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Abstract

Background The snub-nosed monkey (Rhinopithecus roxellanae) is an endangered animal species mainly distributed
in China and needs to be protected. Gut microbiome is an important determinant of animal health and population
survival as it affects the adaptation of the animals to different foods and environments under kinetic changes of
intrinsic and extrinsic factors. Therefore, this study aimed to elucidate gut fecal microbiome profiles of snub-nosed
monkeys affected by several extrinsic and intrinsic factors, including raising patterns (captive vs. wild), age, sex, and
diarrheal status to provide a reference for making protection strategies.

Results The 165 rRNA gene sequencing was firstly used to pre-check clustering of 38 fecal samples from the mon-
keys including 30 wild and 8 captive (5 healthy and 3 diarrheal) from three Regions of Shennongjia Nature Reserve,
Hubei Province, China. Then the 24 samples with high-quality DNA from 18 wild and 6 captive (4 healthy and 2 diar-
rheal) monkeys were subjected to shotgun metagenomic sequencing to characterize bacterial gut microbial commu-
nities. We discovered that the raising pattern (captive and wild) rather than age and sex was the predominant factor
attributed to gut microbiome structure and proportionality. Wild monkeys had significantly higher bacterial diversity
and lower Bacteroidetes/Firmicutes ratios than captive animals. Moreover, the gut microbiomes in wild healthy mon-
keys were enriched for the genes involved in fatty acid production, while in captive animals, genes were enriched for
vitamin biosynthesis and metabolism and amino acid biosynthesis from carbohydrate intermediates. Additionally, a
total of 37 antibiotic resistant genes (ARG) types were detected. Unlike the microbiome diversity, the captive monkeys
have a higher diversity of ARG than the wild animals.

Conclusion Taken together, we highlight the importance of self-reprogramed metabolism in the snub-nosed
monkey gut microbiome to help captive and wild monkeys adapt to different intrinsic and extrinsic environmental
change.
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Introduction

Globally, the snub-nosed monkey (Rhinopithecus roxel-
lanae) is an endangered Colobinae species, distributed
only in China, Myanmar, and Vietnam, and thereby listed
on the Red List of endangered species from the Interna-
tional Union for Conservation of Nature [1]. In China,
these animals belong to the first class in national list of
protected species which comprises mostly endangered
animal species needed to provide government and non-
government levels of measures for protection of their
survival [2]. Currently, approximately 25,000 snub-nosed
monkeys are distributed in Hubei, Sichuan, Shanxi, and
Gansu provinces, China [3-5], and roughly 1,471 live in
Shennongjia Nature Reserve, Hubei Province. In terms
of accelerating ecological degradation worldwide, the
pressure is mounting to protect this species in different
regions and countries.

Food is critical to the survival and health of any animal
population and food metabolism is associated with the
gut microbiome, which is composed of a dynamic bal-
ance of trillions of microorganisms and provides specific
services to digest certain foods [6, 7]. This complex sys-
tem has an important role in maintaining several critical
physiological activities such as metabolism and immune
responses, or disease development [5, 8]. It is generally
considered that the gut microbiome is structured by host
dietary niches. However, many other factors might influ-
ence gut microbiome plasticity including both extrinsic
environmental factors such as food resources, and raising
patterns, and intrinsic factors such as species, age, sex,
gut morphology, and health status [7, 9-11]. Ultimately,
both host phylogeny and gut microbiome co-diversify
to respond to physiological or environmental change.
Therefore, to characterize the gut microbiomes of impor-
tant species has become a hot area to elucidate the mech-
anisms of animal adaptation to environment and defense
against infectious and non-infectious diseases.

Similar findings are obtained in research on the gut
microbiomes in nonhuman primate (NHP) populations.
Amato et al.found that the composition and function of
gut microbiomes of NHP species were affected by gut
morphological specializations much stronger than the
dietary niche such as folivores or non-folivores [12].
Additionally, habitat degradation and disturbance sig-
nificantly decreased gut microbial diversity in NHPs
[13-15]. However, in Uganda, one study identified no
association between gut microbial diversity and habitat
degradation [16]. When compared with wild animals,
gut microbiome o-diversity decreased in different cap-
tive NHPs [17, 18]. Furthermore, NHP captivity under
different diet conditions generated significant differences
in gut microbial composition [19]. Therefore, there are
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many unclear mechanisms to be clarified which contrib-
ute to gut microbiome structure and function.

Antibiotic resistance transfer is a hot area in human
and veterinary medicine. The antibiotic resistance genes
(ARG) can be transferred from one bacterium to others
possibly inducing new antibiotic resistance. The human
and animal gut microbiomes are reservoirs of ARG [20,
21]. With the advances in high-throughput sequenc-
ing technology and metagenomic analysis, the antibiotic
resistomes can be extensively investigated. The related
studies have uncovered high diversity and abundance
of ARG in the human and animal gut microbiomes
[21-23]. For example, a total of 1,093 antibiotic resist-
ance genes were identified in human gut microbiomes
varied between Chinese and European populations [23].
Therefore, antibiotic resistomes contribute to the diver-
sity of gut microbiomes. In addition, an in-depth study
of resistomes should help understand the way by which
antibiotic resistance genes spread among livestock, envi-
ronments, and human microbiomes.

R. roxellanae usually inhabits mountainous regions at
elevations between 1500 and 3500 m above sea level. In
the wild, monkeys can eat a wide range of food such as
leaves, seeds, and bark, while in captivity, the animals
are usually fed with very limited food kinds like fruits
(apples, oranges, etc.) and root vegetables (such as car-
rots) [5, 24]. So far, the R. roxellanae gut microbiome
has been preliminarily studied and showed that age [25]
and living patterns (captive/wild) [5] affected the rela-
tive abundance of gut microbial species. Since the gut
microbiome plays an important role in host metabolism
and immunity and more than 400 individuals of R. rox-
ellanae are being raised in captivity [26], it is of signifi-
cance to study further the difference in gut microbiomes
between the animals in captivity and wild to establish
the stool microbial communities as biological mark-
ers for the health-status of this endangered NHP based
on patterns in taxonomic abundance, proportionality,
and richness. In addition, ARG of gut microbiome in R.
roxellanae has not been extensively studied yet. Reveal-
ing ARG of gut microbiomes would help predict sus-
ceptible drugs for the monkeys when the animals are in
need of veterinary medication and understand how anti-
biotic resistance genes circulate among this endangered
species, surrounding livestock, and humans. In current
study, 38 R. roxellanae fecal samples from Shennongjia
Nature Reserve, Hubei province, China were pre-evalu-
ated by 16S rRNA gene sequencing and taxonomic and
functional gut microbiome level differences were fur-
ther investigated in 24 monkeys using a metagenomic
sequencing approach. Additionally, ARG distribution was
investigated. Our results would help improve surveillance
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program and protection strategies for this endangered
species.

Materials and methods

Animals, sample collection, and DNA extraction
Approximately, a total of 85 R. roxellanae were avail-
able for research in Shennongjia Nature Reserve. The
monkeys were distributed across three regions: Region
I: there were about 60 free-ranging monkeys lived in
the Dalongtan area, which were composed of four
one-male units (OMU) and one all male unit (AMU);
Region II: Shennongjia snub-nosed monkey breed-
ing base where 15 monkeys were kept and randomly
divided into three OMUs by animal keepers; each
unit was independently caged in one steel house; and
Region III: Xiaolongtan area is the place where the
injured monkeys rescued from different areas of Shen-
nongjia Reserve were cared; 10 monkeys in a cage were
taken as one unit. In total, we collected fresh fecal sam-
ples from 38 monkeys including 30 wild monkeys from
Regions I and eight captive monkeys from II (six, three
healthy and three diarrheal) and III (two, one healthy
and one diarrheal monkeys) respectively in July 2012.
Monkey age, raising patterns, sex, and health status
were recorded (additional file 1). The monkey age was
determined by their coat color, body length and wart-
like growth at the corners of the mouth as described
previously [27]. Meanwhile, the health status of the
monkeys was clinically determined by observing their
bright coats, movement (lively, powerful), good appe-
tite, fecal shape, and color.

All the wild and captive monkeys were fed three times
per day (10:00-11:00, 14:00-15:00, and 18:00—19:00).
The wild monkeys from region I usually came quickly
from the wild to the trees in the feeding place at the fixed
time after hearing the call of the staff. Then they jumped
down from the trees to get the food and ate it. After
feeding, they immediately went back to the mountain for
their free-living in the wild and could get more food in
the forest. Meanwhile, the monkeys in regions II and III
were kept and fed in their cages at similar timepoints.

Fecal samples were collected from the monkeys by
using the protocol described previously [2]. Briefly,
fecal samples were collected during one week by two
researchers before feeding time in the morning (10:00—
11:00) and afternoon (14:00-15:00), when the monkeys
had already gone down the mountain, gathered in the
trees at the feeding place and waited for their food.
Each researcher was responsible for one monkey unit
per time. Fresh fecal samples were immediately col-
lected into sterile tubes. For the diarrheal fecal samples,
sterile cotton swabs were used and dipped the feces in
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the center carefully for several times to collect feces as
many as possible, and stored into sterile tubes as well.
Samples were stored at -80 °C at Shennongjia Reserve
and transported to our laboratory on dry ice and
stored at -80 °C until DNA extraction. Microbial DNA
from fecal samples was extracted using QIAamp DNA
stool mini kits (Qiagen, CA, USA) following standard
protocols.

The 16S rRNA gene sequencing and data analysis

DNA quantity and quality were measured using a
Nanodrop 2000 spectrophotometer (Nanodrop Tech-
nologies, DE, USA) and agarose gel electrophoresis,
respectively. The 16S rRNA gene V4 region in DNA
was amplified using specific primers (515F and 806R),
which were incorporated with barcodes [28]. Polymer-
ase chain reaction (PCR) was performed using a Phu-
sion® High-Fidelity PCR Master Mix (New England
Biolabs, MA, USA). Amplicons were extracted from 2%
agarose gels and purified using a Qiagen Gel Extraction
Kit (Qiagen, Germany). Sequencing libraries were gen-
erated using a TruSeq® DNA PCRFree Sample Prepara-
tion Kit (Illumina, CA, USA) following manufacturer’s
protocols, and index codes were added. Library quality
was assessed on the Qubit@ 2.0 Fluorometer (Thermo
Scientific, MA, USA) and Agilent Bioanalyzer 2100
system. The library was then sequenced on an Illumina
Miseq platform and 250 bp paired-end reads generated.

After assigning paired-end reads to samples based
on unique barcodes, reads were merged using FLASH
(Version 1.2.7) [29], and high quality tags obtained
using a QIIME (Version 1.7.0) [30] quality control
process. After detecting chimeric sequences using the
UCHIME algorithm [31], effective tags were finally
generated for analysis.

To determine tag taxonomic annotation, tags were
clustered into operational taxonomic units (OTUs)
using de novo OTU clustering method in Uparse [32]
with a 97% sequence identity, the highest frequency
sequence in OTUs was selected as the representa-
tive sequence, and taxonomic data were then assigned
to each representative sequence in Greengenes [33]
database using the Ribosomal Database Project (RDP)
classifier. OUT abundance information of each sam-
ple was rarified using a standard of sequence number
corresponding to the sample with the least sequences.
Alpha diversity was applied to analyze the complex-
ity of species diversity for a sample through Shannon.
Meanwhile, Beta diversity analysis was used to evalu-
ate differences of samples in species complexity. Beta
diversity on both weighted and unweighted Unifrac
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was calculated. All these indices were calculated with
QIIME (Version 1.7.0) and displayed with R software
(Version 2.15.3).

Shotgun metagenomics sequencing and data analysis

The high-quality DNA samples without degrada-
tion from each group were selected including 18 wild
monkeys from Region I and six captive monkeys
(three healthy and two diarrheal from Region II and
one healthy from Region III) for shotgun metagen-
omics sequencing. Briefly, samples were paired-end
sequenced on the Illumina platform (insert size =300
base pairs (bp), read length =100 bp) at Novogene Bio-
informatics Technology Co., Ltd (Tianjin, China). After
quality control, high quality read assembly was exe-
cuted in SOAPdenovo v. 2.04 [34] (parameters: -R -d 1
-D 1 -F). Genes (minimum coding length =34 amino
acids (AAs)) were predicted on scaftigs (i.e., continuous
sequences within scaffolds), with genes>300 bp pre-
dicted using MetaGeneMark [35]. Then, a nonredun-
dant gene catalog was constructed in CD-HIT (Version
4.5.8, parameters: -G 0 -aS 0.9 -g 1 -d 0 -c 0.95) [36]
using a sequence identity cut-off =0.95 and a minimum
coverage cut-off =0.9 for shorter sequences.

To assess gene abundance, reads were realigned to
the gene catalog with SOAP2 [37] using parameters:
-m 200—x 400 -s 95. Gene abundance was calculated
by counting the number of reads aligned to the gene
when normalized by gene length. Genes were aligned
to the integrated Non-Redundant Protein Sequence
Database (NR), Kyoto Encyclopedia of Genes and
Genomes (KEGQG) [38] (Release 73.1, with animal and
plant genes removed), eggNOG (Version 4.1) [39]
and Carbohydrate-Active enZYmes (CAZy) databases
(Version 2014.10.20) [40] using DIAMOND (Version
0.7.9.58, default parameter except that -k 50 —sensitive
-e 0.00001) [41]. Significant gene matches, which were
defined by e-values <10 x the smallest e-value of the
top hit chosen to take the LCA algorithm, were retained
to distinguish taxonomic groups. The taxonomical
level of each gene was determined by the lowest com-
mon ancestor (LCA)-based algorithm in MEGAN [42].
For functional analysis, proteins were assigned to the
KEGG Orthology (KO) by the highest scoring anno-
tated hit(s) containing at least one HSP scoring over
60 bits [43]. Feature abundance was calculated by sum-
ming gene abundance annotated to the same feature.

Sequencing reads were aligned to the Comprehen-
sive Antibiotic Resistance Database (CARD) to identify
ARG with an e-value cutoff of le-5 by using BLAST.
Sequence identity was>90% and alignment length
was > 30 AAs. Gene level data were used to calculate
ARG richness, while normalized data, aggregated from
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gene level outputs to group and class levels, were used
to generate heat maps.

Statistical analysis

Genera abundance was defined by MetaStats (Version
2009.04.14) as significantly different when the p value
was <0.05 and the g value was < 0.05 [44]. Abundance dif-
ferences between KO, corresponding enzyme (EC), and
carbohydrate-active enzymes families were tested using
Wilcoxon rank sum tests, and p values were corrected for
multiple testing using the Benjamin & Hochberg method.
To identify differential species between diarrheal and
healthy monkeys, t-test was conducted for each species
from species level profiles. Species with a p value<0.05
was identified as significantly differential species.

Spearman’s correlations were calculated based on dif-
ferential genera and ECs profiles, and p values were cor-
rected for multiple testing using the Holm method in R
(Version 2.15.3, psychpackage).

Based on genus profiles, the Shannon index was calcu-
lated in QIIME (Version 1.7.0) to identify within-sample
(a) diversity. Principal component analysis (PCA) was
performed using the FactoMineR package in R software
(Version 2.15.3). Principal coordinate analysis (PCoA)
was performed and displayed in ade4, cluster, fpc, and
clusterSim packages in R software (Version 2.15.3).

Results

Gut microbial structures in R. roxellanae

After annotating 16S rRNA gene sequencing data of
the 38 fecal samples, 54,433 OUTs were generated, and
20,680 OTUs were left for further analysis after data nor-
malization (additional file 2). We used UniFrac distance to
measure microbial similarity levels in samples (additional
file 2). Our data indicated that both the raising patterns
(wild vs. captive, p=0.0024) and sex (male vs. female,
p=0.0041) were major forces driving microbial com-
munity variations among the selected factors (Fig. 1a).
However, PCoA analysis based on the UniFrac distance
revealed that only the raising patterns (wild vs. captive)
rather than sex or age presented the separated clusters of
gut microbiomes (Fig. 1b, and c) (Fig. S1, additional file 3,
and additional file 4). Compared to PCoA analysis, the
dendrogram better demonstrated clustering of most wild
monkeys except one monkey Q27aHM (Fig. 1c).

For the shotgun metagenomic sequencing, a total of
139,935 Mb data were generated, with an average of
5,830 Mb data/sample. Also, 4,152,852 genes were pre-
dicted using MetaGeneMark. All data-related statistical
information from sequencing, contig assembly, and pre-
dicted open reading frames was listed (additional file 5).
The top 10 bacteria of gut microbiomes at the phylum
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Fig. 1 Difference in the fecal microbial communities of R. roxellanae. a The similarity of fecal microbiomes measured by UniFrac distance
considering sex, raising patterns, and age. Results are derived from bacterial 16 s V4 rRNA data sets. **, p<0.01 (Kruskal-Wallis test). b PCoA

based on the Unweighted UniFrac distance from the genera profiles of the captive healthy monkeys (Captive-H)and wild monkeys (Wild). ¢ The
dendrogram based on each sample was developed demonstrating all 6 captive healthy monkeys were clustered together, while the wild monkeys

were better clustered into another group compared PCoA

level were shown (Fig. 2a); Firmicutes and Bacteroi-
detes were the most dominant bacteria in all 24 samples.
Almost all the top 10 bacteria in the wild and captive
monkey microbiomes were: Prevotella multisacchari-
vorax, Bacteroides sp. CAG:927, Prevotella sp. CAG: 873,
Alistipes sp. CAG: 435, Firmicutes bacterium CAG:124,
Firmicutes bacterium CAG:240, Firmicutes bacterium
CAG:95, Eubacterium sp. CAG:115, Treponema succini-
faciens, and Bacteroides sp. CAG:1060 (Fig. 2b).

Fecal microbial community differences between captive
and wild monkeys

After gene annotation using the NR database, taxonomic
profiles at different levels were generated. From genera
profiles, wild monkeys had 74 unique genera, while cap-
tive healthy monkeys had 10 (Fig. 3a). Pie charts were
constructed and revealed apparent differences of fecal
microbial communities between captive healthy and wild

monkeys (Fig. 3b). Meanwhile a-diversity indices verified
that the difference was statistically significant between
Captive-H and Wild groups (p=0.0013) (Fig. 3c). These
findings indicated that bacterial gut microbiome diversity
in wild monkeys was higher than captive monkeys. Addi-
tionally, based on genus level profiles (additional file 6),
MetaStats software was used to identify significant dif-
ferential genera between wild and captive healthy mon-
keys (p<0.05 and g <0.05). Heat map data showed that the
dominant genera in fecal microbiomes of wild monkeys
were Faecalicoccus, Mitsuokella, and Fusobacterium, while
Bacteroides in captive monkeys (Fig. 3d) (additional file 7).

Global metabolism features in monkey gut metagenomes

To assess gut microbiome gene functions in monkeys, we
aligned gene catalogs to KEGG and eggNOG database.
KEGG metabolic pathways provided a highly integrated
overview of global metabolism (Fig. S2), indicating that
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the monkey gut microbiome was enriched in carbohy-  cluster abundance of orthologous monkey groups, while
drate, AA, nucleotide, energy, vitamin, and lipid metabo- ~ COG (Clusters of Orthologous Groups) function anno-
lism. The eggNOG database was also used to assess the tation showed that function unknown, carbohydrate
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MetaStats (Version 2009.04.14, p value <0.05, g value <0.05)

transport and metabolism, AA transport and metabo-
lism, and energy production and conversion were
enriched in fecal microbiomes (Fig. S3 and additional
file 8).

After global metabolism analysis, we compared fecal
microbial community gene functions between the wild
and captive healthy monkeys, and revealed that wild
monkeys had unique genes involved in carbohydrate
metabolism, vitamin metabolism, and biosynthesis of
other secondary metabolites pathways (Fig. S2, labeled
with bold red lines). Meanwhile, captive monkeys had

unique genes involved in amino acid metabolism path-
ways (Fig. S2, labeled with bold green lines).

Metabolic differences between captive and wild monkeys

From KEGG EC profiles across 22 fecal samples (addi-
tional file 9), 367 ECs were identified at different propor-
tions between 18 wild and 4 captive healthy monkeys.
The wild monkeys had 149 ECs with higher abun-
dance, while 218 with lower abundance when com-
pared with captive healthy monkeys (p<0.05, g<0.05,
additional file 10). After preliminary analysis, some
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ECs related to carbohydrate, AA, and vitamin metabo-  1,6-diphosphofructose aldolase (EC4.1.2.13) in glycoly-
lism were selected to illustrate differences in functional sis, mannitol 2-dehydrogenase (EC1.1.1.67) in mannitol
features (Fig. 4a). The wild monkey gut microbiomes utilization, and L-fuculokinase (EC2.7.1.51) and L-fucu-
were enriched in genes involved in acetate biosynthesis:  lose-phosphate aldolase (EC4.1.2.17) involved in fuculose
ADP-specific phosphofructokinase (EC2.7.1.146) and degradation. Spearman’s correlation analysis was used to
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Fig. 4 The differential functional genes between captive healthy monkeys (Captive-H) and wild monkeys (Wild). a Heatmap of the differential
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explore correlations between gut microbiomes and ECs.
A higher relative abundance of acetate biosynthesis ECs
in the fecal microbiome of wild monkeys correlated with
higher representative numbers of Erysipelotrichaceae,
Lachnospiraceae, Scarddovia, Thermomicrobium, Pseu-
doramibacter, Jiangella, Haematobacter, Mobiluncus,
Gulosibacter, and Flavonifractor (Fig. 4b).

In contrast, the proportion of genes encoding enzymes
involved in pantoate, thiamine, biotin, vitamin B6, and
vitamin K biosynthesis were enriched in captive mon-
key microbiomes. Vitamin biosynthesis gene enrichment
correlated with increased Bacteroides numbers (Fig. 4c).
Additionally, captive monkeys had a higher abundance
of ECs which catalyzed AA formation, such as serine,
glutamate, alanine, and aspartate from carbohydrate
intermediates such as pyruvate, oxaloacetate, and oxog-
lutarate, when compared with the wild monkeys (Fig. 5a
and b). Also, the genes encoding EC2.7.8.8, EC3.1.1.32,
EC3.1.1.4, and EC4.1.1.65 involved in glycerophospho-
lipid metabolism were significantly more abundant in
captive than in wild monkeys (additional file 10). The
higher relative abundance of ECs involved in AA forma-
tion and glycerophospholipid metabolism correlated with
higher Bacteroides numbers. Additionally, genes involved
in vitamin biosynthesis pathways were significantly
more abundant in captive than in wild monkey microbi-
omes (additional file 10). For example, captive monkey
microbiomes had a higher abundance of ECs involved
in riboflavin (riboflavin synthase, EC2.5.1.9) and folate
(dihydrofolate reductase, EC1.5.1.3) biosynthesis than
captive monkeys (Fig. 5¢).

After gene annotation using the CAZy database,
functional profiles were generated and cluster analy-
sis indicated that carbohydrate-active enzymes in wild
and captive monkeys were distributed in two different
branches (Fig. S4). Furthermore, carbohydrate-active
enzymes family abundance was calculated for compari-
son (additional file 11). Generally, the higher relative
abundance of glycoside hydrolases (GHs) and glycosyl
transferases (GTs) in captive healthy monkey microbi-
omes indicated a greater ability to use diet-derived sugar
(Fig. 5d). For example, enriched GH families (GH66,
GH97, GH2, GH3, GH133, GH78, and GH20) are mono-
saccharide or disaccharide hydrolyzing enzymes (http://
www.cazy.org/). Furthermore, carbohydrate-binding
module 27 (CBM27) and CBM20 enrichment was iden-
tified in captive healthy monkey microbiomes, while
CBM44, CBM30, and CBM5 enrichment were identified
in wild monkey microbiomes, and supported the notion
of diet shifts (Fig. 5e) (additional file 12). CBM27 and
CBM20 bound mannan and cyclodextrins respectively,
while CBM44, CBM30, and CBM5 bound cellulose and
chitin (http://www.cazy.org/). These data showed that the
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captive and wild monkeys used different carbohydrate
sources.

Together, these findings suggested that gut microbi-
omes in wild monkeys expressed differential ECs and car-
bohydrate-active enzymes when compared with captive
healthy monkeys, indicating different metabolic features
arising from the living environment.

Diarrhea alters gut microbiomes

Differences in fecal microbiomes between healthy and
diarrheal captive monkeys were identified by using Uni-
Frac distance based on bacterial 16 s rRNA gene V4 data
(p<0.05) (Fig. 6a). Metagenomic sequencing further
identified differences in microbial communities, while
the pie charts of the most dominant phyla showed vari-
ations in microbial communities between diarrheal and
healthy monkeys. Healthy monkeys had a lower abun-
dance of Firmicutes (29% vs. 53%) and a higher abun-
dance of Bacteroides (46% vs. 19%) when compared with
diarrheal monkeys (Fig. 6b). Furthermore, the propor-
tions of 20 fecal microbiome species differed significantly
between healthy and diarrheal monkeys (p<0.001). Of
these, a higher proportion of Bactroides_derei and Bac-
teroides_sp. CAG:714 were identified in the gut microbi-
omes of captive healthy monkeys, while Eggerthella_sp.
HGA1, Leptospira_noguchii, etchad higher proportions in
diarrheal monkeys (Fig. 6¢).

ARG in monkey gut microbiomes

Using the CARD database, 37 ARG types were detected
in 24 fecal samples (Fig. 7a, additional file 13, and addi-
tional file 14). Bifidobacterium had most ARGs in most
samples (22/24). The 37 ARGs were resistant to nine
antibiotics classes. Additionally, ARG numbers varied
from 1—18 in each sample (Table 1). Almost all mon-
keys (23/24) harbored ARG resistance to rifamycin, fol-
lowed by tetracyclines containing tetW, MexF and tet
(40) detected in 18, 16 and 16 samples respectively. Mac-
rolides, lincosamides and streptogramins (MLS), vanco-
mycin, and multidrug-resistance (MDR) also had a high
ARG abundance. However, the abundance of ARG resist-
ant to aminoglycoside, chloramphenicol, f-lactam, and
sulfonamide was low (Fig. 7b and c).

In terms of ARG types, ARG diversity in captive mon-
keys was higher than in wild monkeys. ARGs resistant to
aminoglycoside, chloramphenicol, f-lactam, and sulfona-
mide were only found in captive monkeys (Fig. 7c).

Discussion

The snub-nosed monkey species is one of the rarest wild
animals in the world. Determining biological markers is
important for the protection and health evaluation of the
species. The fecal microbial communities may be ideal
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biological marker candidates because: (1) fecal samples
can be non-invasively collected at any time; (2) the fecal
microbiome represents the gut microbiome and varies
in accordance with intrinsic and extrinsic environmental

factors; and (3) the gut microbiome maintains a rela-
tively stable status under certain conditions. Therefore,
the gut microbiome could potentially serve as a bio-
logical marker for health surveillance of R. roxellanae



Zhao et al. BMC Genomics (2023) 24:62
2 - O Diartheam Health Health: Firmicutes 29%
irmicutes 29%
© Bacteroidetes
S 46%
o
8
2
8
2
S X N
E . Sp,,oc‘,‘,;’gtes Pro[e;lofciena
L o
c
=) .
Diarrhea: Firmicutes 53%
o
o
o Bacteroidetes
° & AN 19%

Others 20%

Others 22%

Spirochaetes Proteobacteria
5% 1%

Page 11 of 15

c
. Bacteroides_dorei l 15
4': Bacteroides_sp. CAG:714 1
Eggerthella_sp. HGAT 0.5
{ I Leptospira_noguchii 0
’* Candidatus_Carsonella ruddii -05
- Clostridium_celatum -1
Clostridium_clostridioforme CAG:132 H-15

Microbacterium_laevaniformans
Nitrospirillum_amazonense
Caldicellulosiruptor_obsidiansis
L | Thermus_thermophilus

Candidatus_A b

uncultured_bacterium Contig137

Propionibacterium_propionicum

Desulfovibrio_gigas

uncultured_marine group II_IIl euryarchaeote KM3_192_D09
]7 Escherichia_coli

Vibrio_breoganii

pem

Marinithermus_hydrothermalis
uncultured_bacterium A1Q1_fos_962

J32aHF
34aSF

=
I

©
@
©
9

J36aHM
J38aHF
J31asm

3

Captive-H Captive-D

-]

Fig. 6 The difference in the fecal microbiomes between captive healthy monkeys (Captive-H) and diarrheal monkeys (Captive-D). a The similarity of
fecal microbiota measured by UniFrac distance derived from bacterial 16 s V4 rRNA data sets. b The pie chart of most dominant phylum in healthy
monkeys and diarrheal monkeys. € The heatmap of differential species (p <0.001)

population. To demonstrate this possibility, we character-
ized R. roxellanae gut microbiomes and associated vari-
ations when impacted by physiological factors and living
environments. We used 16S rRNA gene sequencing and
metagenome sequencing to characterize gut microbi-
omes, and for the first time, diarrheal samples were stud-
ied in parallel although only two monkeys were included.

Gut microbiome differences between wild and captive
monkeys
We showed that most gut microbiomes in healthy cap-
tive or wild animals were Firmicutes and Bacteroidetes
and accounted for 75 and 70% in healthy captive and
wild monkeys respectively. These results were consistent
with gut microbial composition in florivorous primates
reported previously [45, 46]. In addition, our study also
revealed that wild monkeys exhibited higher bacterial
diversity than captive monkeys. However, this is incon-
sistent with the previous similar study about the snub-
nosed monkeys [5]. It would be partially attributed to the
different sampling seasons between these two researches.
Our samples were collected in July when the wild mon-
keys have enough and rich food to eat in the forest.
Besides, these wild animals were also fed with the same
food as the captive animals during the feeding time. Fur-
thermore, it would be also possible that the captive ani-
mals in this previous report might have more varied food
than the wild cohorts during the research period.

On the other hand, the wild monkeys had a lower
Bacteroidetes/Firmicutes ratio (0.7) when compared
with captive healthy monkeys (1.6). This is supported

by previous reports that demonstrated a lower Bacte-
roidetes/Firmicutes ratio was associated with increased
energy harvest from food [47, 48]. Consistent with this,
our wild monkeys had a higher abundance of Turicibac-
ter, Lachnoclostridium, Dialister, Pseudoramibacter, and
Flavonifactor, which were related to food fermentation
to short-chain fatty acids (SCFAs) [49-51]. Moreover,
the high abundance of Firmicutes and Fibrobacteres in
bacterial phyla profiles and Clostridium and Ruminococ-
cus in bacterial genus profiles in wild monkeys showed
their fecal microbiomes had a stronger ability to ferment
complex polysaccharides when compared with their cap-
tive counterparts. However, captive healthy monkeys
possessed a high abundance of Provotella and Bacte-
roides, which metabolized individual sugars, AAs, plant
glycans, and small peptides for growth [52, 53]. In agree-
ment with our finding, an increased abundance of Provo-
tella and Bacteroides was previously observed in captive
colobines [54].

As microbial metabolism converts many dietary mole-
cules to nutrients, which are absorbed and used by hosts,
we examined ECs and found that fecal microbiomes in
wild monkeys fermented complex dietary plant polysac-
charides to generate acetate. These fecal microbiomes
of the wild monkeys had a relatively high abundance of
CBM44, CBM30 and CBM5, while a high abundance of
CBM27 and CBM20 was observed in the fecal microbi-
omes of captive healthy monkeys, which might be gen-
erated by different diet compositions. Furthermore,
fecal microbiomes in wild monkeys tended to metabo-
lize pyruvate to produce acetate, while in contrast, fecal
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microbiomes in captive healthy monkeys tended to use
pyruvate, oxaloacetate, and oxoglutarate to produce AAs.
When considering important functions in host-bacterial
interactions, including complex polysaccharide degra-
dation and SCFA synthesis [55], these differential ECs
and CBMs indicated that different living environments,
including diet and movement limitations, may have
shifted gut microbiome toward digesting different diets
and deriving energy harvest from foods to meet different
energy requirements.

Taken together, a higher Bacteroidetes/Firmicutes ratio
in captive healthy monkeys reflected a change in diet
and shift of metabolism pattern compared with the wild
monkeys.

Differences between diarrheal and healthy monkeys

Previous studies revealed that diarrheal monkeys had
less Bacteroidetes and more Firmicutes abundance [5].
Similar changes were observed in diarrheal R. roxel-
lanae. The notion that diarrhea only exists in captive
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Table 1 Overview of antibiotic
microbiomes of R. roxellanae

resistome in the gut

Sample name Captive/Wild Number of ARG in
the fecal samples

J38aHF Captive 18
J31aSM Captive 14
J32aHF Captive 14
J34aSF Captive 13
X22aHF Wild 12
D13aHM Wild 12
J36aHM Captive 11
BOTaHM Wild 1
D15aHF Wild 10
J33aHM Captive 10
NO7aHM Wild 10
N10aHF Wild 9
NO09aHF Wild 9
BO3aHF Wild 9
BO6aHF wild 8
X21aHM Wild 7
X23aHF Wild 7
Q30aHM Wild 7
D18tHF Wild 7
D17tHF wild 6
Q27aHM Wild 6
D14aHF Wild 5
Q28aHM Wild 3
D16tHM Wild 1

monkeys (additional file 1) prompted us to investigate
diarrheal causes in these monkeys. When compared
with wild monkeys, captive monkeys had lower bacte-
rial diversity (Fig. 1a) and a limited ability to synthe-
size SCFAs, which was reported to typically protect
animals against inflammatory bowel disease [56, 57].
We further analyzed bacterial levels between cap-
tive healthy and diarrheal monkeys. Escherichia coli
had a higher abundance in captive diarrheal monkeys
(Fig. 6¢). We previously identified an atypical enter-
opathogenic E. coli 098 from the monkeys with diar-
rhea [2]. Therefore, further studies need to reveal the
association between diarrhea and low SCFA produc-
tion and pathogenic E. coli overgrowth in guts of diar-
rheal monkeys.

In our study, wild monkeys had lower Bacteroidetes/
Firmicutes ratios and did not present any diarrheal sam-
ples (0/30), and captive monkeys presented 50% diar-
rheal samples (4/8). So, if the Bacteroidetes/Firmicutes
ratio is used as a diarrheal marker, other factors signifi-
cantly affecting bacterial diversity should be excluded.
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Moreover, captive monkeys with altered microbial com-
munities might be more susceptible to diarrhea.

ARG differences between wild and captive monkeys

We identified 37 ARG types in 24 fecal samples, which
were resistant to nine antibiotic classes. It would be of
significance to predict susceptible drugs for the monkeys’
medication when they are sick. Tetracycline resistance
gene was the most abundant gene reported in pigs [58,
59], cattle [21], dogs [60] and chickens [61]. Also, some
ARG such as MLS, MDR, and vancomycin were reported
in underground waterways [62], rivers [63], and oceans
[64]. Consistent with these observations, our study
revealed that tetracycline, MLS, MDR, and vancomycin
were the top drug types of ARG.

More interestingly, captive monkeys had higher ARG
diversity than wild monkeys (Table 1), therefore origi-
nal ARG sources are worthy of discussion. Generally
speaking, monkeys free-living in the mountain experi-
ences less environmental pollution and therefore envi-
ronmental ARG sources in these locations are reduced.
However, there still might be possible for ARG to circu-
late among the wild animals, surrounding livestock and
humans. First, a large number of bacteria like Escheri-
chia, Streptococcus, and Enterococcus are commonly
associated with broad-spectrum ARGs [65], it would be
possible that these bacteria might be the main source
of the ARGs in the monkey’s feces. Unique ARGs in
captive monkeys were: CatD, cfxA3, acrD, novA, Sul2,
and acrF. Of these, CatD was associated with Clostrid-
ium difficile, which is a significant enteric pathogen of
humans in hospital-acquired infections and livestock.
Moreover, C. difficile transmission from humans to ani-
mals through food and the environment was previously
reported [59]. Further work is needed to explain the
source of enriched ARGs in these monkeys.

Conclusion

Our study generated the following conclusions: (1) Firmi-
cutes and Bacteroidetes were the most dominant bacteria
in the gut microbiome of R. roxellanae; (2) gut micro-
biome variations were primarily determined by raising
patterns (wild vs. captive) rather than sex or age; (3) a
higher bacterial diversity and a lower Bacteroidetes/Firm-
icutes ratio were potential biological markers for monkey
health; and (4) potential ARG transmission between the
monkeys, surrounding livestock and humans should be
carefully considered. Overall, humans must be mindful of
the harmful effects on gut microbiome alterations result-
ing from captive breeding approaches and dietary niches
in order to protect endangered animals.
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