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Homoclinics: Poincaré-Melnikov type
results via a variational approach

Antonio AMBROSETTI and Marino BADIALE

Scuola Normale Superiore, Pisa, 56100 Italy.

A/?7!. Inst. Henri Poincaré,

Vol. 15, n° 2, 1998, p. 233-252 Analyse non linéaire

ABSTRACT. - We introduce a variational approach to obtain some
Poincare-Melnikov type results on the existence and multiplicity of
homoclinics. © Elsevier, Paris

1. INTRODUCTION

This paper deals with the existence of homoclinics, namely doubly-
asymptotic solutions, for a broad class of perturbed differential equations,
variational in nature.

The existence of homoclinics has been faced both from the local and

from the global point of view. The existence for perturbed time periodic
systems with one degree of freedom was first proved by Poincare [15],
see also [10]. The results by Poincare have been the starting point for a
great deal of work. In particular, Melnikov [14] has proved by analytical
methods the existence of homoclinics for non conservative perturbations,
leading to chaos, see for example [11]. A common feature of these results
is the use of an integral function, the Poincare function or - roughly - its
derivative, the Melnikov function. The non degenerate zeros of the latter
give rise to homoclinics.

On the other side, more recently Critical Point Theory has been used to
prove the existence of homoclinics for a class of Hamiltonian systems like
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234 A. AMBROSETTI AND M. BADIALE

when the potential U with p > 1 and depends periodically (or
almost periodically) on t, see [7, 8, 9, 16, 17] and references therein.

Although these approaches are apparently considered different in nature,
we will show that they are connected, in the sense that an appropriate
use of Critical Point Theory permits also to find the classical perturbation
results. More precisely, we discuss an approach, variational in nature, which
furnishes a general frame to deal with several different kinds of perturbed
differential equations. We not only find Poincare-Melnikov like results

(both for systems with several degrees of freedom and for autonomous
systems) without any non degeneracy assumption, but also handle Partial
Differential Equations.

Moreover, specializing the recent variational works cited before to our
setting, they cannot provide results in the same generality: we localize
the solutions and find multiplicity results; in addition, we can also handle
potentials with a more general dependence on t, not only periodic or almost
periodic.

In order to have an idea of our setting, let us consider the second order
Hamiltonian system with N degrees of freedom

where V(0) = 0, VV(0) = 0, D2V(0) = 0, and roughly W(t,O) = 0,
= 0. Homoclinics of ( 1 ) correspond to stationary points

u E of the Lagrangian functional

whose Euler equation is (1). Suppose that the unperturbed equation

has a non trivial homoclinic Connected with the unperturbed
functional ~~ Lo possesses a manifold of critical points Z = {’Uo (t + 8) :
8 and we are lead to search homoclinics near one of these translates

u0(. + 8) by looking for critical points of Lo + ~  W nearby Z. It turns
out that these critical points exist provided that

has a (possibly degenerate) critical point. Such a r is the Poincaré function
and its derivative is the Melnikov function.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



235POINCARÉ-MELNIKOV TYPE RESULTS VIA A VARIATIONAL APPROACH

More in general, the abstract set up, discussed in Section 2, deals with
the existence of stationary points for a class of functionals like

and is related to some previous work [4, 2], see also [1]. It is assumed

that the unperturbed functional fo possesses a manifold of critical points Z
such that = for all z E Z. For example, in the case of
(1), it suffices to require that the solutions of the linearized equation

form a one dimensional space. Then it is shown that, roughly, the (possibly
degenerate) critical points of G on Z give rise to stationary points of 
The main ingredient is a kind of finite dimensional reduction which permits

. to search the critical points by studying fE constrained on a manifold Z E,
locally diffeomorphic to Z. In the specific applications it turns out that this

Glz is nothing but a Poincare-Melnikov type function.
These abstract results are applied in Section 3 to (1) as well as to

perturbed radial systems like

One shows that the condition Tz Z = is still satisfied and hence

the abstract approach yields the existence of homoclinics in connection

with the critical points of

As for the perturbation W, we can also consider the case that i~) =
g(t) . u, when (1) becomes a forced system. In particular, the classical case
of systems with a periodic or quasi periodic forcing term can be handled,
see section 4.

Our functional approach also applies when W is independent of time
and (2) becomes an autonomous system, see Section 5. In such a case we

Vol. 15. rr 2-1998.



236 A. AMBROSETTI AND M. BADIALE

can show the existence of two distinct homoclinics, a multiplicity result
which improves the one of [18].
The generality of our abstract setting allows us to handle Partial

Differential Equations, too. Applications to the existence of semiclassical
states of a class of Schrodinger equations with potential have been discussed
in [2]. Here, see Section 6, we prove the existence of two solutions of
forced Schrodinger equations like

provided 1  p  ( N + 2 ) / ( N - 2) and g E L~, improving a recent
result of [12].

2. ABSTRACT SETTING

Let E be a real Hilbert space with inner product (’ ’) and norm )) . )) . We
consider a family of functionals IE satisfying

(ho) IE E and has the form

Motivated by the applications, we will further assume that the unperturbed
functional fa(u) = 2 ~ ~ u ~ ~ 2 - F ( u) inherits some simmetries in such a way
that it possesses at a certain level b a non degenerate manifold Z of critical
points. Precisely we will assume:

C2 (E. tR) has a d-dimensional C~ manifold Z of critical points ;
( ~L2 ) For all z E Z the linear operator pI! (z) is compact;

(h3) For all z E Z one has: TzZ = 
Above, Tz Z denotes the tangent space to Z at z.

Remark 1. - Since, obviously, T~Z C then (h3) is a

non degeneracy condition that amounts to require that, for any ø E E.
q5 - 0 implies ø E 
Our first goal is to show that, locally near any z E Z, there exists a

manifold ZE diffeomorphic to Z which is a natural constraint for By
this we mean that ’U E ZE and implies = 0. In this way the

search of critical points of fE on E (near Z) is reduced to the search of
critical points of Such a procedure, carried out in Lemmas 2 and

de l’Institut Henri Poincaré - Analyse non linéaire



237POINCARE-MELNIKOV TYPE RESULTS VIA A VARIATIONAL APPROACH

4 below, is essentially known, see for example [4], and is reported here
for the reader convenience.

We will henceforth assume that Z = ((R~) whith ( E Let

BR = ~ 8 E (  R~ and ZR = ~ ( BR ) . However all the results
hold true in the general case giving to Z~ the meaning of a relatively
compact subset of Z.

LEMMA 2. - Given R > 0, there exists Eo > 0 and a smooth function

such that

Proof - Let qi = qi ( z ) , 1  2 ~ d denote an orthogonal basis for T~ Z.
We will find w(z, E) by means of the Local Inversion Theorem applied
to the map

with components .~h E E and H2 E tR~ given by

Let us remark that Hi = 0 means that + w) E Tz Z, namely that
(ii) holds, while H2 = 0 means that w is orthogonal to namely that
(iii) holds.

Plainly, there results H1(z, 0, 0, 0) = z - = 0 and H2 (z, 0,
0.0) = 0. Furthermore, fixed z* E Z, we consider the derivatives of

H evaluated on (z*,O,O,O):

One easily finds, for (v, E E x 

Vol. 1 ’~. n’ 2-1998.



238 A. AMBROSETTI AND M. BADIALE

In order to prove that L ( z * ) is invertible we notice that (h2) implies that
L is of the form "Identity - Compact", so it is enough to prove that it is

injective. Then let us assume that ~~ _ (0, 0). From

taking the inner product with qi, we infer

Using (h~) one has that qi e Ker fo (z*), namely that F"(z*)q.L = qi,

and hence

Then it follows that ,~2 = 0 and (4) becomes

Using again (h3), we deduce that v E Tz* Z. On the other side, = 0

implies that v is orthogonal to T~~ Z and thus v = 0. This shows that L(z*)
is invertible and an application of the Implicit Function Theorem yields the
existence of smooth, unique functions w and a, defined in a neighbourhood
U of z’~ (relative to Z) and for E small, satisfying

Since Z is finite dimensional one can extend by compactness w on all M
and the proof is completed..

Remark 3. - The function w is smooth and w(z. 0) = 0 ‘d z E In

particular it follows that c) = O(E) as E -~ 0, uniformly in z E ZR..
Let

LEMMA 4. - 2E lS Cx natural constraint for f’~, namely: l,f zc E Z~ and

f’~|Zc ( ‘tL ) = o then f’~(u) - 0.

Pj oo, f : - S uppose that ( r.c ) = 0 for so me u = z -~- w ( z . E ) ~ Z f .
Then f F ( 2~. ) is orthogonal to Tu 2F . On the other hand , f E ( ~c ) E T~ ~ 
the definition of E ) ) and is near provided E is small

.

enough.Thus f E ( z‘ ) = o..

Annales de l’Institut Henri Poincaré - Analyse non linzaire
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Remark 5. - Let uE be possible critical points of f E on 2E . One can show
that if -~ z* E Z as E ~ 0 then z* is a critical points of G on Z. See,
for example, Section 4 of [4] or Section 7 of [2] for more details. This

localization of the critical points of fE can be useful to distinguish these
critical points from other ones and can permit to obtain multiplicity results,
see for example Remark 17-(zv) and Theorem 22 below..
The following theorems provide the existence of critical points of 

Although the first two can be actually deduced from the latter, we prefer to
state and prove them separately to make our arguments more transparent.
We begin with the case in which G has a local minimum or maximum on Z.

THEOREM 6. - Let (ho - hI - h2 - h3) hold and assume
( h.~ ) there exists an open bounded set A C Z and zo E A such that

Then f has at least a critical point u~ E 2E provided E > 0 is small enough.

Proof - Let R > 0 be such that A C ZR. By Lemma 2 we know that
for E > 0 small there exists a diffeomorphism ~~ : 2~ -~ ZE, such that

= z -~- w ( z, E ) . Moreover there results

where the boundary on the left-hand side is relative to 2E . According
to Remark 3, for any u = 03A6~(z) we have u = z + ~w0 + o ( E ) , where

= Wo (z) is bounded provided z E 2R. Using this fact, we infer that

Putting together (7), (8) and (9) one finds

Vot. 15. rr 2-1998.



240 A. AMBROSETTI AND M. BADIALE

and hence

Recalling that Z~ is finite dimensional, (11) implies that f E has a point
of minimum in the open (relative to ZE) set By Lemma 4, this

minimum (constrained on ZE) is a critical point of fE..
The preceding Theorem, together with Remark 5, immediately yields:

THEOREM 7. - Let ( ho - ~L2 - h3) hold and assume

(h5) G has a proper local minimum (or maximum) at some zo E Z.
Then fE has at least a critical point u~ ,such that u~ ~ zo as E ~ 0.
Our next result deal with a more general critical point of G. Given

c E R we set

We say that Zo E Z is an essential critical point of G|Z if, letting c0 = G(zo),
the sublevel cannot be deformed into A~~° -s, for any 8 > 0 small. For
example, Morse non degenerate critical points are essential. A critical level
co is called an essential critical level if it carries an essential critical point.

THEOREM 8. - Let ( ho - hi - h2 - h3) hold and suppose:
(h6) G is coercive on Z and has k essential critical levels.
Then, f possesses at least k critical points ~cE E 2E.

Proof - Let c~ . - G ( zo ) be an essential critical level and take c > Co.
Since r is coercive, there exists R > 0 such that Ac C 2R. Then, as in the
proof of Theorem 6, we find (see Equation (10) )

for all ru E ~~E = ~E(A~~) (hereafter we use the notation introduced in
Theorem 6). From the above equation we infer

and hence, for E small,

Annales de l’Institut Henri Poinc-or-e - Analyse non linéaire
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Define

According to (12), let t5 > 0 be such that

Taking E possibly smaller, one also finds

Indeed, if u ~ Ac0+03B4~ then u = 03A6~(z) with G (z)  03B4. Therefore one has

for E small enough. Similarly there results

After these preliminaries, we can use standard arguments (note that they
apply in a straight way because all the deformations take place in the
sublevel {f~  03C3~}, and this is compact) to conclude. Indeed, if f E has no
critical points in the strip ~co-2~  then {fE  
could be deformed into {f~  b + E(co - 203B4)}. According to the preceding
inclusions, this would induce a deformation of into AE°-~ and finally
a deformation of A~° -&#x26; into A Co -&#x26;, a contradiction because zo is essential.
Thus ~~ has a critical level near each essential critical level of G, proving
the Theorem..

We end this section with another multiplicty result.

THEOREM 9. - Let (ho - hi - h2 - h 3) hold. Furthermore, suppose there
exist c E R and 2: C 2, ~ ~ ~, such that:

(h7) bounded;

(h8) 03A3 C Ac and 03C3 := sup03A3 fo  c.

Then f E has at least A C) critical points in 2E denotes the usual

Lusternik-Schnirelman category, see for example (1 J, section 2).

Proof - As above, we can consider the map ~F : : ZR --~ 2E. We set
~F = ~,(E) and AE = We also have, for 1L = 

Vol. 15. n ’ 2-1998.
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Then the hypothesis o-  c readily implies, for E small,

Take 03B2 E R such that sup03A3~ f~  03B2  inf;_,c Then we have

and hence

Now the result follows by standard critical point theory for differentiable
functions on manifolds..

Remark 10. - The same result holds if Ac = {z E Z : G(z) > c}
and a > c..

Remark 1 l. - Dealing with a more general perturbation term 
the above arguments may require some modification. This is the case, for
example, in [2] where we refer for more details..

3. APPLICATIONS TO TIME DEPENDENT SYSTEMS

The preceding abstract setting will be used to study the existence of
homoclinics of perturbed systems of differential equations like

Here we will take u E with N > 1 and we assume

, 
-- -- ‘ 

- 

~ __ __ B 
. 

/ ~ j " " i B / , / I

Let E denote the Sobolev space W~,2((~.I~l~’’) endowed with scalar

product (ulv) = + v, ~ v)dt and norm = We define the
linear continuous operator K : L~’ (f~. ~ E by setting

de l’Institut Henri Poincaré - Analyse non linéaire



243POINCARE-MELNIKOV TYPE RESULTS VIA A VARIATIONAL APPROACH

For u E E we set

Homoclinic solutions of (13) are the critical points u E E of the functional

To use the abstract results, some assumptions on the unperturbed equation

are in order. Precisely we will either assume (Vi) and
0~2) such that uo solves (14) and =

In the former case equation (14) has a homoclinic ~co E E such that the
solutions § E E of the linearized equation

form a one dimensional space. Letting, for any 03B8 E R, = u(t + e)
one has E and

If ( v’:~ ) holds, let r = r (t) be the unique solution of

and let re denote the translated function re (t) = r(t + 8), 8 E R. Then, for
~ E ,S’ ~"r-1, z = ~ re are homoclinic solutions of ( 14) giving rise to a critical
manifold Z of fa. For future reference we notice that .S’ ~‘ -1 x lf~ and

that has the form

In the sequel we will denote by cJ either 8 E R or (~. 8) E ,S’ ~‘ -1 x ll~

according that V satisfies (Vi - ~’Z ) or ( ~3 ) . We also use yo, respectively

Vol. 15. n 2-1998.



244 A. AMBROSETTI AND M. BADIALE

ys, to indicate either uo or resp. ue or and so we have

r(w) = J~~ i~(t, + e)) dt.

LEMMA 12. - Assumptions ( ho - h 1 - h2 - h3) hold.

Proof - ( ho ) and (hi) are obvious. As for ( h2 ) , we have to show that
0 strongly in E, whenever converges weakly to 0. There

results

Since y03B8 E E , by (Vi) it readily follows that 0 in L2(1R, 
and by the continuity of K we deduce 0.

As to ( h~ ), we have to treat separately the cases that (Vi - V2) or

{ Y3 ) hold. In the former, it immediately follows from TzZ C K er f"0 (see
Remark 1) and ( v2 ) .

In the latter, let us first notice that

as well as that ~ E if and only if

Furthermore, according to Remark 1, we have to show that for any ø
satisfying (16) there results

for some c~ E R, rl E IRN = 0. To prove this claim, let us set

~J(t) _ ~ ~ c~(t). The real valued function ~ satisfies the equation

Let us remark that re is a solution of (17). We can then apply Theorem 3.3
of [5], which implies that all non diverging solution of (17) are given by
ar’e, a E R. In other words, ~~ e R such that ( . (~(~) = are (t).
We now define

and notice that ~ ~ = 0 for all t. Substituting q5 == 0- + in (16)
we find

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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There results + TO = and hence from (18) we deduce

System (19) is equivalent to the N de-coupled equations

Obviously re is a solution of (20) and another application of Theorem 3.3
of [5] yields that E IR such that ~i = and there results

Then one = 0 and

and the proof is completed..
We are now in position to state the results concerning the existence of

homoclinics. The first one is an immediate application of Theorems 7, 8
and Lemma 12.

THEOREM 13. - Let (Vi - V2 ), respectively (V~~ ), and (Wi) hold.
(i) if r has a proper local minimum (or maximum) at some 80, resp.

(~o, 80), then for ~E~ I small, (13) has a homoclinic solution near

uo(t + 80), resp. ~or(t ~ eo);
(ii) if T is coercive and has k essential critical levels then, for |~| small,

(13) has at least k homoclinic solutions.
The above Theorem is a general result that applies in a large variety of

specific cases. In the sequel we list some of them.

THEOREM 14. - Let (Vi - V2 ), respectively~ ( ~3 ), and hold at~d

assume that W (t + T, u) = W (t; u). Then, for |~| small enough, ( 13) has
a pair of homoclinic solutions.

Proof - Instead applying the general theorems 6 and 9 we can use
Lemmas 2 and 4, directly. By local uniqueness of the function (see
Lemma 2), one gets easily, for all t, 8 E R,

Recalling that ZE = ~~9 + E)~, we obtain that fF is periodic as
a function of 9 namely

Vol. 15. n- 2-1998.
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By compactness, (22) implies that, when 8 varies in a closed bounded
interval larger than T, f will assume maximum and minimum values. The
points of maximum and minimum give rise to two critical points of f~ (by
Lemma 4), and then to two homoclinic solutions of (13). N

Let us now consider, for the sake of simplicity,
a systems of the form

with g(t) not constant. The case of a constant g will be discussed separately
in Section 5 below.

THEOREM 15. - Let (Wl ) hold and suppose that g E L°° satisfies
(gl) lim|t|~~ g(t) = q;
(g2) r is not identically constant.

Then for 0 small enough, (23) has a homoclinic prvided that either
(V1 - V2 ) are satisfied or ( Y3 ) holds and 03B3 = 0.

~roof. - Suppose ( h1 - V2) hold. In order to apply Theorem 6, we first
remark that from (gl) it follows

As r is not constant on Z, it has a global minimum or maximum value ~ Y.
Assume the former (in the other case the proof is the same, by using Remark
10) and let So be such a minimum. Then there exists 8* > 0 such that

Letting A = ~ ~u8 : ( 8 ~  e* ~, we can apply Theorem 6, jointly with Lemma
12, yielding the existence of a homoclinic solution to (23).

If ( I%3 ) holds and ~y = 0, the preceding arguments imply F achieves an
extremum at some ( ~o . So)..

In this last result the presence of symmetries allows us to get not only
existence but also multiplicity results.

THEOREM 16. - Let N > 1 and (V3) hold. Assume (W1), g E L x and
(g1) with 03B3 = 0. Furthermore, let us suppose that both g and W have
constant sign.

for |~| small enough, (23) has a pair of homoclinic solutions.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - Arguing as above we find that r ( ~ . b~ ) --~ 0 as o ~ -~ x.

Moreover r has constant sign, say r(~, 8) ~ 0 for all (~. ?). Then by
compactness it follows

Let c E [R be such that 0)  c  0 and define

It is then easy to see that T -~ 0 and (25) imply that the hypotheses of
Theorem 4 hold. So we obtain at least cat(~, = 2 homoclinic solutions
of (23)..

Remarks 17. - (i) A specific one dimensional problem like ( I 3) has been
studied in [6] by variational methods, obtaining results related to Theorem
13-(i).

(ii) The case of a periodic time dependence of W is extensively studied
in a global setting, see for example [8, 9]. Roughly, the potential is usually
assumed to behave In particular, the case that (Vi - ~~) hold
is not covered in those papers.

(iii) A result like Theorem 14 in the case (Vi - ~2 ) (but not ( Y3 ) ) is
also proved by analytical methods in [13].

(iv) As E --~ 0 the solutions we have found converge to non trivial
homoclinics of the unperturbed system (14), according to Remark 5. In

particular, they are not small in the L~ norm. As a consequence, an
additional homoclinic exists, to be found by using the Local Inversion
Theorem near to u = 0.

(v) In all the above results we can take a perturbed potential like
See also Remark 21 ..

4. FORCED SYSTEMS

In this section we deal with the forced system

We will always assume that either ( ~~ 1- ~ ~ ) or ( l- ;j ) hold, so that assumptions
( t~;, - are satisfied. It is convenient to distinguish between the cases
Vol. 1 "~. n - ?- I 998.



248 A. AMBROSETTI AND M. BADIALE

that g E L2 or that g E In the former we can proceed in a straight
way defining G E C°° (E. I~) by

and carrying out the preceding arguments. The Poincare-Melnikov type
function F has the form F = uo (t + 9)dt, where it is understood
that ~uo = ~ r when _ + 1). In any case one finds

and hence r has a minimum (or a maximum) at some eo, whenever it is
not identically = 0. Then an application of Theorem 6 yields

THEOREM 18. - Let (Vi - V2 ), respectively (V3 ), hold and suppose that
g G ~2 (~, ~~’T ) and that 0. Then for E ~ small enough, (26) has a
homoclinic solution near to 8~) for some 8~ E (~.

Let us now consider the case that g E L°° . Here we cannot proceed as
before, because G is not well defined on E. To overcome this problem we
make a standard change of variable. Using the Implicit Function Theorem,
the system

has a solution ~y~ E L°° near u = 0. Letting u = v + we are lead to

search a v G E satisfing

which is in a form suited to our abstract approach (see also Remark 11).
Precisely, one has that = -~ o(E) where ~yo solves = 

and hence W(E, t. v) _ + o(E). It follows that (27) has a
homoclinic (to 0) provided

has a (possibly degenerate) essential critical point.

Annales de Henri Poincaré - Analyse non linéaire
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Since Uo is a solution of -v ~- v = one finds

Integrating by parts one immediately finds that

the usual Poincaré-Melnikov function. In conclusion we have

THEOREM 19. - Let (Yl - V2), respectively (V3), hold and suppose that
g E Lx. Then (26) has a solution which is doubly asymptotic to provided
I° has a proper local minimum (or maximum). Moreover, iff is coercive and
has k essential critical levels, then (26) has at least k homoclinics to 

It is worth mentioning that, the specific cases that g is periodic, or quasi
periodic, or almost periodic, are covered by the preceding Theorem. Indeed,
when g is periodic, the result would follow from Theorem 14.

5. MULTIPLE HOMOCLINICS FOR AUTONOMOUS SYSTEMS

In this section we will discuss the existence of multiple homoclinics for
autonomous systems like

Rather than using Theorems 6-9, we will take advantage of the fact that W
is independent of time and use directly Lemmas 2 and 4.

THEOREM 20. - Suppose that (Wl ) hold. Thenfor E ~ small enough, (28)
has at least 2 geometrically distinct homoclinics.

Proof. - Let N > 1, otherwise the result is trivial. As in Section 2, we
define G E I~) by setting

and take E > 0. Since W does not depend on time, the perturbed functional
.f is, likewise f o, time translation invariant. As a consequence, the function

see Lemma 2, satisfies

Vol. rr 2-1998.
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and the perturbed manifold ZE has the form ZE = ~E x R, where ~E is

diffeomorphic to S’-’~T-1. We remark that IE does not depend on 8 but only
on ~: = f o (~ r) - EG(çr + E) ) . Obviously, ~E has at least two
critical points ~~ (E) on ~E x ~0~ which give rise to two (geometrically
distinct) homoclinics = + = l, 2. 1

Remarks 21. - (i) The same arguments can be used to handle potentials
W = W(~c. u). In such a case we assume W E x 

W(O,O) = 0 and V uW (0, 0) _ ~.uW (0, 0) = 0, so that the critical

points of f~ are classical solutions of

(ii) Taking also into account the preceding Remark, Theorem 20

improves [18]. In particular, it is worth pointing out that the approach
used in [18] only works for reversible systems and cannot be used to
handle potential depending on ic. See also [3] for other results concerning
the existence of multiple homoclinics for autonomous systems.

(iii) As pointed out in Remark 17-( iv), also here the solutions 

converge to _ ~i r(t) as E --~ 0, where ~.L E are such that

6. SCHRODINGER EQUATIONS

Our last result is concerned with the nonlinear Schrodinger equation

with g E L’ (~ ~ ) and 1  p  2~ - 1, where 2* = 2N/(N - 2) if

N > 2, and = otherwise. We will use the preceding notation, with
E = It is well known that the unperturbed equation

has a unique positive solution zo E E such that = 0. Setting
= + 8) and Z :_ ~za : 8 E it turns out that Z is a critical

manifold, diffeomorphic to (~$=’~ , of the unperturbed functional
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Moreover, assumptions (hi - h2 - h3 ) hold, see for example [2] and

references therein. Letting

one has that G E L~) and (ho) holds true, too. For 8 E (~ we define

and hence

Furthemore, let us assume that

(7s) ~ ~ ~ i~ such that I‘(8) ~ 0.
Then r has either a minimum or a maximum on Z and Theorem 6

applies yielding a solution of (29) such that -~ zo (t + 90),
for some eo E A second solution can be found near the manifold

Zi = + ~)~. Finally to find a third solution of (29), we can use
the Local Inversion Theorem near ~c = 0. Since, obviously, the linearized
equation ~- v = 0, v E E, has the trivial solution, only, we find a
solution icE G E of (29) such that UE  0 as E -~ 0. In particular, i~~
for E sufficiently small, proving the following result:

THEOREM 22. - Let g E and 1  p  2 * - 1. I, f ’ ( g3 ) hol ds then
(29) has 3 distinct solutions provided E is sufficiently

Remarks 23. - (i) Obviously, condition (g3) is satisfied if g(.z:) has

constant sign on all of Hence our Theorem 22 improves some results
of a recent paper [12].

(ii) The nonlinearity could be substituted by a more general
function ~>(~c) satisfying suitable conditions in such a way that (~3) still

holds. A class of admissible 03C8 is discussed, for example, in [2], Section 6.
Similar remark applies to all the problems discussed above..
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