413 is classified as being in stage C by

Stierwalt et al. (2013). HST imaging (Fig. 2) shows, however, that

the two systems do not share a common envelope, and the source

was classified as being in a pre-merger stage by Haan et al. (2011).

Given the much smaller size of the companion object, we reclassify

this object as stage N.

(iii) IRAS F21453−3511 (NGC 7130), which was initially clas-

sified as a non-merger, has been recently shown to present post-

merger features by Davies et al. (2014). We therefore reclassify this

source as stage D with a single nucleus.

Overall our sample consists of 30 systems, of which 8 show a

single nucleus and the remaining 22 show two nuclei, for a total

of 52 galactic nuclei. Our sample is a representative subsample of

GOALS galaxies. The histogram of the 8–1000 µm luminosities

(L IR) of all objects in the GOALS sample and of the GOALS galax-

ies in our sample are showed in the top panel of Fig. 3 (blue and

red lines, respectively). The two samples have similar luminosities,

and performing a Kolmogorov–Smirnov (KS) test we find a p-value

of 0.13, which implies that our sample does not have a distribu-

tion of L IR significantly different from that of the GOALS sample.

Similarly, the distribution of distances of our sample does not differ

from that of GOALS galaxies (bottom panel of Fig. 3), and the KS

test results in a p-value of 0.91. The two panels of Fig. 3 also show

the distributions of the AGN in our sample (black lines). A KS test

between the luminosity (distance) distributions of AGN and of all

the galaxies in the GOALS sample shows that the two samples are

not significantly different, resulting in a p-value of 0.16 (0.60).

The sample objects, together with their merger stage and the

distance between the two nuclei are reported in Table 1. The images

of the objects of our samples are shown in Figs 4–8. NuSTAR

observations of 15 systems have been studied before, and for these

objects we report the results from the literature in Table 2.

MNRAS 468, 1273–1299 (2017)
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Table 1. Sample used for our work. The table shows (1) the IRAS name of the source, (2) the counterparts, (3) the redshift, (4) the

merger stage and (5) the separation between the two nuclei in arcsec and (6) in kpc. In (5) and (6), we report ‘S’ for objects for which a

single nucleus is observed.

(1) (2) (3) (4) (5) (6)

IRAS name Source z M D12 (arcsec) D12 (kpc)

F00085−1223 NGC 34 0.019617 D S S

F00163−1039 Arp 256 & MCG−02 − 01 −052 0.027152 B 56.1 33.1

F00506+7248 MCG+12−02 −001 0.015698 C 0.9 0.3

F02069−1022 NGC 833 & NGC 835 0.012889 A 55.9 15.7

F05054+1718 CGCG 468−002E & CGCG 468−002W 0.018193 B 29.6 11.3

F05189−2524 IRAS 05189−2524 0.042563 D S S

F08572+3915 IRAS 08572+3915 (NW & SE) 0.058350 D 4.4 5.6

F09320+6134 UGC 05101 0.039367 D S S

F09333+4841 MCG+08−18 −013 & MCG+08−18 −012 0.025941 A 66.5 35.4

F10015−0614 NGC 3110 & MCG−01 − 26 −013 0.016858 A 108.9 37.7

F10257−4339 NGC 3256 0.009354 D 5.1 1.0

F10565+2448 IRAS 10565+2448 0.043100 D 7.4 6.7

F11257+5850 Arp 299 (NGC3690W & NGC3690E) 0.010220 C 21.3 4.6

F12043−3140 ESO 440−IG058N & ESO 440−IG058S 0.023413 B 12.0 5.9

F12540+5708 Mrk 231 0.042170 D S S

F12590+2934 NGC 4922N & NGC 4922S 0.023169 C 21.2 10.8

13120−5453 IRAS 13120−5453 0.030761 D S S

F13197−1627 MCG−03 − 34 −064 & MCG−03 − 34 −063 0.021328 A 106.2 37.7

F13428+5608 Mrk 273 0.037780 D 0.9 0.7

F14378−3651 IRAS 14378−3651 0.067637 D S S

F14544−4255 IC 4518A & IC 4518B 0.016261 B 36.0 12.0

F15327+2340 Arp 220W & Arp 220E 0.018126 D 1.0 0.4

F16504+0228 NGC 6240N & NGC 6240S 0.024480 D 1.4 0.7

F16577+5900 NGC 6286 & NGC 6285 0.018349 B 91.1 35.8

F17138−1017 IRAS F17138−1017 0.017335 D S S

20264+2533 MCG +04 − 48 −002 & NGC 6921 0.013900 A 91.4 27.1

F21453−3511 NGC 7130 0.016151 D S S

F23007+0836 NGC 7469 & IC 5283 0.016317 A 79.7 26.8

F23254+0830 NGC 7674 & NGC 7674A 0.028924 A 34.1 20.7

23262+0314 NGC 7679 & NGC 7682 0.017139 A 269.7 97.3

Figure 2. HST image of IRAS F18293−3413 (HST F814W; 5 arcsec ≃

1.8 kpc).

3 X - R AY O B S E RVAT I O N S A N D DATA

R E D U C T I O N

We analysed the X-ray observations of 16 systems, using

XMM–Newton (Section 3.2), Chandra (Section 3.3), NuSTAR

(Section 3.1), Swift/BAT and Swift/XRT data (Section 3.4). The

observation log of our sample is reported in Table 3. Details about

the analysis of all sources are reported in Appendix A. The angular

separation between the nuclei and the relation with the extraction

regions used for the different instruments are discussed in detail in

Appendix A for every source analysed here.

3.1 NuSTAR

We studied here the 13 observations carried out by the NuSTAR

(Harrison et al. 2013) not studied before. Of these, nine were ob-

served as a part of a dedicated campaign awarded to our group

during NuSTAR AO-1 (PI F. Bauer). The NuSTAR data were pro-

cessed using the NuSTAR Data Analysis Software NUSTARDAS v1.4.1

within HEASOFT V6.16, adopting the calibration files released on UT

2015 March 16 (Madsen et al. 2015). A circular region of 45 arcsec

was used for the sources, while the background was extracted from

an annulus centred on the X-ray source, with an inner and outer

radius of 50 and 100 arcsec, respectively. In none of the NuSTAR

observations analysed here are two AGN confused or within the

same extraction region. This is due to the fact that (i) no nucleus

was detected by NuSTAR; (ii) one nucleus only was detectable by

NuSTAR; (iii) if both nuclei were detectable, they were at a distance

sufficient to avoid confusion.

3.2 XMM–Newton

XMM–Newton (Jansen et al. 2001) observations of seven systems

of our sample were available. We analysed EPIC/PN (Strüder

et al. 2001) and MOS (Turner et al. 2001) data by reducing the

original data files using XMM–Newton Standard Analysis Software

MNRAS 468, 1273–1299 (2017)
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Figure 3. Top panel: histogram of the 8–1000 µm luminosity (L IR) of all

the systems in the GOALS sample (blue empty histogram), of the GOALS

objects in our sample (red histogram) and of the AGN in our sample (black

filled histogram). Bottom panel: same as top panel for the distances.

(SAS) version 12.5.0 (Gabriel et al. 2004). The raw PN and MOS

data files were then reduced using the epchain and emchain

tasks, respectively.

The observations were then filtered for periods of high back-

ground activity by analysing the EPIC/PN and MOS background

light curves in the 10–12 keV band and above 10 keV, respectively.

For both cameras, we extracted the spectra of the sources using a

circular region of 25 arcsec radius, while the background was ex-

tracted from a circular region of 40 arcsec radius, located on the

same CCD of the source and in a zone where no other source was

found.

For all the XMM–Newton observations analysed here, with the

exception of IRAS F14544−4255, the two nuclei are at a distance

larger than the size of the extraction region used. In the case of

IRAS F14544−4255, the two galaxies are separated by ∼36 arcsec

from each other, and we used a radius of 5 arcsec (20 arcsec) for

the spectral extraction of IC 4518B (IC 4518A).

3.3 Chandra

Chandra (Weisskopf et al. 2000) ACIS (Garmire et al. 2003) ob-

servations are available for 10 sources in our sample. Most of these

observations were carried out as a part of the campaign aimed

at following up GOALS sources (PI: D. Sanders, see Iwasawa

et al. 2011b and Torres Albà et al. in preparation for details). We

reduced Chandra ACIS data following standard procedures, us-

ing CIAO v.4.6. All data were reprocessed using the CHANDRA_REPRO

task. For the extraction we used a circular region with a radius

of 10 arcsec, which included all the X-ray emission associated

with the objects. A circular region with the same radius, selected

in region where no other source was detected was used for the

background.

3.4 Swift XRT and BAT

Data from the XRT (Burrows et al. 2005) on board Swift were used

only for IRAS F05054+1718. Swift/XRT data analysis was per-

formed using the XRTPIPELINEV0.13.0 within HEASOFT V6.16 following

the standard guidelines. Swift/BAT time-averaged spectra were used

for two systems (IRAS F23007+0836 and IRAS F13197−1627),

and were taken from the latest release of the Swift/BAT catalogue

(Baumgartner et al. 2013).

4 X -RAY SPECTRAL ANALYSI S

The X-ray spectral analysis was carried out within XSPEC v.12.8.2

(Arnaud 1996). Galactic absorption in the direction of the source

was added to all models using the Tuebingen–Boulder interstellar

matter absorption model TBABS (Wilms, Allen & McCray 2000),

fixing the column density (N Gal
H ) to the value reported by Kalberla

et al. (2005) for the coordinates of the source. Abundances were

fixed to solar values. Spectra were typically rebinned to 20 counts

per bin in order to use χ2 statistics. Cash statistics (Cash 1979) were

used to fit Chandra spectra, and the source spectra were binned to

have one count per bin, in order to avoid issues related to empty

bins in XSPEC.

We used a variety of spectral models to reproduce the X-ray

emission from the galaxies in our sample. To model the underlying

stellar processes, which can lead to X-ray emission in U/LIRGs,

we used a thermal plasma (APEC in XSPEC) and a power-law com-

ponent (ZPOWERLAW), which reproduce X-ray emission from hot

plasma gas and an underlying population of X-ray binaries, re-

spectively. The free parameters of the APEC model are the temper-

ature (kT) and the normalization (n apec), while for the power-law

component they are the photon index (Ŵ) and the normalization

(n po). If required by the data, we added photoelectric absorption

(ZPHABS) to the thermal plasma and the X-ray binary emission.

The only free parameter of this component is the column density

(N SF
H ).

From X-ray spectroscopy and multiwavelength properties evi-

dence of AGN emission is found in 25 nuclei, of which 13 are early

mergers and 12 are late mergers. While we cannot completely ex-

clude the presence of low-luminosity or heavily obscured AGN in

the systems for which no evidence of AGN activity is found, the

X-ray spectra of all the sources analysed here (with the exception

of IRAS F17138−1017) have characteristics consistent with those

of star-forming regions in the X-ray band. We refer the reader to

Appendix A for a detailed discussion on the presence of accreting

SMBHs and on the X-ray and multiwavelength properties of all

sources of our sample.

In order to self-consistently reproduce absorbed and reprocessed

X-ray radiation from the circumnuclear material of the AGN,

we used the torus model developed by Brightman & Nandra

(2011), which considers an X-ray source surrounded by a spherical-

toroidal structure (ATABLE{TORUS1006.FITS}). This model was de-

veloped from ray-tracing simulations and reproduces the main

MNRAS 468, 1273–1299 (2017)



1278 C. Ricci et al.

Figure 4. Fields around IRAS F00085−1223 (HST F435W; 5 arcsec ≃ 1.9 kpc), IRAS F00163−1039 (HST F435W; 10 arcsec ≃ 5.9 kpc), IRAS F00506+7248

(HST F110W; 2 arcsec ≃ 0.7 kpc), IRAS F02069−1022 (SDSS r band; 15 arcsec ≃ 4.2 kpc), IRAS F05054+1718 (UKIDSS K band; 15 arcsec ≃ 5.7 kpc),

IRAS F05189−2524 (HST F435W; 2 arcsec ≃ 1.8 kpc). In all images, north is to the top and east is to the left.

features arising from the reprocessing of the primary X-ray ra-

diation from neutral material (e.g. Matt, Perola & Piro 1991; Mur-

phy & Yaqoob 2009): a narrow Fe Kα line at 6.4 keV (e.g. Shu,

Yaqoob & Wang 2010; Ricci et al. 2014) and the Compton hump at

∼20–30 keV (e.g. Koss et al. 2016b). These features are particu-

larly prominent in CT AGN, due to the fact that most of the primary

X-ray emission is obscured. The free parameters of the torus model

we used here are the column density (N H), the photon index (Ŵ) and

MNRAS 468, 1273–1299 (2017)
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Figure 5. Fields around IRAS 08572+3915 (HST F435W; 3 arcsec ≃ 3.8 kpc), IRAS F09320+6134 (HST F435W; 5 arcsec ≃ 4.1 kpc), IRAS F09333+4841

(SDSS r band; 15 arcsec ≃ 8.0 kpc), IRAS F10015−0614 (Spitzer/IRAC 3.6 µm; 20 arcsec ≃ 6.9 kpc), IRAS 10257−4339 (HST F814W; 3 arcsec ≃ 0.6 kpc),

and IRAS 10565+2448 (HST F435W; 3 arcsec ≃ 2.7 kpc). In all images, north is to the top and east is to the left.

the normalization (n) of the primary X-ray emission. In this model,

N H does not vary with the inclination angle, which we set to the

maximum value permitted (θ i = 87.1 deg). The model allows also

to vary the half-opening angle of the torus (θ OA). This component

was fixed to θ OA = 60 deg whenever it could not be constrained.

In obscured AGN, a second, unabsorbed, power-law component is

often observed emerging at energies lower than the photoelectric

cutoff. This component has often been associated with Thomson
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Figure 6. Fields around IRAS 11257+5850 (HST F435W; 5 arcsec ≃ 1.1 kpc), IRAS 12043−3140 (Spitzer/IRAC 3.6 µm; 10 arcsec ≃ 4.9 kpc),

IRAS F12540+5708 (SDSS g band; 10 arcsec ≃ 8.8 kpc), IRAS F12590+2934 (Spitzer/IRAC 3.6 µm; 10 arcsec ≃ 5.1 kpc), IRAS 13120−5453 (HST

F435W; 5 arcsec ≃ 3.2 kpc) and IRAS F13197−1627 (Spitzer/IRAC 3.6 µm; 20 arcsec ≃ 7.1 kpc). In all images, north is to the top and east is to the left.

scattering of the primary X-ray radiation from ionized gas (e.g.

Ueda et al. 2007). To take into account this feature, which could

be confused with the emission arising from a population of X-ray

binaries, when an AGN is present we fixed the photon index of

the second power-law component to the value of the AGN primary

X-ray emission. The amount of scattered radiation is parametrized

in terms of f scatt, which is the ratio between the normalizations of

the scattered component and of the primary X-ray emission.
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Figure 7. Fields around IRAS 13428+5608 (HST F814W; 5 arcsec ≃ 3.9 kpc), IRAS 14378−3651 (HST F435W; 2 arcsec ≃ 2.9 kpc), IRAS 14544−4255

(Spitzer/IRAC 3.6 µm; 10 arcsec ≃ 3.3 kpc), IRAS 15327+2340 (HST F814W; 5 arcsec ≃ 2 kpc), IRAS 16504+0228 (HST F814W; 5 arcsec ≃ 2.5 kpc),

IRAS F16577+5900 (Spitzer/IRAC 3.6 µm; 20 arcsec ≃ 7.9 kpc). In all images, north is to the top and east is to the left.

The results obtained by our spectral analysis are summarized in

Table 4. Details about the spectral fitting and the multiwavelength

properties of the galaxies of our sample are reported in Appendix A,

while the X-ray spectra are illustrated in Appendix B.

5 D I SCUSSI ON

The broad-band X-ray spectral analysis of the objects in our sam-

ple shows that AGN in advanced merger stages are typically more

obscured than AGN in isolated galaxies or in galaxies in the early

MNRAS 468, 1273–1299 (2017)
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Figure 8. Fields around IRAS F17138−1017 (HST F110W; 5 arcsec ≃ 1.8 kpc), IRAS 20264+2533 (Spitzer/IRAC 3.6 µm; 10 arcsec ≃ 3.0 kpc),

IRAS 21453−3511 (HST F606W; 5 arcsec ≃ 1.5 kpc), IRAS 23007+0836 (Spitzer/IRAC 3.6 µm; 15 arcsec ≃ 5.0 kpc), IRAS 23254+0830 (HST F435W;

5 arcsec ≃ 3.0 kpc) and IRAS 23262+0314 (Spitzer/IRAC 3.6 µm; 10 arcsec ≃ 3.6 kpc). In all images, north is to the top and east is to the left.

stages of mergers (Fig. 9). In Fig. 10, we illustrate the average

normalized spectral models of AGN in galaxies in early (red con-

tinuous line) and late (black dashed line) merger stage. The image

clearly illustrates that the main features indicating heavy obscura-

tion, the Fe Kα line and Compton hump, are stronger in AGN in

late-merger stage galaxies. We find that AGN in late-merger stage

galaxies host a significantly (99 per cent confidence) larger frac-

tion of CT AGN (65+12
−13 per cent) compared to local hard X-ray

selected AGN (27 ± 4 per cent, Ricci et al. 2015; see also Burlon

et al. 2011), which are mostly found in non-merging systems.4 The

4 Only 8 ± 2 per cent of Swift/BAT AGN are found in close mergers (Koss

et al. 2010).
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Table 2. The table reports (1) the IRAS name, (2) the counterparts, (3) the values of the column density in the direction of the AGN

reported in the literature and (4) the reference for N H.

(1) (2) (3) (4)

IRAS name Source N H (1022 cm−2) Reference

F02069−1022 NGC 833 28 ± 3 Oda et al. (in preparation)

NGC 835a 55+15
−10 Oda et al. (in preparation)

NGC 835b 30 ± 2 Oda et al. (in preparation)

F05189−2524 IRAS 05189−2524 12.7+1.0
−0.7 Teng et al. (2015)

F08572+3915 IRAS 08572+3915 – Teng et al. (2015)

F09320+6134 UGC 5101 132+32
−37 Oda et al. (2017)

F10257−4339 NGC 3256 – Lehmer et al. (2015)

F10565+2448 IRAS 10565+2448 – Teng et al. (2015)

F11257+5850 NGC 3690W 350NC
−20 Ptak et al. (2015)

F12540+5708 Mrk 231 14.5+3.1
−2.4 Teng et al. (2014)

13120−5453 IRAS 13120−5453 316+233
−129 Teng et al. (2015)

F13428+5608 Mrk 273 44+10
−6 Teng et al. (2015)

F14378−3651 IRAS 14378−3651 – Teng et al. (2015)

F15327+2340 Arp 220W ≥530 Teng et al. (2015)

F16504+0228 NGC 6240N 155+72
−23 Puccetti et al. (2016)

NGC 6240S 147+21
−17 Puccetti et al. (2016)

F16577+5900 NGC 6286 111+109
−41 Ricci et al. (2016a)

F23254+0830 NGC 7674 �300 Gandhi et al. (2016)

Notes. NC: value not constrained; aXMM–Newton observation; bNuSTAR and Chandra observation.

Table 3. X-ray observations log. The columns report (1) the IRAS name of the source, (2) the counterparts, (3) the X-ray facility, (4)

the observation ID and (5) the exposure time. For XMM–Newton, the exposures listed are those of EPIC/PN, MOS1 and MOS2, while

for NuSTAR those of FPMA and FPMB.

(1) (2) (3) (4) (5)

IRAS name Source Facility Observation ID Exposure (ks)

F00085−1223 NGC 34 NuSTAR 60101068002 21.4/21.4

Chandra 15061 14.8

XMM–Newton 0150480501 12.0/16.7/17.2

F00163−1039 Arp 256 & MCG−02 − 01 −052 NuSTAR 60101069002 20.5/20.5

Chandra 13823 29.6

F00506+7248 MCG+12−02 −001 NuSTAR 60101070002 25.5/25.5

Chandra 15062 14.3

F05054+1718 CGCG 468−002E & CGCG 468−002W NuSTAR 60006011002 15.5/15.5

Swift/XRT 49706 72.1

F09333+4841 MCG+08−18 −013 & MCG+08−18 −012 NuSTAR 60101071002 19.1/19.1

Chandra 15067 13.8

F10015−0614 NGC 3110 & MCG−01 − 26 −013 NuSTAR 60101072002 17.9/17.8

Chandra 15069 14.9

XMM–Newton 0550460201 11.0/17.8/18.0

F12043−3140 ESO 440−IG058N & ESO 440−IG058S NuSTAR 60101073002 28.6/28.6

Chandra 15064 14.8

F12590+2934 NGC 4922N & NGC 4922S NuSTAR 60101074002 20.7/20.6

Chandra 15065 14.9

F13197−1627 MCG−03 − 34 −064 & MCG−03 − 34 −063 XMM–Newton 0506340101 66.5/85.4/85.9

F14544−4255 IC 4518A & IC 4518B NuSTAR 60061260002 7.8/7.8

XMM–Newton 0406410101 21.2/24.4

F16577+5900 NGC 6286 & NGC 6285 NuSTAR 60101075002 17.5/17.5

Chandra 10566 14.0

F17138−1017 IRAS F17138−1017 NuSTAR 60101076002 25.9/25.9

Chandra 15063 14.8

20264+2533 MCG +04−48 −002 & NGC 6921 NuSTAR 60061300002 19.5/19.5

XMM–Newton 0312192301 6.5/12.4/12.7

F21453−3511 NGC 7130 NuSTAR 60061347002 21.2/21.2

Chandra 2188 38.6

F23007+0836 NGC 7469 & IC 5283 XMM–Newton 0207090101 59.2

23262+0314 NGC 7679 & NGC 7682 XMM–Newton 0301150501 13.1/19.3/19.1
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Table 4. The table reports the values obtained from the X-ray spectral analysis of the sources of our sample. For each source we list (1) the IRAS name of

the source, (2) the counterparts, (3) the column density of X-ray emission related to star formation, (4) the temperature of the collisionally ionized plasma, (5)

the photon index of the soft X-ray emission due to X-ray binaries or to the scattered emission from the AGN, (6) the column density and (7) the photon index

of the AGN, and (8) the value of the Cash [C] or χ2 statistics and the number of degrees of freedom (DOF). Objects in which both statistics were used to fit

different spectra are reported as [C/χ2], and the value of the statistic is the combination of the two.

(1) (2) (3) (4) (5) (6) (7) (8)

IRAS name Source NSF
H kT Ŵ bin. N H Ŵ χ2/DOF

(1021 cm−2) (keV) (1022 cm−2)

F00085−1223 NGC 34 – 0.78+0.07
−0.08 1.57a 53 ± 11 1.57+0.12

−0.14 240.7/288 [C/χ2]

F00163−1039 Arp 256 3.4+2.4
−2.3 0.30+0.45

−0.10 2.47+0.38
−0.32 – – 167.9/191 [C]

MCG−02 − 01 −052 – 0.61 ± 0.27 1.93+0.56
−0.60 – – 62.0/91 [C]

F00506+7248 MCG+12−02 −001 5.4+2.4
−2.0 – 3.07+0.57

−0.49 – – 131.8/144 [C]

F05054+1718 CGCG 468−002W – – – 1.50 ± 0.09 1.69 ± 0.04 604.0/545 [χ2]

F09333+4841 MCG+08−18 −013 3.0+2.6
−2.1 – 2.26+0.27

−0.21 – – 57.6/71 [C]

F10015−0614 NGC 3110 0.7 ± 0.4 0.63+0.10
−0.06 2.18+0.27

−0.24 – – 245.2/270 [C/χ2]

MCG−01 − 26 −013 – 0.36+0.31
−0.11 1.82+0.57

−0.71 – – 44.9/53 [C/χ2]

F12043−3140 ESO440−IG058N – – 1.76+0.44
−0.46 – – 40.1/45 [C]

ESO440−IG058S – 0.97+0.21
−0.17 2.32+0.21

−0.17 – – 66.7/71 [C]

F12590+2934 NGC 4922N 7.7+4.0
−2.8 0.62+0.27

−0.33 2.11a ≥427 2.11+0.44
−0.46 56.3/108 [C/χ2]

F13197−1627 MCG−03 − 34 − 064b − 0.85+0.04
−0.02/1.67+0.17

−0.06 2.80a 54.2+0.7
−0.9 2.80+0.18

−0.05 1805.1/1396 [χ2]

F14544−4255 IC 4518A – 0.77+0.04
−0.05 1.72a 24 ± 2 1.72+0.09

−0.05 399.2/331 [χ2]

IC 4518B 3.1+2.9
−2.5 0.24+0.20

−0.06 1.9a 32+41
−14 1.9c 165.7/188 [C]

F16577+5900 NGC 6285 – – 1.64 ± 0.62 – – 16.8/16 [C]

F17138−1017 IRASF17138−1017 – – 1.13+0.17
−0.16 – – 108.2/131 [C/χ2]

20264+2533 MCG +04−48 −002 – 0.76+0.23
−0.25 1.50a 58+7

−4 1.50+0.12
−0.14 185.5/169 [χ2]

NGC 6921 – 0.63+0.34
−0.52 2.08a 178+30

−53 2.08+0.16
−0.39 64.7/82 [χ2]

F21453−3511 NGC 7130 5.0 ± 1.2 0.24+0.07
−0.06/0.79+0.25

−0.09 2.36a 407+152
−91 2.36+0.20

−0.12 330.5/346 [C/χ2]

F23007+0836 NGC 7469 – – – 0.006 ± 0.002 2.12+0.14
−0.09 1923.5/1766 [χ2]

23262+0314 NGC 7679 – 0.63+0.12
−0.10 – ≤0.02 1.66 ± 0.04 278.9/259 [χ2]

NGC 7682 – 0.26+0.08
−0.05 2.27a 243+60

−44 2.27+0.18
−0.17 876.2/914 [C]

aValue of Ŵ bin. fixed to that of the AGN continuum (Ŵ); bAdditional plasma (kT = 0.11+0.01
−0.06 keV); cValue fixed.

Figure 9. Cumulative N H distribution for AGN in early- (blue dashed line)

and late-merger (orange continuous line) galaxies. For comparison, we also

show the cumulative intrinsic N H distribution of local, mostly non-merging

Swift/BAT AGN (purple dotted line) from Ricci et al. (2015). The plot

shows that: (i) AGN in late mergers are systematically more obscured than

those in early mergers and Swift/BAT AGN; (ii) all AGN in late mergers have

NH ≥ 1023 cm−2, which implies that they are almost completely surrounded

by material with NH ≥ 1023 cm−2. Following the approach described in

Cameron (2011), we found that the obscuring material covers 95+4
−8 per cent

of the X-ray source, where the uncertainties represent the 16th and 84th

quantiles of a binomial distribution.

Figure 10. Average best-fitting spectral model for the AGN in galaxies in

early (red continuous line) and late (black dashed line) merger stage. Each

individual spectral model was normalized to have the same flux in the 4–

50 keV range. The two average spectral models were then normalized to have

the same flux in the 4–5 keV band for visualization purposes. The figure

clearly illustrates the different mean spectra of the two subsamples, with

AGN in late-merger galaxies showing more prominent features of heavy

absorption (i.e. Fe Kα line at 6.4 keV and Compton hump at ∼20–30 keV)

than those in early-merger galaxies.
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Figure 11. Fraction of CT (i.e. NH ≥ 1024 cm−2) AGN versus merger

stage. The empty blue diamonds represent the values for the four merger

stages separately, while the filled black diamonds are the values for early

and late mergers. The uncertainties represent the 16th/84th quantiles of

a binomial distribution. The red continuous line represents the intrinsic

fraction of CT AGN measured by Swift/BAT (Ricci et al. 2015) for local

hard X-ray selected AGN, while the dashed lines are the 1σ uncertainty

associated with this value. The figure shows that AGN in the late stages

of mergers are more likely to be CT than those in isolated galaxies, which

confirms the idea that the amount of dense material around the SMBH is

larger in advanced mergers.

fraction of CT AGN in early-merger stage galaxies (35+13
−12 per cent)

is marginally lower than in late-merger stage galaxies, and is con-

sistent with that of local hard X-ray selected AGN (Fig. 11). All the

uncertainties reported on the fractions of AGN represent the 16th

and 84th quantiles of a binomial distribution, computed with the

beta function (Cameron 2011).

Dividing the sample based on the distance between the nuclei of

the merging galaxies (top panel of Fig. 12), we find that the frac-

tion of CT AGN peaks (77+13
−17 per cent) when the sources are in

late-merger stages and at a projected distance of 0.4–10.8 kpc. The

median column density (bottom panel of Fig. 12) also reaches its

maximum value at this stage [NH = (2.53 ± 0.97) × 10 24 cm−2],

and is larger than for early mergers at a distance ≥11 kpc

[NH = (4.3 ± 3.4) × 10 23 cm−2]. In agreement with these X-ray-

based results, a further four nuclei (the NW and SE nuclei of

IRAS 08572+3915, NGC 3690E and IRAS 14378−3651) in the

sample have indications for the presence of accreting SMBHs from

other multiwavelength tracers, although they are only weakly or

not detected by NuSTAR (and are therefore very likely heavily ob-

scured). All are in late stage of mergers, with three of them being

in systems in which the two galactic nuclei are separated by a few

kiloparsecs (see Appendix A).

The increase of the fraction of CT AGN along the merger se-

quence is in strong agreement with the long-standing paradigm

that galaxy mergers are able to trigger the inflow of material on

to the close environment of SMBHs. Recent numerical simulations

of mergers (Blecha et al. in preparation) show that an increase in

N H caused by the merger dynamics is expected as the distance

between the two nuclei decreases. Because these simulations can

only probe column densities on resolved scales (�48 pc), they pro-

vide a lower limit on the total line-of-sight obscuration. On scales

of �48 pc, the median value of N H predicted by the simulations

(NH ≃ 3 × 1023 cm−2) is significantly lower than what we found

here, and the simulations shows that AGN can be obscured by CT

material only for a very brief phase around coalescence. This could

Figure 12. Top panel: fraction of CT AGN versus the separation between

the two galactic nuclei. U/LIRGs in the late stages of galaxy mergers are

divided into objects with two nuclei and those with a single nucleus. The

separation for U/LIRGs in late-merger stages showing two nuclei is set to

the mean value of the distance, while for objects with a single nucleus we

set it to zero kpc. The red continuous line represents the intrinsic fraction

of CT AGN measured by Swift/BAT (Ricci et al. 2015) for local hard X-ray

selected AGN. The uncertainties on f CT represent the 16th/84th quantiles

of a binomial distribution. Bottom panel: median value of the line-of-sight

column density versus the separation between the two galactic nuclei. The

error bars on N H show the 1σ interval. The three objects (NGC 4922N,

Arp 220W and NGC 7674) for which only a lower limit of N H could be

constrained were assigned the minimum value. The two plots show that

nuclear obscuration seems to peak when the two nuclei are at a distance of

0.4–10.8 kpc.

imply that the material responsible for most of the obscuration

is located on scales smaller than those probed by the simulations

(i.e. �48 pc). Our findings are consistent with recent observations

carried out in the submm band, which found evidence of Com-

pact Obscuring Nuclei (CON; Aalto et al. 2015) in U/LIRGS (e.g.

Sakamoto et al. 2010; Costagliola et al. 2013; Martı́n et al. 2016).

These CON typically have sizes of tens of parsecs (e.g. Aalto

et al. 2015; Scoville et al. 2015), and the high column densities

(NH > 1024 cm−2) inferred from the submm observations may be

responsible for the bulk of the obscuration traced by the X-rays.

According to the classical unification scheme of AGN

(Antonucci 1993), obscuration is only due to anisotropic material

distributed in the form of a torus, and the sole difference between

obscured and unobscured objects is the inclination of the observer

with respect to the torus. The fraction of CT AGN in mergers

vastly exceeds that expected considering a random viewing angle

with respect to the torus, and this enhanced obscuration is indica-

tive of additional material on pc scales. Moreover, as illustrated in

Fig. 9, AGN in late mergers are almost completely surrounded by

material with NH ≥ 1023 cm−2, which covers 95+4
−8 per cent of the

solid angle of the accreting SMBH.5 As a comparison, the covering

5 The covering factor was calculated following the approach described in

Cameron (2011), and the uncertainties represent the 16th and 84th quantiles

of a binomial distribution.
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factor of material with log(NH/cm−2) = 23−25 in Swift/BAT AGN

is 52 ± 2 per cent (Ricci et al. 2015). This implies that the classi-

cal unification scenario is not sufficient to describe the structure

of obscuration in galaxies undergoing mergers. Our results can be

interpreted in the framework of the AGN evolutionary model first

proposed by Sanders et al. (1988) for U/LIRGS. This scenario starts

with a merger of galaxies, which triggers accretion and heavy ob-

scuration, along with strong starbursts, and is then followed by a

phase in which feedback from the AGN removes the obscuring ma-

terial and the source can be observed as a red quasar (e.g. Urrutia,

Lacy & Becker 2008; Banerji et al. 2012; LaMassa et al. 2016).

The object eventually ends its life as an unobscured quasar (e.g.

Treister et al. 2010). Here, we find a hint of a decrease in the frac-

tion of CT AGN and in the median N H with the separation (for

D12 < 11 kpc). In particular, closely separated nuclei seem to have

a larger fraction of CT AGN than objects in the single-nuclei phase,

which in the evolutionary scheme would be the stage when the AGN

is starting to clean up its environment. This behaviour, if confirmed,

would also be in agreement with recent numerical simulations

(Blecha et al. in preparation).

Several studies over the past years have shown that the fraction

of AGN in mergers increases with the AGN luminosity (e.g. Treis-

ter et al. 2012; Glikman et al. 2015), reaching ∼40–80 per cent at

bolometric luminosities of log(LBol/erg s−1) ∼ 46−48, in agree-

ment with the idea that mergers of galaxies are able to effectively

fuel SMBHs. This picture is consistent with what has been recently

found for mid-IR selected Hot Dust-obscured galaxies (e.g. Eisen-

hardt et al. 2012; Wu et al. 2012; Assef et al. 2015), which host the

most luminous obscured AGN known (e.g. Stern et al. 2014; Picon-

celli et al. 2015; Assef et al. 2016; Ricci et al. 2017), show an excess

of submillimetre galaxies as neighbours (Jones et al. 2015), and tend

to be found in mergers of galaxies (Fan et al. 2016). Some recent

studies of galaxies at z ∼ 0.6–0.7 (e.g. Villforth et al. 2014, 2017)

have argued that the fraction of AGN in mergers is significantly

lower, and it does not increase with the AGN bolometric luminos-

ity. However, the samples used for these studies were selected in the

soft X-ray band, which is strongly biased against heavily obscured

sources. In particular, Villforth et al. (2017) used a ROSAT-selected

sample, which, in the rest frame of the sources they considered,

corresponds to a selection in the ∼0.2–3.8 keV band. Our work

shows that the circumnuclear environment of AGN in mergers is

different (i.e. richer in gas and dust) from that of AGN in iso-

lated galaxies, which implies that soft X-ray selection would fail

to detect most of the AGN in mergers. Considering the median N H

of sources in advanced stages of merger with two distinct nuclei

[NH = (2.53 ± 0.97) × 10 24 cm−2], which would be the sources

easier to distinguish as mergers at z ∼ 0.6, the AGN would lose

∼99.9 per cent of the ∼0.2–3.8 keV flux.

Treister et al. (2012) showed that, while 90 per cent of AGN are

triggered by secular processes (i.e. stellar bars, supernova winds,

etc.), ∼50–60 per cent of the SMBH growth is caused by mergers.

Since mergers are predicted to be ubiquitous and play a fundamental

role in the formation and evolution of galaxies (Springel et al. 2005),

accretion triggered by tidal torques could contribute significantly to

the growth of SMBHs, and could produce the observed relation

between the mass of the SMBH and the velocity dispersion of the

galaxy bulge (e.g. Di Matteo et al. 2005; Blecha et al. 2011). With

the NuSTAR observations analysed here, we show that mergers of

galaxies are able to drive material into the proximity of the SMBH,

thus strengthening the idea that interactions between galaxies are

critical to understand the link between accreting SMBHs and their

hosts.

6 SU M M A RY A N D C O N C L U S I O N S

In this work, we studied the relation between AGN obscuration

and galaxy mergers. This was done analysing the broad-band X-ray

emission of a sample of 30 U/LIRGs in different merger stages from

the GOALS sample (for a total of 52 individual galactic nuclei). In

a forthcoming paper (Ricci et al., in preparation), we will discuss

the multiwavelength properties of the U/LIRGs of our sample, and

how they relate to the bolometric luminosity of the AGN. In the

following, we summarize our findings.

(i) All AGN of our sample in late-merger galaxies have NH ≥

1023 cm−2, which implies that the obscuring material covers

95+4
−8 per cent of the X-ray source (see Fig. 9). The close environ-

ment of these objects is therefore very different from what would

be foreseen by the unification model of AGN.

(ii) The fraction of CT AGN in late-merger galaxies is higher

(fCT = 65+12
−13 per cent) than in local hard X-ray selected AGN

(f CT = 27 ± 4 per cent, Ricci et al. 2015), which are mostly found in

isolated galaxies, and marginally higher than AGN in early-merger

galaxies (see Figs 10 and 11).

(iii) A peak in the fraction of CT AGN is found when the nu-

clei of the two merging galaxies are at a projected distance of ≃

0.4–10.8 kiloparsecs (fCT = 77+13
−17 per cent, see Fig. 12). This is

also the stage at which the maximum of the median N H is ob-

served [NH = (2.53 ± 0.97) × 10 24 cm−2]. We also find a hint of

a decrease both in f CT and in the median N H when only a single

nucleus is observed. If confirmed, this decrease of the obscuring

material might be related to feedback from the AGN clearing out

its environment.

Our results confirm the long-standing idea that galaxy mergers are

able to trigger the inflow of material on to the inner tens of parsecs,

and that the close environment of AGN in late-merger galaxies is

richer in gas and dust as compared to AGN in isolated galaxies.
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A P P E N D I X A : N OT E S O N I N D I V I D UA L

S O U R C E S

In the following, we report the details on the individual sources,

including previous literature studies on the presence of an accreting

SMBH using multiwavelength tracers of AGN activity. The proxies

of AGN activity we use are the following:

(i) The presence of high-excitation mid-IR (MIR; 5–40 µm)

emission lines (e.g. Sturm et al. 2002), and in particular

[Ne V] 14.32 µm and [Ne V] 24.32 µm, indicate the presence of

an AGN, since the ionization potential of [Ne V] is 97 eV, which is

considered too high to be produced by star formation (e.g. Weedman

et al. 2005).

(ii) The slope of the near-IR continuum, with a very red contin-

uum (Ŵ > 1, with Fν ∝ λŴ , Imanishi et al. 2010) suggesting the

presence of a buried AGN (Risaliti et al. 2006; Imanishi et al. 2008;

Sani et al. 2008). Similarly, we also used the Wide-field Infrared

Survey Explorer satellite (WISE, Wright et al. 2010) colours, adopt-

ing W1 − W2 > 0.8 as threshold for the presence of an AGN (Stern

et al. 2012). It should be however remarked that this tracer can

be problematic for low-luminosity AGN in strongly star-forming

galaxies (e.g. Griffith et al. 2011; Hainline et al. 2016).

(iii) The equivalent width (EW) of the 3.3 and 6.2 µm polycyclic

aromatic hydrocarbon (PAH) features. PAH features are destroyed

by the radiation field of the AGN or diluted by the strong MIR con-

tinuum, thus low values of the EW typically indicate the presence
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of an AGN [EW(3.3 µm) < 40 nm, Imanishi et al. 2010; Ichikawa

et al. 2014; EW(6.2 µm) < 0.27 µm, Stierwalt et al. 2013.

(iv) Optical line ratios. The U/LIRGs of our sample are optically

classified as objects dominated by star formation in the optical band

(i.e. H II regions; e.g. Ho, Filippenko & Sargent 1997), objects that

might contain both star formation and AGN activity (i.e. composite

objects; e.g. Yuan, Kewley & Sanders 2010), and objects that are

clearly dominated by AGN activity (i.e. Seyfert 1s or Seyfert 2s).

(v) The spatial variations of the radio spectral index (i.e. radio-

spectral-index maps; Vardoulaki et al. 2015) allow objects to be

classified as radio AGN, composite AGN/starburst (SB) and radio

starburst (radio-SB).

A1 IRAS F00085−1223 (NGC 34)

The LIRG NGC 34 is in merger stage D, and shows a single nucleus

(Fig. 4). The object is reported to be a Seyfert 2 by Yuan et al. (2010).

Using the radio spectral index maps, Vardoulaki et al. (2015) also

confirmed the presence of an AGN.

The source is detected by NuSTAR in the 3–10 keV (10–24 keV)

band at 5.7σ (6.3σ ) and 6.8σ (4.4σ ) for FPMA and FPMB, re-

spectively. The source is also detected by Chandra and by XMM–

Newton. The X-ray spectrum of NGC 34 (Fig. B1) shows a clear

Fe Kα feature at 6.48+0.06
−0.05 keV, which also indicates the presence

of an AGN. We therefore applied a model including both ther-

mal emission and an AGN component (ATABLE{TORUS1006.FITS}
+ APEC + ZPOWERLAW). We added a cross-calibration constant

between the different, non-simultaneous, observations. We found

that the flux varied by a factor ∼2 between the NuSTAR, Chan-

dra and XMM–Newton observations. Our spectral analysis shows

that the AGN is heavily obscured, with a column density of

NH = 5.3 ± 1.1 × 1023 cm−2. The value of the half-opening an-

gle could not be constrained for this observation, and was there-

fore fixed to θ OA = 60 deg. The scattered radiation has a flux of

6.2+7.9
−4.3 per cent of the primary X-ray emission in the X-ray energy

band probed here.

A2 IRAS F00163−1039 (Arp 256 and MCG−02 − 01 −052)

The two objects are in stage B, and their projected separation is

33.1 kpc (Fig. 4). While Arp 256 is a LIRG, the IR luminosity of

MCG−02 − 01 −052 is log (L IR/L⊙) = 10.36. Optically, Arp 256

is classified by Yuan et al. (2010) as an H II region, and none of the

tracers detect an AGN in Arp 256 or MCG−02 − 01 −052.

The two galactic nuclei are at a distance (56.1 arcsec) that al-

lows them to be well separated by Chandra. While the two galaxies

are detected by Chandra, they are not detected by NuSTAR, with

both nuclei only exhibiting significances of ∼3σ in the 3–10 keV

band and of <2σ in the 10–24 keV band. The Chandra spectra

of both sources are soft, and can be well fit by a starburst model.

For Arp 256, a thermal plasma and a power-law component, both

of which appear obscured [ZPHABS × (ZPOWERLAW+APEC)], are nec-

essary to best reproduce the spectrum. The same model, with the

exception of the absorbing component, was used for MCG−02 − 01

−052. The spectra and the fit are shown in Fig. B1.

A3 IRAS F00506+7248 (MCG+12−02 −001)

This LIRG is in merger stage C, and the projected separation of the

two nuclei is 0.3 kpc (Fig. 4). The system is classified in the optical

as a composite (Alonso-Herrero et al. 2009), and none of the tracers

analysed suggest the presence of an AGN.

While the system is detected by Chandra, it is not detected by

NuSTAR, and the significance is <3σ for each camera in the 3–

10 keV and 10–24 keV band. Given the very small separation be-

tween the two nuclei (0.9 arcsec), the X-ray emission observed by

Chandra could come from any of the two nuclei, or from both of

them. The Chandra spectrum was fitted with a simple absorbed

power-law model (ZPHABS×PO). Using the relation of Ranalli, Co-

mastri & Setti (2003), we find that the star formation rate obtained

for the source (∼54.5 M⊙ yr−1, Howell et al. 2010) is able to ac-

count for the totality of the 2–10 keV luminosity observed. The

steep photon index obtained (Ŵ ∼ 3) also suggests that the X-ray

emission is related to star formation. The spectrum of the source is

illustrated in Fig. B1.

A4 IRAS F02069−1022 (NGC 833 and NGC 835)

IRAS F02069−1022 (also called Arp 318) is composed of two

galaxies at a projected distance of 15.7 kpc and is in merger

stage A (Fig. 4). The multiwavelength tracers fail to detect evi-

dence of AGN activity, with the exception of optical spectroscopy

for NGC 835, which is classified as a Seyfert 2 (Véron-Cetty &

Véron 2010). NGC 835 hosts a low-luminosity AGN which appears

responsible for most of the 2–10 keV emission (González-Martı́n

et al. 2016). NGC 833 is classified as a low-ionization nuclear

emission-line region (LINER; Véron-Cetty & Véron 2010), but it

has been found to be AGN dominated, with a very low star formation

rate (�3 M⊙ yr−1) over the past few hundreds of Myr (O’Sullivan

et al. 2014).

The two galaxies are separated by 55.9 arcsec, and could be

therefore well resolved by the NuSTAR, XMM–Newton/EPIC and

Chandra observations studied by Oda et al. (in preparation), who

found that both sources are strongly detected by NuSTAR. Oda et al.

(in preparation) found that the analysis of the combined XMM–

Newton EPIC, Chandra/ACIS and NuSTAR spectra of NGC 833

results in a column density of NH = 2.8 ± 0.3 × 1023 cm−2.

Variability of the line-of-sight column density between the Chan-

dra and XMM–Newton observations of NGC 835 was found by

González-Martı́n et al. (2016). Oda et al. (in preparation) find

that the NuSTAR spectrum is very different from the XMM–

Newton observation carried out in 2000 January, while it is con-

sistent with the spectrum of the more recent (2013 July) Chan-

dra observation. Fitting separately the combined Chandra/NuSTAR

spectra and the XMM–Newton spectrum, Oda et al. (in prepara-

tion) found that the column density varies from Na
H = 5.5+1.5

−1.0 ×

1023 cm−2 (XMM–Newton) to Nb
H = 3.0 ± 0.2 × 1023 cm−2 (Chan-

dra/NuSTAR). Through the rest of the paper, we use the mean

value of the column density for this source (Nmean
H = 4.3+1.5

−1.0 ×

1023 cm−2).

A5 IRAS F05054+1718 (CGCG 468−002E and CGCG

468−002W)

This system in merger stage B is composed of an eastern

(CGCG 468−002E) and a western (CGCG 468−002W) compo-

nent (Fig. 4). While the eastern object is a LIRG, the western

component has a luminosity in the IR of log (L IR/L⊙) = 10.74.

The western component shows a [Ne V] line at 14.32 µm

(Inami et al. 2013), which indicates the presence of an AGN. From

the ratio of the [Ne V]/[Ne II] and [O IV]/[Ne II] lines the AGN is

found to contribute to ∼25–30 per cent of the MIR emission (Pet-

ric et al. 2011). The western component also shows a weak (EW

= 0.12µm) PAH 6.2 µm feature, indicative of a significant AGN
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contribution to the MIR flux. None of the proxies of AGN activity

find evidence of an AGN in the eastern component.

The two galaxies are separated by 29.6 arcsec, and could there-

fore be distinguished both by the Swift/XRT and the NuSTAR ob-

servations studied here. CGCG 468−002W is clearly detected by

NuSTAR in both detectors (∼51σ in 0.3–10 kev and ∼31σ in 10–

24 keV for both FPMA and FPMB). The source is also detected

by Swift/XRT in the 0.3–10 keV band. The Swift/XRT spectrum

of this source is comprised from the integration of several ob-

servations carried out within a month in late 2014. The model

we used to fit the spectra is similar to that used for NGC 34,

with the exception of the thermal plasma, which is not required

by the data. We also added a line at 6.47 ± 0.07 keV (EW

= 211+61
−66 eV) to account for the observed excess at ∼6.4 keV.

The model we used is ATABLE{TORUS1006.FITS} + ZGAUSS + ZPOW-

ERLAW, and shows that the level of obscuration of the source is

low [NH = (1.50 ± 0.09) × 1022 cm−2]. A cross-calibration con-

stant was also added, and showed that the flux of NuSTAR is

∼1.5 times higher than that of the XRT observation. The ratio

between the scattered power-law and the primary X-ray emission is

1.5 ± 0.5 per cent. The broad-band spectrum is illustrated in Fig. B1.

CGCG 468−002E was detected by neither Swift/XRT (2–8 keV) nor

by NuSTAR (10–24 keV).

A6 IRAS 05189−2524

This merger stage D ULIRG shows a single nucleus (Fig. 4), which

has been found to host an AGN using several proxies. The source

shows strong 14.32 (Inami et al. 2013) and 24.32 µm (Pereira-

Santaella et al. 2010) [Ne V] lines, and very weak PAH features

at 3.3 µm (EW =10 nm, Imanishi et al. 2008) and at 6.2 µm

(EW =0.03 µm, Stierwalt et al. 2013). Optically the source is

classified as a Seyfert 2 (Yuan et al. 2010). The [Ne V]/[Ne II] and

[O IV]/[Ne II] ratios indicate that the AGN contributes ∼50 per cent

of the MIR flux.

Previous studies in the X-ray band have also confirmed the pres-

ence of an AGN. The source has been detected by XMM–Newton

(Imanishi & Terashima 2004; Teng & Veilleux 2010), by Chan-

dra (Ptak et al. 2003), and by the XIS camera on board Suzaku

(Teng et al. 2009). These X-ray spectral studies have shown that the

AGN is obscured, with a line-of-sight column density ∼1023 cm−2.

The source has also been detected by Swift/BAT (Koss et al. 2013).

IRAS 05189−2524 was detected by NuSTAR in three observations

carried out in 2013 for a total of ∼54 ks (Teng et al. 2015).

Analysing the combined XMM–Newton and NuSTAR spectrum,

Teng et al. (2015) showed that the obscuration can be explained

by considering two absorbers, with column densities of 5.2 ± 0.2

and 9.3+1.0
−0.7 × 1022 cm−2, covering ≃ 98 per cent and ≃ 74 per cent

of the X-ray source, respectively. To account for the partial cov-

ering, for this object we considered N H to be the sum of the two

column densities weighted by the covering factor.

A7 IRAS 08572+3915

IRAS 08572+3915 is a ULIRG in a merger stage D showing two

distinct nuclei [north-west (NW) and south-east (SE)], located at a

distance of 5.6 kpc (Fig. 5). While no [Ne V] emission line is detected

(Pereira-Santaella et al. 2010; Inami et al. 2013), the system shows

a very strong silicate absorption feature at 9.7 µm (τ ∼ −3.58) and

weak PAH features at 3.3 µm (EW <5 nm, Imanishi et al. 2008) and

at 6.2 µm (EW <0.03 µm, Stierwalt et al. 2013). Using the radio

spectral index, Vardoulaki et al. (2015) also found results consistent

with the presence of an AGN. Both the NW and the SE nuclei are

classified as Seyfert 2s by Yuan et al. (2010).

The NuSTAR observation of this object did not yield signifi-

cant detections of either unresolved nuclei (Teng et al. 2015). The

source was also not detected by a previous Suzaku observation

(Teng et al. 2009). Teng et al. (2015) argued that the source could

be X-ray weak, although it cannot be excluded that it is heavily ob-

scured, similar to what we find here for most of the sources showing

two nuclei with a separation of a few kpc. Using CO, Evans et al.

(2002) estimated the average column density to be in the range of

N H ∼ (3–10) × 1024 for this system. The NW nucleus was de-

tected by Chandra, and Teng et al. (2009) reported an observed

0.5–10 keV luminosity of ∼2 × 1041 erg s−1. The hardness ratios

points to a photon index of Ŵ ∼ −0.43, also indicative of heavy

obscuration. We conclude therefore that both nuclei are likely to

host heavily obscured AGN, but do not use these sources since an

estimation of N H is lacking.

A8 IRAS F09320+6134 (UGC 5101)

UGC 5101 is a ULIRG with a single nucleus, classified as

merger stage D (Fig. 5). Multiwavelength studies have shown

strong evidence for the presence of an AGN, such as 14.32 and

24.32 µm [Ne V] emission lines (Pereira-Santaella et al. 2010; Inami

et al. 2013), and weak 3.3 µm (EW =33 nm, Imanishi et al. 2008)

and 6.2 µm (EW=0.13 µm, Stierwalt et al. 2013) PAH features. The

WISE W1 − W2 colour of UGC 5101 is 1.697 (W2 = 8.34 mag), con-

sistent with a significant AGN MIR emission (Stern et al. 2012).

In the optical, the source is reported as being a Seyfert 2 (Yuan

et al. 2010).

Chandra and XMM–Newton observations of this object were

studied by Imanishi et al. (2003), who found that the AGN is CT.

UGC 5101 was also reported as CT by Ricci et al. (2015) analysing

XMM–Newton and Swift/BAT data. This in agreement with the depth

of the 9.7 µm silicate feature (τ9.7µ m = −0.78, Stierwalt et al. 2013),

which could also suggest the presence of a buried AGN. A recent

study carried out by Oda et al. (2017), who studied in detail the

observations of this object carried out by Chandra, XMM–Newton,

Suzaku and NuSTAR, confirmed the CT obscuration of the source

(NH = 1.32+0.32
−0.37 × 1024 cm−2).

A9 IRAS F09333+4841 (MCG+08−18 −013 and

MCG+08−18 −012)

These two merger stage A galaxies have a projected separation of

35.4 kpc (Fig. 5). While MCG+08−18 −013 is classified as a LIRG,

the IR luminosity of MCG+08−18 −012 is log (L IR/L⊙) = 9.93.

MCG+08−18 −013 is classified as a composite galaxy by Yuan

et al. (2010), and none of the multiwavelength tracers identify an

AGN in the system.

The two galaxies are separated by 66.5 arcsec, and could therefore

be clearly resolved by both Chandra and NuSTAR. In each of the

0.3–2 and 3–8 keV Chandra images, only MCG+08−18 −013 is

detected, showing extended emission in both bands. Neither nucleus

is detected by NuSTAR in the 3–10 keV or 3–24 keV band. The X-

ray spectral analysis was carried out using the Chandra data alone.

The X-ray spectrum of MCG+08−18 −013 was fitted with an

obscured power-law (ZPHABS × ZPOWERLAW) model. We found that

the level of obscuration is low (NH ∼ 3 × 1021 cm−2) and the X-

ray continuum is rather steep (Ŵ ∼ 2.3). No additional thermal

component is necessary, and the X-ray spectrum is fully consistent

with a scenario in which star formation is the only mechanism
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producing X-ray emission. The X-ray spectrum of MCG+08−18

−013 is shown in Fig. B1.

A10 IRAS F10015−0614 (NGC 3110 and MCG−01 − 26

−013)

This system includes two galaxies in a merger stage A, with a

projected separation of 37.7 kpc (Fig. 5). Of the two galaxies, only

NGC 3110 is a LIRG. NGC 3110 is classified as a H II region by Yuan

et al. (2010), and no trace of an AGN is evident for NGC 3110 and

MCG−01 − 26 −013 from any of the multiwavelength properties.

The two galaxies are separated by 108.9 arcsec, and could there-

fore be clearly resolved by both Chandra and NuSTAR. Neither nu-

cleus is detected by NuSTAR in the 3–10 keV or 10–24 keV band.

The combined Chandra/ACIS and XMM–Newton/EPIC X-ray spec-

trum of NGC 3110 could be well fit by an absorbed collisionally

ionized plasma plus a power law [ZPHABS × (ZPOWERLAW+APEC)].

We applied a similar model to MCG−01 − 26 −013, although this

object did not require the presence of absorbing material along the

line of sight (ZPOWERLAW+APEC). For both sources, the X-ray spec-

tral analysis does not require the presence of an AGN. The X-ray

spectra of these two sources are illustrated in Fig. B2.

A11 IRAS F10257−4339 (NGC 3256)

NGC 3256 is a LIRG in stage D (Fig. 5), with two nuclei detected

in the radio (Norris & Forbes 1995) with a projected separation of

1 kpc. None of the multiwavelength proxies of AGN activity indicate

the presence of an accreting SMBH, and the optical spectrum has

been classified as that of an H II region (Lı́pari et al. 2000).

The Chandra spectrum was studied by Lira et al. (2002a) who

could detect both nuclei (separated by 5.1 arcsec), and found

X-ray emission consistent with being purely from star formation.

The spectrum is in fact very soft, and could be modelled by the

superposition of three thermal plasma components or by a steep

power law with a photon index Ŵ ∼ 3. NGC 3256 was observed

by NuSTAR, and the results were reported in Lehmer et al. (2015),

who concluded that the emission at >3 keV detected by NuSTAR is

produced by a population of 5–10 ultraluminous X-ray sources.

A12 IRAS 10565+2448

IRAS 10565+2448 is a ULIRG in stage D (Fig. 5) showing two

nuclei (east and west components) with a projected separation of

6.7 kpc (Scoville et al. 2000). The west component was classified

as a composite galaxy in the optical by Yuan et al. (2010), and no

evidence of AGN activity has been found from the multiwavelength

properties of the object.

The two nuclei are separated by 7.4 arcsec, and Chandra ob-

servations could be able to resolve both of them. The source was

detected in the X-rays by Chandra and XMM–Newton (Teng &

Veilleux 2010; Iwasawa et al. 2011b), and the spectra were found

to be consistent with a star formation origin of the X-ray emission.

The galaxy was not detected in a 25 ks NuSTAR observation (Teng

et al. 2015).

A13 IRAS F11257+5850 (Arp 299)

Arp 299 is a LIRG in merger stage C, with two nuclei (NGC 3690W

and NGC 3690E) at a projected separation of 4.6 kpc (Fig. 6). The

eastern nucleus is often confused with IC 0694, which is a lenticular

galaxy nearby. Both nuclei show signatures of AGN activity in

different energy bands. NGC 3690W has a weak 3.3 µm PAH feature

(EW =16 nm; Imanishi et al. 2010) and a red 2.5–5 µm continuum

(Ŵ2.5−5 µm = 1.9; Imanishi et al. 2010). A red near-IR continuum is

also found for NGC 3690E (Ŵ2.5−5 µm = 1.05; Imanishi et al. 2010).

The WISE W1 − W2 colours of both nuclei are also consistent

with AGN activity, being W1 − W2 ∼ 1.5 (W2 = 6.26 mag) and

W1 − W2 ∼ 1.0 (W2 = 8.28 mag) for NGC 3690W and NGC 3690E,

respectively. In the MIR the 6.2µm PAH feature is rather weak

for both NGC 3690W (EW = 0.12 µm; Stierwalt et al. 2013) and

NGC 3690E (EW = 0.38 µm; Stierwalt et al. 2013), and indicates

AGN contributions to the MIR luminosities of each nucleus of

∼75 per cent and ∼20 per cent (Stierwalt et al. 2013), respectively.

In the optical Yuan et al. (2010) classified NGC 3690W as a Seyfert 2

and NGC 3690E as a H II region.

The two nuclei are separated by 21.3 arcsec, and could be re-

solved in the X-ray band by several studies carried out in the past

decade. The presence of a buried AGN in NGC 3690W was first

found by Della Ceca et al. (2002) using BeppoSAX data. Com-

bining BeppoSAX with Chandra and XMM–Newton observations,

Ballo et al. (2004) confirmed the heavily obscured nature of the

western component, detecting a prominent Fe Kα line. Ballo et al.

(2004) also argued for the presence of a CT AGN in NGC 3690E,

which shows a strong Fe XXV line at 6.7 keV. Alonso-Herrero et al.

(2013) using the CanariCam instrument on the 10.4-m Gran Tele-

scopio Canarias found evidence of AGN activity in both nuclei. For

NGC 3690E, they estimated that the AGN is ∼5 times less lumi-

nous than NGC 3690W and the material surrounding the SMBH

has an extinction of A V ∼ 24 mag. More recently, studying the

simultaneous NuSTAR and Chandra spectra of NGC 3690W in

the 3–40 keV range, Ptak et al. (2015) found a column density of

NH ∼ 4 × 1024 cm−2. No evidence of X-ray emission above 10 keV

from NGC 3690E was found, and Ptak et al. (2015) concluded that

the AGN is heavily obscured and/or significantly less luminous than

NGC 3690W. Both NGC 3690W and NGC 3690E show deep sil-

icate features (τ9.7 µm = −0.77 and −1.65, respectively; Stierwalt

et al. 2013), consistent with a buried AGN scenario.

A14 IRAS F12043−3140 (ESO 440−IG058N and

ESO 440−IG058S)

The two objects are in merger stage B, and their projected separa-

tion is 5.9 kpc (Fig. 6). The northern source is a LIRG, while the

southern source has an IR luminosity of log (L IR/L⊙) = 10.54. In

the optical, ESO 440−IG058N has been classified as an H II region,

while ESO 440−IG058S as a composite system (Yuan et al. 2010).

Both galaxies show strong 6.2 µm PAH features (EW =0.56 and

0.66 µm for ESO 440−IG058N and ESO 440−IG058S, respec-

tively; Stierwalt et al. 2013), and none of the tracers considered

demonstrate the presence of an AGN.

The two sources are at 12 arcsec, and both have been detected

by Chandra. No source was detected by NuSTAR at the position of

the system, and therefore the spectral analysis was carried out using

only Chandra. The X-ray spectrum of ESO 440−IG058N was fitted

using a simple power-law model, with no absorption required (ZPOW-

ERLAW). The model used for ESO 440−IG058S takes into account

thermal emission and a power-law component (ZPOWERLAW+APEC).

Both sources are consistent with no AGN contribution in the X-ray

band, and their X-ray spectra are shown in Fig. B2.

A15 IRAS F12540+5708 (Mrk 231)

Mrk 231 is an ULIRG with a single nucleus in merger stage D

(Fig. 6), and notably is the nearest broad-absorption line quasar.
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While the MIR spectrum of the source does not show evidence

of [Ne V] emission lines (Pereira-Santaella et al. 2010; Inami

et al. 2013), the presence of a luminous AGN is inferred from

the weak 3.3 µm (EW =8 nm, Imanishi et al. 2010) and 6.2 µm

(EW =0.01 µm, Stierwalt et al. 2013) PAH features and from the

MIR colours (W1 − W2 ∼ 1.1). In the optical band, the source is

classified as a Seyfert 1 (Yuan et al. 2010). Studying several dif-

ferent tracers of AGN emission, Veilleux et al. (2009) found that

the AGN contributes to ∼71 per cent of the bolometric output of the

system. A lower value (∼34 per cent) was obtained by Nardini et al.

(2010) using spectral decomposition. Mrk 231 is also known to

have a strong kpc-scale outflow (Rupke & Veilleux 2013; Feruglio

et al. 2015), which has been interpreted as proof of quasar-mode

feedback (Feruglio et al. 2010).

The broad-band 0.5–30 keV NuSTAR and Chandra spectrum of

the source was studied by Teng et al. (2014), who found that the

primary X-ray continuum is flat, and the X-ray source is obscured

by Compton-thin material. Teng et al. (2014) found that the source

is X-ray weak, with the 2–10 keV to bolometric luminosity ratio

being ∼0.03 per cent (compared to a typical value for local Seyferts

of ∼5 per cent, e.g. Vasudevan & Fabian 2007). The values of the

column density were found to vary between the 2003 Chandra

(19.4+5.7
−4.4 × 1022 cm−2) and the 2012 Chandra/NuSTAR (9.5+2.3

−1.9 ×

1022 cm−2) observations. Since we are interested in studying the

global properties of AGN in mergers, here we used the average of

the two values of the column density.

A16 IRAS F12590+2934 (NGC 4922N and NGC 4922S)

This merger stage C system includes a LIRG (NGC 4922N)

and a nucleus significantly weaker in the IR [NGC 4922S,

log (L IR/L⊙) = 8.87]. The two nuclei have a projected separa-

tion of 10.8 kpc (Fig. 6). Significant [Ne V] 14.32 µm emission

is observed from the system (Inami et al. 2013), while only an

upper limit was reported for the 24.32 µm line (Pereira-Santaella

et al. 2010). The presence of an AGN in the northern nucleus is sug-

gested by the WISE colours (W1 − W2 = 1.26, W2 = 9.42 mag),

while the southern nucleus does not present evidence of a dom-

inating AGN component in the MIR (W1 − W2 = −0.04).

The system is classified as a Seyfert 2 (Yuan et al. 2010),

and shows a weak 6.2 µm PAH feature (EW = 0.16 µm; Stier-

walt et al. 2013). The depth of the 9.7 µm silicate feature is

τ9.7µm = −0.60 (Stierwalt et al. 2013), possibly indicating a buried

AGN.

The two nuclei are at a distance of 21.2 arcsec, and could be

well resolved by Chandra. While in the optical, NGC 4922S is

significantly brighter than NGC 4922N, the galaxy is detected by

Chandra only in the 0.3–2 keV band. NGC 4922N is detected both

in the 0.3–2 and 2–10 keV band. A source at a position coinci-

dent with NGC 4922N is detected by NuSTAR at 4.2σ and 4.6σ

in the 3–10 keV band for FPMA and FPMB, respectively. In the

10–24 keV band, the system is detected at 3.3σ in both detec-

tors. Considering the position of the NuSTAR source, the fact that

NGC 4922S is not detected in the 2–10 keV, and the similar flux

level of the NuSTAR source with NGC 4922N in the overlapping

energy band, we conclude that the source detected by NuSTAR is

NGC 4922N. The X-ray spectrum of NGC 4922N shows a promi-

nent Fe Kα line at 6.48+0.07
−0.07 keV. Fitting the combined 2–24 keV

Chandra/NuSTAR spectrum with a power-law plus a Gaussian line,

we find that the line has an EW of 3.0+1.4
−1.3 keV and the X-ray

continuum is very hard (Ŵ = 0.2 ± 0.4). Using the Torus model

together with a scattered component and a thermal plasma (CONST

× ZPOWERLAW+ATABLE{TORUS1006.FITS} + ZPHABS × APEC), we find

that the X-ray source is CT (NH ≥ 4.27 × 1024 cm−2), in agree-

ment with the flat X-ray spectrum and the strong Fe Kα line. The

torus half-opening angle could not be constrained, and was there-

fore fixed to θ OA = 60 deg in the model. The fraction of scattered

radiation is f scatt � 0.5 per cent. The broad-band X-ray spectrum of

NGC 4922N is shown in Fig. B2.

A17 IRAS 13120−5453

This ULIRG in merger stage D shows a single nucleus (Fig. 6).

The presence of an AGN is inferred from the WISE colours

(W1 − W2 = 0.86, W2 = 8.85 mag) and from the Seyfert 2 optical

classification (Véron-Cetty & Véron 2010). The spectral decom-

position study of Nardini et al. (2010) found that the AGN does

not contribute significantly to the bolometric output of the system

(<1.1 per cent).

The system was detected by Chandra (Iwasawa et al. 2011b) and

more recently by NuSTAR (Teng et al. 2015) up to 20 keV. The X-ray

spectral analysis of the combined Chandra and NuSTAR spectrum

of the source found that the AGN is CT, with a line-of-sight column

density of NH ∼ 3.2 × 1024 cm−2 (Teng et al. 2015).

A18 IRAS F13197−1627 (MCG−03 − 34 −064 and

MCG−03 − 34 −063)

This system is composed of the LIRG MCG−03 − 34 −064 and the

normal galaxy MCG−03 − 34 −063. The two galaxies are located

at a projected distance of 37.7 kpc, and are reported as being in

merger stage A. The presence of an AGN in MCG−03 − 34 −064

is confirmed by the detection of the 14.32 and 24.32 µm [Ne V]

emission lines (Pereira-Santaella et al. 2010; Inami et al. 2013), and

by the very weak (EW<0.01μm) 6.2 µm PAH feature (Stierwalt

et al. 2013). The optical spectrum of this source is consistent with

that of an H II region (Yuan et al. 2010).

The two galaxies are separated by 106.2 arcsec, and could be

clearly resolved by XMM–Newton/EPIC. While, MCG−03 − 34

−063 is not detected in the X-rays, MCG−03 − 34 −064 is clearly

detected by XMM–Newton, and it was associated with the Swift/BAT

source. The X-ray spectrum of MCG−03 − 34 −064 is dominated

by the emission from the AGN (Miniutti et al. 2007). We fitted

the combined XMM–Newton EPIC and Swift/BAT spectra with a

model that includes both absorption and reflection from a torus, a

scattered component, three thermal plasmas and two Gaussian lines

(ATABLE{TORUS1006.FITS} + 3×APEC + 2×ZGAUSS + ZPOWERLAW;

Fig. B2). We find that, in agreement with the results of Miniutti

et al. (2007), the X-ray source is obscured by Compton-thin material

(NH = 5.42+0.07
−0.09 × 1023 cm−2). The half-opening angle of the torus

is θOA = 79.1+0.1
−2.3 deg, while only an upper limit is obtained for the

fraction of scattered radiation (≤0.2 per cent). The two Gaussian

lines have energies of 1.86+0.01
−0.01 and 6.62+0.01

−0.01 keV, with an EW of

40+4
−30 and 197+21

−40 eV, respectively.

A19 IRAS 13428+5608 (Mrk 273)

The ULIRG Mrk 273 is a late-merger system (stage D, Fig. 7) com-

posed of two nuclei located separated by 0.7 kpc from each other

(Scoville et al. 2000). The MIR spectrum of the source shows a

14.32 µm [Ne V] emission line (Inami et al. 2013). The presence of

an AGN is confirmed by the WISE colour (W1 − W2 = 1.182,

W2 = 9.23 mag), by radio spectral index maps (Vardoulaki

et al. 2015) and by the weak 6.2 µm PAH feature (EW =0.12 µm,

Stierwalt et al. 2013). The source is classified as a Seyfert 2 in the

optical (Veilleux, Kim & Sanders 1999).
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Iwasawa et al. (2011a) discussed the analysis of the Chandra

observations of the two nuclei (separated by 0.9 arcsec), and their

analysis indicated that the AGN coincides with the south-western

nucleus, while the northern nucleus contains a powerful starburst

which dominates the far-infrared emission. However, the extended

emission in the 6–7 keV range in direction of the northern nucleus

might imply the presence of a second obscured AGN. Mrk 273 was

clearly detected by NuSTAR in a ∼70 ks observation carried out in

late 2013. The broad-band XMM–Newton/NuSTAR X-ray spectrum

of this object was recently studied by Teng et al. (2015), who found

that the X-ray source is obscured by material with a column density

of NH = 4.4 ± 0.1 × 1023 cm−2.

A20 IRAS 14378−3651

IRAS 14378−3651 is a ULIRG in merger stage D with a single

nucleus (Fig. 7). The 14.32 and 24.32 µm [Ne V] lines are not

detected (Pereira-Santaella et al. 2010; Inami et al. 2013). The

WISE W1 − W2 colour is above the threshold for AGN activity

(W1 − W2 = 0.87, W2 = 11.44 mag), while from the EW of

the 6.2 µm feature (0.39 µm) Stierwalt et al. (2013) estimate a

contribution of the AGN to the MIR flux of ∼20 per cent. The study

of Nardini et al. (2010), based on spectral decomposition, finds a

significantly lower contribution from the AGN to the bolometric

luminosity (<1.3 per cent). In the optical band, IRAS 14378−3651

has been classified as a LINER by Kim & Sanders (1998) and as a

Seyfert 2 by Duc, Mirabel & Maza (1997).

The source was detected by Chandra, and Iwasawa et al. (2011b)

argued that the hard X-ray colour implies the presence of an AGN

with a relatively low 2–10 keV luminosity. From the small ratio be-

tween the 2–10 keV and the IR luminosity, Iwasawa et al. (2011b)

proposed that the AGN is a CT candidate. The source was ob-

served by NuSTAR for 24.5 ks, and was weakly detected only in the

3–10 keV band (Teng et al. 2015), thereby providing no additional

constraints beyond those obtained by Chandra.

A21 IRAS F14544−4255 (IC 4518A and IC 4518B)

IRAS F14544−4255 is a LIRG which is composed of two galaxies

(IC 4518A and IC 4518B) at a projected separation of 12.0 kpc

(Fig. 7). The system is classified as an early merger (stage B).

Both the 14.32 µm and the 24.32 µm [Ne V] emission lines are

observed in the MIR spectrum of IC 4518A, while they are not

detected in that of IC 4518B (Pereira-Santaella et al. 2010; Inami

et al. 2013). The 6.2 µm PAH feature of IC 4518A is very weak

(EW = 0.05 µm), but is significantly stronger in IC 4518B (EW

= 0.47 µm). The WISE colour confirms the presence of an AGN in

IC 4518A (W1 − W2 = 1.228, W2 = 8.80 mag), and the galaxy

is also classified as a Seyfert 2 in the optical (Masetti et al. 2008).

From spectral decomposition, Hernán-Caballero et al. (2015) found

that the contribution from the AGN in IC 4518A to the MIR flux is

∼79 per cent.

The two galaxies are both detected by XMM–Newton/EPIC and

are at ∼36 arcsec from each other, so that we used a radius of 5 arc-

sec (20 arcsec) for the spectral extraction of IC 4518B (IC 4518A).

IC 4518A was significantly detected both by EPIC/PN and MOS1

on board XMM–Newton and by NuSTAR. The EPIC/MOS2 spec-

trum could not be extracted since the inner chip where the source

was located was not available during this observation. The spec-

trum was fitted with the same model we used for other AGN (AT-

ABLE{TORUS1006.FITS} + APEC + ZPOWERLAW). The model repro-

duces well the X-ray spectrum, and we find a column density of

NH = (2.4 ± 0.2) × 1023 cm−2 in the direction of the X-ray source.

The fraction of scattered radiation is f scatt = 2.1+0.4
−0.3 per cent, and

only an upper limit is obtained for the half-opening angle of the torus

(θ tor ≤ 34 deg). We found that the cross-correlation constant for the

EPIC/PN and MOS1 spectra is ∼0.4, which implies that the source

was ∼2.5 times dimmer than at the time of the NuSTAR observation.

IC 4518B is detected only by EPIC/PN. Due to the low signal-to-

noise ratio, the spectrum was rebinned to 1 count per bin and we

applied Cash statistics. The X-ray spectrum shows a strong Fe Kα

line at ∼6.4 keV (EW = 554+319
−240 eV), and a very flat 2–10 keV

continuum (Ŵ = 0.23+0.61
−0.62), both clear indications of the presence

of a buried AGN. We applied the same model as for IC 4518A, with

the addition of an absorption component for the thermal plasma and

the scattered component [ATABLE{TORUS1006.FITS} + ZPHABS×(APEC

+ ZPOWERLAW)]. Due to the low signal-to-noise ratio the photon in-

dex was fixed to Ŵ = 1.9 and the half-opening angle of the torus to

60 deg. We found that the source is obscured by material with a col-

umn density of NH = 3.2+4.1
−1.4 × 1023 cm−2, and the scattered flux is

6.8+6.9
−3.6 per cent of the primary X-ray emission. The observed flux

of IC 4518B is ∼2 per cent of that of IC 4518A in the 3–10 and

10–24 keV bands, so that its contribution to the NuSTAR spectrum

can be safely ignored. The spectra of IC 4518A and IC 4518B are

shown in Fig. B3.

A22 IRAS F15327+2340 (Arp 220W and Arp 220E)

Arp 220 is the nearest ULIRG, and is in merger stage D with two nu-

clei (east and west) separated by only 0.4 kpc (Fig. 7). The presence

of at least one AGN in this system has been confirmed by several

pieces of observational evidence. The western nucleus is classified

as a Seyfert 2 by optical spectroscopy (Yuan et al. 2010). The sys-

tem shows a weak 6.2 µm PAH feature (EW = 0.17 µm, Stierwalt

et al. 2013), which could imply an AGN contribution of ∼30 per cent

to the MIR flux. Using six multiwavelength tracers, Veilleux et al.

(2009) found that the AGN contributes to ∼18.5 per cent of the

bolometric flux. A similar value (17+2
−2 per cent) was obtained by

Nardini et al. (2010) through spectral decomposition. Studies car-

ried out using CO have confirmed that the western nucleus hosts

a deeply buried AGN, with a total column density of ∼1025 cm−2

(Downes & Eckart 2007; Scoville et al. 2015). Consistent with this,

Stierwalt et al. (2013) found that this source exhibits a deep 9.7 µm

silicate absorption feature (τ9.7 µm = −2.26).

The two nuclei are separated by 1 arcsec, and Chandra observa-

tions have shown that the peak of the 2–7 keV emission is in the

western nucleus (Iwasawa et al. 2011b), while no emission is ob-

served in the same band where the eastern nucleus lies. In the X-ray

band, Arp 220 has been shown to have a flat X-ray continuum (Ŵ ∼ 1,

Ptak et al. 2003; Iwasawa et al. 2005) and a strong emission line

at 6.7 keV (EW ∼ 1.9 keV, Iwasawa et al. 2005). NuSTAR-detected

X-ray emission from Arp 220 up to 20 keV (Teng et al. 2015), and

using a torus model yields only a lower limit on the column den-

sity of NH ≥ 5.3 × 1024 cm−2, consistent with the results obtained

by CO studies. Teng et al. (2015) discuss that the X-ray spectrum

could also be well reproduced by a combination of thermal plasma

models. However, given the strong evidence for an AGN obtained

at other wavelengths, we consider here that the hard X-ray emission

is produced by the AGN in Arp 220W.

A23 IRAS 16504+0228 (NGC 6240N and NGC 6240S)

IRAS 16504+0228 is a LIRG in merger stage D with two nuclei

(NGC 6240N and NGC 6240s) separated by 0.7 kpc (Fig. 7). The
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system shows a 14.32 µm [Ne V] emission line, and in the optical

is classified as a LINER (Yuan et al. 2010). The contribution of

AGN activity to the bolometric luminosity has been estimated to be

∼26 per cent (Veilleux et al. 2009).

The two nuclei are separated by 1.4 arcsec, and were both detected

by Chandra observations (Komossa et al. 2003). The presence of

an AGN has been confirmed by several studies carried out in the

X-ray band (Iwasawa & Comastri 1998; Vignati et al. 1999; Lira

et al. 2002b). Chandra observations have shown that NGC 6240S

is brighter than NGC 6240N, and that both nuclei host CT AGN

(Komossa et al. 2003). Combining Chandra, XMM–Newton and

BeppoSAX data with recent NuSTAR observations, Puccetti et al.

(2016) found that both NGC 6240S (NH = 1.47+0.21
−0.17 × 1024 cm−2)

and NGC 6240N (NH = 1.55+0.72
−0.23 × 1024 cm−2) host CT AGN.

A24 IRAS F16577+5900 (NGC 6286 and NGC 6285)

IRAS F16577+5900 is a system composed of a LIRG (NGC 6286)

and its companion (NGC 6285), which is significantly less lumi-

nous in the IR [log (L IR/L⊙) = 10.72]. The two galaxies are in

merger stage B and are separated by 35.8 kpc (Fig. 7). None of

the tracers of AGN activity show evidence of an accreting SMBH

in either nucleus, with the possible exception of faint 14.32 and

24.32 µm [Ne V] emission lines in NGC 6286 (Dudik, Satyapal &

Marcu 2009). The detection of these lines, however, was questioned

by Inami et al. (2013). Optically, NGC 6286 is classified as a com-

posite (Yuan et al. 2010). Studying the multiwavelength Spectral

Energy Distribution (SED) of NGC 6286, Vega et al. (2008) found

that an AGN might contribute to ∼5 per cent of the MIR emission

of the galaxy.

Given the separation between the two sources (91.1 arcsec), they

could be well resolved by XMM–Newton/EPIC, Chandra and NuS-

TAR observations. A joint analysis of XMM–Newton, Chandra and

NuSTAR observations of this system has shown that NGC 6286

contains a buried AGN (Ricci et al. 2016a), with a column den-

sity of NH = 1.1+1.1
−0.4 × 1024 cm−2. NGC 6285 was not detected by

NuSTAR, and the Chandra spectrum is well reproduced by a single

power-law model (ZPOWERLAW; Fig. B3).

A25 IRAS F17138−1017

The LIRG IRAS F17138−1017 is a coalesced merger (stage D)

showing only one nucleus (Fig. 8). None of the multiwavelength

tracers find any evidence of AGN activity in this system, which is

optically classified as a composite (Yuan et al. 2010).

The source was detected by NuSTAR at the 4.3σ and 5σ levels

in the 3–10 keV band for FPMA and FPMB, respectively, but re-

mains undetected in the 10–24 keV band. Given the non-detection

above 10 keV, we modelled only the 3–10 keV region of the

NuSTAR spectrum. The combined Chandra and NuSTAR spectra

can be well fit with a simple power-law model (ZPOWERLAW) with a

photon index of Ŵ = 1.13+0.17
−0.16. This is harder than the typical X-ray

emission observed for star-forming regions. While we cannot ex-

clude the presence of a low-luminosity or heavily obscured AGN in

this object, both the multiwavelength tracers and the low 2–10 keV

X-ray luminosity [log(L 2−10/erg s−1) = 40.99] are consistent with

a star-forming galaxy. The X-ray spectrum of the source is shown

in Fig. B3.

A26 IRAS 20264+2533 (MCG +04−48 −002 and NGC 6921)

IRAS 20264+2533 is an early merger (stage A) composed of two

galaxies with a projected separation of 27.1 kpc: NGC 6921 and

the LIRG MCG +04−48 −002 (Fig. 8). The presence of an AGN

in MCG +04−48 −002 is suggested by the detection of [Ne V]

14.32 µm, although the source is found to be an H II region in the

optical (Masetti et al. 2006).

The two galaxies are separated by 91.4 arcsec, and could

therefore be resolved by both XMM–Newton/EPIC and NuSTAR

observations. X-ray observations of these two sources were re-

cently discussed by Koss et al. (2016a), who found both sources

to host obscured AGN. Both objects show Fe Kα lines at 6.4 keV,

and this feature is particularly prominent in NGC 6921. We stud-

ied the combined XMM–Newton and NuSTAR spectrum of each

source using the same combination of models applied to other AGN

(ZPOWERLAW+ATABLE{TORUS1006.FITS} +APEC). For MCG +04−48

−002, we found that the flux of the primary X-ray emission dur-

ing the NuSTAR observation was about one-fourth of that mea-

sured by the XMM–Newton observation (the cross-calibration con-

stants were 0.27 ± 0.03 and 0.26 ± 0.03 for FPMA and FPMB,

respectively). The X-ray source is obscured by material with a

column density of NH = 5.8+0.7
−0.4 × 1023 cm−2, while the ratio be-

tween scattered radiation and primary X-ray emission is found to be

≤0.3 per cent. We also constrain the half-opening angle of the torus

to be θOA = 78+1.0
−0.4 deg. Previous observations of NGC 6921 found

that the galaxy hosts a CT AGN (Ricci et al. 2015; Koss et al. 2016a).

Our spectral analysis confirms this result. Applying the same model

we used for MCG +04−48 −002, we obtained a column density in

the direction of the X-ray source of NH = 1.78+0.30
−0.53 × 1024 cm−2.

The scattered radiation is ≤0.6 per cent of the primary component,

while the half-opening angle of the torus is θOA = 55+16
−16 deg. The

broad-band X-ray spectra of these two sources are shown in Fig. B3.

A27 IRAS F21453−3511 (NGC 7130)

The LIRG IRAS F21453−3511 is in merger stage D with a single

nucleus (Fig. 8). The MIR spectrum of the source shows [Ne V]

14.32 and 24.32 µm emission lines (Pereira-Santaella et al. 2010;

Inami et al. 2013), clear indications of AGN activity. The galaxy is

classified as a Seyfert 2 (Yuan et al. 2010), and from the 6.2 µm

PAH feature Stierwalt et al. (2013) suggested that the AGN con-

tributes ∼40 per cent of the MIR flux. From spectral decomposition,

Hernán-Caballero et al. (2015) concluded that ∼51 per cent of the

MIR luminosity is due to the AGN.

Studying a Chandra observation, Levenson et al. (2005) found

that the galaxy hosts a CT AGN. This was also confirmed by Gilli

et al. (2010) using the X-ray to [Ne V]3426 flux ratio. Our analysis of

the combined Chandra and NuSTAR spectrum confirms the heavy

obscuration of this source, which shows a very strong Fe Kα line at

6.4 keV (EW = 1.10+0.27
−0.22 keV). Using the torus model plus two

different thermal plasmas [ZPOWERLAW+ATABLE{TORUS1006.FITS}
+ ZPHABS×(APEC+APEC)], we found a column density of

NH = 4.07+1.52
−0.91 × 1024 cm−2 and that 0.3 ± 0.2 per cent of the pri-

mary X-ray radiation is scattered. Only an upper limit for the half-

opening angle of the torus could be obtained by our analysis (θ OA ≤

37 deg). The broad-band X-ray spectrum of NGC 7130 is presented

in Fig. B4.

A28 IRAS F23007+0836 (NGC 7469 and IC 5283)

IRAS F23007+0836 is a system composed of a pair of galaxies in

an early merger (stage A) at a projected distance of 26 kpc (Fig. 8).

NGC 7469 is a LIRG, while IC 5283 has a lower IR luminosity

(log L IR = 10.79 L⊙). The presence of an AGN in NGC 7469

has been confirmed by several tracers. The MIR spectrum shows
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both 14.32 and 24.32 µm [Ne V] emission lines (Pereira-Santaella

et al. 2010; Inami et al. 2013), and weak 3.3 µm (EW =32 nm)

and 6.2 µm (EW= 0.23 µm) PAH features (Stierwalt et al. 2013;

Yamada et al. 2013). The AGN is optically classified as a Seyfert 1

(Yuan et al. 2010), and it has been estimated that it contributes

∼64 per cent of the MIR flux.

The two galaxies are separated by 79.7 arcsec, and could there-

fore be resolved by XMM–Newton/EPIC, NuSTAR and Swift/XRT

observations. Previous X-ray studies of NGC 7469 carried out

using XMM–Newton (Blustin et al. 2003; Scott et al. 2005) and

Suzaku (Walton et al. 2013) have shown that the AGN is ob-

scured only by ionized material, in agreement with the optical

classification. To constrain the level of obscuration of the source,

we studied the combined XMM–Newton and Swift/BAT spectrum.

Data from EPIC/MOS were not used because the inner chips of

MOS1 and MOS2 were missing during the observation. We used

a model that considers reprocessed X-ray emission from a slab

[PEXRAV (Magdziarz & Zdziarski 1995)], a Gaussian line for the

Fe Kα emission (ZGAUSS), a soft excess in the form of a black-

body (BBODY) and ionized absorption (ZXIPCF). The model we used

is ZXIPCF×(BBODY + ZGAUSS + ZXIPCF×PEXRAV). We find that the neu-

tral column density in the direction of the source is extremely low

[log(NH/ cm−2) ∼ 19.8], and the Fe Kα line at 6.40 ± 0.01 keV

is relatively weak (EW = 81+17
−14 eV). The two ionized absorbers

have column densities of N
W,1
H = 1.7+6.6

−0.6 × 1021 cm−2 and N
W,2
H =

1.8+0.5
−0.2 × 1023 cm−2, ionization parameters of log(ξ 1/erg cm s−1) =

2.36 ± 0.07 and log(ξ 2/erg cm s−1) ≥ −0.20, and cover a fraction

of f1 ≥ 37 per cent and f 2 = 32+2
−4 per cent of the X-ray source. The

temperature of the blackbody component is kT = 0.106 ± 0.002 eV,

while the reflection parameter is R = 0.77+0.41
−0.34. The X-ray spectrum

of NGC 7469 is shown in Fig. B4.

The EPIC/PN observation of IRAS F23007+0836 was carried

out in small-window mode, and therefore IC 5283 fell outside of

the limited Field of View (FOV) of this XMM–Newton observation.

We therefore analysed the Swift/XRT image of the field, but found

that IC 5283 is not detected either in the 0.3–2 or in the 2–10 keV

band.

A29 IRAS F23254+0830 (NGC 7674 and NGC 7674A)

IRAS F23254+0830 is a galaxy pair in merger stage A, with

the two galaxies having a separation of 20.7 kpc (Fig. 8).

NGC 7674 is a LIRG, while NGC 7674A has an IR luminosity

of log (L IR/L⊙) = 10.01. The presence of an AGN in NGC 7674 is

confirmed by several proxies. Both [Ne V] 14.32 and 24.32 µm

are significantly detected (Pereira-Santaella et al. 2010; Inami

et al. 2013). The W1 − W2 WISE colour is above the threshold

(W1 − W2 = 1.16, W2 = 8.11 mag), and the NIR slope shows

a red continuum (Ŵ2.5−5µm = 1.4, Imanishi et al. 2010). Both the

3.3 µm (EW =21 nm) and the 6.2 µm (EW = 0.02 µm) PAH fea-

tures are weak (Imanishi et al. 2010; Stierwalt et al. 2013). Optical

spectroscopy studies have classified NGC 7674 as a Seyfert 2 (Yuan

et al. 2010).

NGC 7674A, which is located at 34.1 arcsec from NGC 7674,

is not detected in the X-ray band by observations carried out with

Swift/XRT, which would be able to resolve the two sources (Gandhi

et al. 2016). A NuSTAR observation of NGC 7674, combined with

Suzaku/XIS and Swift/XRT observations, was recently studied by

Gandhi et al. (2016). In this work, it was found that, although the

Fe Kα line is relatively weak (EW =400 eV), the AGN is CT and

possibly reflection dominated, with a line-of-sight column density

of NH � 3 × 1024 cm−2.

A30 IRAS 23262+0314 (NGC 7679 and NGC 7682)

IRAS 23262+0314 is a system in an early merger (stage A) with

the two galaxies (NGC 7679 and NGC 7682) separated by 97.3 kpc

(Fig. 8). NGC 7679 is a LIRG which shows a 14.32 µm [Ne V]

emission line (Inami et al. 2013) and is optically classified as a

Seyfert 2 (Yuan et al. 2010). Spectral decomposition studies have

shown that the AGN in this galaxy could contribute to ∼19 per cent

of the MIR emission (Hernán-Caballero et al. 2015). NGC 7682 is

not a luminous IR source and is optically classified as a Seyfert 2

(Huchra & Burg 1992).

The two galaxies are separated by 269.7 arcsec, and could be

well resolved by the XMM–Newton observations analysed here.

NGC 7679 was found to be unobscured with a luminosity of

3.4 × 1042 erg s−1 in the analysis of a BeppoSAX observation

(Risaliti 2002; Dadina 2007). The X-ray luminosity is above the

threshold typically used to separate AGN from starbursts in the

2–10 keV band (1042 erg s−1; Kartaltepe et al. 2010). In a subse-

quent XMM–Newton observation, we found the X-ray source was

about 10 times dimmer in the 2–10 keV band (4 × 1041 erg s−1),

and the spectrum could be well modelled with a power-law com-

ponent, plus a thermal component, a Gaussian line and neu-

tral absorption [ZPHABS×(APEC+PO+ZGAUSS)]. We confirm that the

source is unobscured and find that the Gaussian line has an en-

ergy of E = 6.57+0.07
−0.09 keV and an EW of 450+171

−200 eV. The strong

X-ray variability indicates the presence of an AGN. Using the re-

lation of Ranalli et al. (2003), we find that a star formation rate

of ∼80 M⊙ yr−1 is needed to account for the 2–10 keV lumi-

nosity of the source at the time of the XMM–Newton observa-

tion. This is ∼4 times larger than the value obtained from Hα

(21.2 ± 0.2 M⊙ yr−1, Davies et al. 2016) and ∼8 times that in-

ferred from the 3.6 and 8 µm images (11.4 ± 0.6 M⊙ yr−1, Davies

et al. 2016). The star formation rate needed to reproduce the X-ray

luminosity found by Dadina (2007) would be ∼680 M⊙ yr−1, ∼30–

60 times larger than the value observed. We therefore conclude that

most of the X-ray emission observed is most likely due to the AGN.

NGC 7682 is a known CT AGN (Singh, Shastri & Risaliti 2011;

Ricci et al. 2015). We analysed the XMM–Newton of this object

using a torus model plus scattered emission and a thermal plasma

[ZPOWERLAW+ATABLE{TORUS1006.FITS} +ZPHABS×APEC]. Our analy-

sis confirms that the X-ray source is CT, with a column density of

NH = 2.43+0.60
−0.44 × 1024 cm−2. We find that the half-opening angle

of the torus is θ OA ≥ 68 deg and ≤0.04 per cent of the primary radi-

ation is scattered. The X-ray spectra of NGC 7679 and NGC 7682

are illustrated in Fig. B4.

APPENDI X B: X -RAY SPECTRA

The X-ray spectra and the best-fitting models are illustrated in

Figs B1–B4. For visualization purposes, spectra are typically re-

binned to have at least a significance of 3σ per bin.
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Figure B1. X-ray spectra of NGC 34 [NuSTAR, Chandra and XMM–Newton; Section A1, NH = (5.3 ± 1.1) × 1023 cm−2], Arp 256 (Chandra; Section A2),

MCG−02 − 01 −052 (Chandra; Section A2), MCG+12−02 −001 (Chandra; Section A3), CGCG 468−002W [NuSTAR and Swift/XRT; Section A5,

NH = (1.50 ± 0.09) × 1022 cm−2] and MCG+08−18 −013 (Chandra; Section A9). The bottom panels show the ratio between the data and the models.
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Figure B2. X-ray spectra of NGC 3110 (XMM–Newton and Chandra; Section A10), MCG−01 − 26 −013 (XMM–Newton and Chandra, Section A10),

ESO 440−IG058N (Chandra; Section A14), ESO 440−IG058S (Chandra; Section A14), NGC 4922N (NuSTAR and Chandra; Section A16, NH ≥ 4.27 ×

1024 cm−2), and MCG−03 − 34 −064 [XMM–Newton EPIC and Swift/BAT; Section A18, NH = (54.2+0.7
−0.9) × 1022 cm−2].
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Figure B3. X-ray spectra of IC 4518A [NuSTAR and XMM–Newton; Section A21, NH = (2.4 ± 0.2) × 1023 cm−2], IC 4518B [XMM–Newton; Section A21,

NH = (3.2+4.1
−1.4) × 1023 cm−2], NGC 6285 (Chandra, Section A24), IRAS F17138−1017 (NuSTAR and Chandra; Section A25), MCG +04−48 −002 [NuSTAR

and XMM–Newton, Section A26, NH = (5.8+0.7
−0.4) × 1023 cm−2], and NGC 6921 (NuSTAR and XMM–Newton, Section A26, NH = (1.78+0.30

−0.53) × 1024 cm−2).
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Figure B4. X-ray spectra of NGC 7130 [NuSTAR and Chandra; Section A27, NH = (4.07+1.52
−0.91) × 1024 cm−2], NGC 7469 [XMM–Newton and Swift/BAT;

Section A28, NH = (6 ± 2) × 1019 cm−2], NGC 7679 [XMM–Newton; Section A30, NH ≤ 2 × 1020 cm−2], and NGC 7682 [XMM–Newton; Section A30,

NH = (2.43+0.60
−0.44) × 1024 cm−2].
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